
A Testbed for Robotic Visual Servoing andCatching of Moving ObjectsDinis G. Fernandes� Pedro U. Limadinis@isr.ist.utl.pt pal@isr.ist.utl.ptInstituto de Sistemas e Rob�oticaInstituto Superior T�ecnicoAv. Rovisco Pais,1 - 1096 Lisboa Codex - PORTUGALAbstractThis paper describes an experimental testbed, suit-able for experiments on visual servoing and catch-ing of moving objects by a robotic manipulator, whichallows the implementation of di�erent control archi-tectures. This testbed is composed by: (1) a visionsystem responsible for object following and for thereal-time computation of the parameters character-izing the object motion, (2) a system devoted to theprediction of the object motion, (3) a manipulatorcontrol system suitable for the object interception andcatching tasks. An application is presented, consist-ing on the catching, by a Puma 560 manipulator, ofping-pong balls rolling on a table.1 IntroductionRobotic vision and manipulator based servoing,catching and manipulation of moving objects are dy-namic tasks of current interest for industrial applica-tions.Despite the considerable amount of work in thearea of visual control of robotic manipulators, littleprior work directly adresses catching of moving ob-jects. The research published under this topic can beclassi�ed according to the type of visual servoing ar-chitecture used: position-based control architectures(e.g., [3][5]), where the control error is de�ned accord-ing to end-e�ector and object positions in world coor-dinates, and image-based control architectures (e.g.,[4][10]), where the control error is directly computedin terms of image features.Most of the work describes successful case studies,without much emphasis on the performance evalua-tion of the architectures used. At ISR/IST, we devel-oped a testbed for the implementation of case studies,aimed at comparatively studying the performance ofdi�erent robotic visual servoing and catching archi-tectures. In this paper, we present the results ofimplementing on this testbed a modi�ed version of�Supported by the PRAXIS XXI grant BM/6838/95.

a case study described by Andersson [1]. The ex-periment consists on the catching, by a Puma 560manipulator, of ping-pong balls rolling on a table.2 Object Trajectory PredictionThresholding and centroid computation [6] areused by the vision system to obtain successive loca-tions of the ball in the image, given by the followingimage feature parameter vector:f = [uball vball]T ; (1)where uball and vball are respectively the image col-umn and row coordinates of the center of the ping-pong ball.The ball trajectory in image plane coordinates canbe described by the following generic equation:vball(i) = r(uball(i)) + e(i); (2)where r is a function that models the ball motion,and e is a residue which represents the observationnoise and non-modeled dynamics. The function r canbe expressed by the linear combination of m basisfunctions which model the ball trajectory:r(uball(i)) = KT'(uball(i)); (3)where K = [k1 � � � km]T is the parameter vector,'(uball(i)) = [r1(uball(i)) � � � rm(uball(i))]T is thedata ball vector, and i is the sampling index.The basis functions choosen to model the ball mo-tion are '(uball(i)) = [1 uball(i) u2ball(i)]T . uball(i)provides a linear contribution, which is the main rep-resentative of the ball trajectory. Most of the timesthe ball describes a slight curve, normally due to aninitial spin and to some imperfections on the table,namely the table being wrapped and not being lev-eled. This is modeled by the quadratic function.The problem consists on the determination of esti-mates K̂ = [k̂1; k̂2; k̂3]T of the parameters k1; k2; k3,each time a new image is acquired and a new ball

position is extracted. These estimates are com-puted using a least squares approach [2], from theset f[uball vball]T1 ; . . . ; [uball vball]Tng, discrete in time,of image feature parameter vectors associated to eachof the n images.This way, after n images, and consequently n suc-cessive ball locations on the image plane, a leastsquares estimate K̂ that minimizes the functionJ(K̂) = 12 nXi=1[vball(i) � v̂ball(i)]2; (4)is computed, wherev̂ball(i) = K̂T'(uball(i)): (5)De�ning � = ['T (uball(1)) � � � 'T (uball(n))]Tand V = [vball(1) � � � vball(n)]T , if the matrix�T�is nonsingular, the least squares estimate is uniqueand given by: K̂ = (�T�)�1�TV: (6)The catch is always performed along a straight linenear the rear end of the table, called intercept line.The intersection of the predicted ball trajectory withthe intercept line determines the catch point, givenin image plane coordinates as:fcatch = [ucatch vcatch]T : (7)3 Visual Servoing ArchitecturesTwo distinct visual servoing architectures were im-plemented:� position-based, with endpoint open-loop (EOL)| the system only observes the object;� image-based, with endpoint closed-loop (ECL)| the system observes both the object and themanipulator end-e�ector.3.1 Position-BasedFig. 1 shows the EOL architecture implemented.It uses a joint space PD controller with gravity com-pensation [9], to control the manipulator.In the sequel, we assume the robot base frame asthe reference frame. In this particular task, the de-sired end-e�ector orientation [�d �d d]T (where �d,�d, d are ZYX Euler angles [9]) and position Zd co-ordinate are constant, because the catch is alwaysperformed along an intercept line on a plane parallelto the XY plane of the robot base frame.The vector xid = [Xd Yd]T , with the desired co-ordinates in X and Y , is obtained from the imagepredicted catch point fcatch = [ucatch vcatch]T by thecamera inverse calibration relationship [6]. We also

kinematics

Inverse
PD controller with

gravity compensation
(joint space)

table

ball

Puma 560

camera

+

Inverse

camera calibration

Image feature

extraction

d

Prediction

system

τ

θ

θx

x

x

d

catch ball

d

i

f f

r

d Figure 1: Position-based architecture (EOL).de�ne the constant vector xrd = [Zd �d �d d]T withthe desired orientation and Z coordinate. The de-sired pose for the manipulator end-e�ector, xd, isgiven by xd = [xiTd xrTd]T .Finally, the inverse kinematics of the manipula-tor is used to compute the vector �d of desired jointvalues from the desired pose xd.3.2 Image-BasedThe image-based architecture block diagram is de-picted in Fig. 2.
table

ball

Puma 560

camera

Image feature

extraction

Prediction

system

K J img
* -1

Image feature

extraction

catchf

v

τ

θ

ballf

PD controller with
gravity compensation

(operational space)

x

x

d

rd

delay Tv

fcup

+
+

+

+

-

xid

ix (t-T)i x (t)Figure 2: Image-based architecture (ECL).The error of the external control loop is de�ned onthe image feature space and is given by:�f = fcatch � fcup; (8)where fcatch and fcup are, respectively, the imageplane coordinates of the predicted catch point andof the cup gripped by the Puma 560.It is necessary to relate changes in the image fea-ture space, where the error is de�ned, to changes inthe manipulator pose. This relationship is given bythe image Jacobian [7], which describes how imagefeature parameters change with respect to a changein the manipulator pose:df = Jimgdx; (9)where: Jimg = h @f@x i : (10)Since the catch is always performed along the in-tercept line, where the end-e�ector orientation andZ coordinate are intended to be constant, it can be

assumed that dZ = d� = d� = d � 0. This way,from the change in image feature parameters we onlyneed to determine the corresponding changes in Xand Y coordinates of the manipulator end-e�ector.Hence Eq. (9) simpli�es to:df = J�imgdxi; (11)with dxi = [dX dY]T andJ�img = " @u(X;Y)@X @u(X;Y)@Y@v(X;Y)@X @v(X;Y)@Y # ; (12)where u(X;Y) and v(X;Y) are obtained from thecamera model.The following control law was used in the externalcontrol loop: �xi = KimgJ��1img�f ; (13)where �xi = [�X �Y]T is the desired change inX and Y manipulator end-e�ector coordinates, andKimg is a constant gain matrix which allows to com-pensate for errors in camera parameters.The vector xid will now be given by:xid(t) = xi(t� Tv) +�xi(t � Tv); (14)where xi(t � Tv) is the end-e�ector position at thetime when the image was acquired. Tv is the averageimage sampling rate 1.Manipulator control is performed by an opera-tional space PD controller with gravity compensa-tion.4 Experimental Results4.1 Experimental SetupThe vision system consists of an optical RAM cam-era Electrim EDC-1000L, the corresponding ISA businterface card, and a PC Pentium 133 MHz whereall the image processing and feature extraction algo-rithms run. The images have a resolution of 242x753with a 256 levels grayscale. The sampling time isnot constant, but under regular light conditions, andacquiring just half of the lines, is about 104.5 milisec-onds, corresponding to 9.56 images per second.The ball trajectory and catch point prediction al-gorithms, run in the same PC.The manipulation system includes a Puma 560manipulator, a PC Pentium 133 MHz and two Tri-dent Robotics cards | TRC-004 and TRC-006 |which allow, from the PC, reading the robot encodersand potentiometers, and apply joint torques. The1Our vision system does not allow a �xed image samplingtime, but rather an assyncronous image acquisition, at a ratedepending on the image acquisition and processing times.

robot controller has a sampling time of 2.5 milisec-onds, corresponding to a 400 Hz frequency.These three systems are based on an open controlarchitecture for a Puma 560 robot, recently devel-oped at ISR/IST [8]. The two PC communicate viaTCP/IP on a local ethernet, and both use MS-DOS.In the con�guration used, the table surface, wherethe balls roll, 1.20 meter long and 0.80 meter wide.The camera is located approximately 1.435 meterabove the table surface, and points down, vertically.4.2 Experimental methodologyThe catching task consists of an individual throw-ing ping-pong balls, with 4 cm diameter, in the di-rection of the manipulator. The balls are rolled fromthe side of the table opposite to the robot towards theside of the table within the manipulator workspace.Each 104.5 miliseconds a new image of the tablewith the ball rolling is acquired by the vision sub-system. This leads to an iterative update of the ballcatch point prediction. In parallel, according to thehardware architecture used, the robot control sys-tem makes the manipulator end-e�ector move to thelatest predicted catching point. A cup with 8 cm di-ameter is gripped by the manipulator. The catchingis successful when the ball falls into the cup.4.3 Prediction results
100 200 300 400 500 600 700

50

100

150

200

image plane

u − column (pixel)

v
−

 r
ow

 (
pi

xe
l)

1 2 3 4 5 6 7 8
80

90

100

110

120

130

prediction iteration

v
−

 r
ow

 o
f p

re
di

ct
ed

 c
at

ch
 p

oi
nt

 (
pi

xe
l)Figure 3: Prediction system results: (a) sequence(bottom-up direction) of predicted ball trajectories;(b) sucessive predicted catch point v coordinate.Prediction results for a ball toss are presented inFig. 3. The �rst predicted trajectory is a straightline, because it is determined from the two �rst balllocations only. The estimated parameters were K̂ =[38:386 0:068 0:0]T , with an associated quadratic er-ror (measured for all the nine known ball locations atthe end of the trajectory) given by J(K̂) = 883:693.The parameters K̂ = [42:997 0:018 0:000122]T esti-mated for the last trajectory prediction clearly show

the need for a quadratic basis function to model thecurvilinear path. This last predicted trajectory hasa smaller associated quadratic error, J(K̂) = 3:103.4.4 Catching resultsFigs. 4 and 5 show plots of the end-e�ector Xand Y coordinates versus time for each of the archi-tectures implemented. The dashed line is the posi-tion set-point for the manipulator end-e�ector andthe solid line represents the actual trajectory.
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.1

0.2

0.3

Time (seconds)

X
 (

m
)

Position (cartesian coordinates)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.64

-0.63

-0.62

-0.61

-0.6

Time (seconds)

Y
 (

m
)Figure 4: Results for the position-based architecture(EOL).

0 0.5 1 1.5 2
0

0.1

0.2

0.3

Time (seconds)

X
 (

m
)

Position (cartesian coordinates)

0 0.5 1 1.5 2
-0.62

-0.615

-0.61

-0.605

Time (seconds)

Y
 (

m
)Figure 5: Results for the image-based architecture(ECL).The shortest settling time is obtained for theposition-based architecture. The steady-state erroris also minimized under this architecture, making itwell suited for catching of faster balls.The high sensitivity of the image-based controllerto noisy data from the vision system, causes \ner-vous" driving torques, leading to a shaky end-e�ectorand lower catch rate. Another reason for this is thefact that the average image sampling rate, Tv, is notconstant, leading to inaccuracies in the computationof xid using (14).

5 Conclusions and Future WorkThe image-based architecture eliminates cameracalibration errors while the ECL scheme reduces theend-e�ector positioning errors due to errors on thekinematic relationship with the camera. Neverthe-less, the ECL approach is very sensitive to noisy datafrom the vision system and creates �eld-of-view con-straints, since the end-e�ector must always be in theimage. Furthermore, due to the increase in imageprocessing time, signi�cant delays are introduced inthe control loop, leading to oscillations in control sig-nals and vibrations in the manipulator end-e�ector.Therefore, the image-based architecture is the onewith the worse successful catches rate, since the cupis shaky while catch is being attempted (e.g., checkFig. 5 around t=0.5 s). The best success rate wasobtained for the position-based architecture.In the short term, we plan to switch to a fastervision system, including the possibility of image ac-quisition at a �xed rate. This will also let us studythe dynamics of the complete control loop, improv-ing the design of control parameters. Long-term workwill include the catch of moving objects in 3-D undera less structured environment.References[1] R. Andersson. Real-time gray-scalevideo processingusinga moment-generating chip. IEEE Journal of Robotics andAutomation, RA-1(2), June 1985.[2] K. �Astr�om and B. Wittenmark. Computer ControlledSystems. Prentice-Hall, 1984.[3] G. Buttazzo, B. Allotta, and F. Fanizza. Mousebuster:a robot for real-time catching. IEEE Control SystemsMagazine, 14(1), February 1994.[4] B. Ghosh, T. Tarn, N. Xi, Z. Yu, and D. Xiau. Cali-bration free visually controlled manipulation of parts ina robotic manufacturing workcell. In Proc. of the IEEEInternational Conference on Robotics and Automation,pages 3197{3202, April 1996.[5] W. Hong and J. Slotine. Experiments in hand-eye coordi-nation using active vision. In Experimental Robotics IV,Springer-Verlag, Proc. of ISER 95, Stanford, CA, July1995.[6] B. Horn. Robot Vision. MIT Press, McGraw-Hill, 1986.[7] S. Hutchinson, G. Hager, and P. Corke. A tutorial onvisual servo control. IEEE Transactions on Robotics andAutomation, 12(5), October 1996.[8] N. Moreira, P. Alvito, and P. Lima. First steps towardsan open control architecture for a puma 560. In Proc. ofthe Portuguese Conference on Automatic Control, CON-TROLO 96, Porto - PORTUGAL, September 1996.[9] L. Sciavicco and B. Siciliano. Modeling and Control ofRobot Manipulators. McGraw-Hill, 1996.[10] C. Smith and N. Papanikolopoulos. Vision-guided roboticgrasping: Issues and experiments. In Proc. of the IEEEInternational Conference on Robotics and Automation,pages 3203{3208, April 1996.

