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Abstract

In this paper we describe a graphical simulator of biped locomotion. The simulation is accomplished in two stages: given
the step period andthe step length, joint torques are first determined df-line to ensure postural and gat contral, in the
absenceof externa disturbarces. Afterwards, the torques are passed to the dynamics smulation modue, which generateson-
line the joint angdar postions and vdocities. Those are used by a 3D graphcal display modue to prodice a realigtic
anmation d the biped roba. The smulator isintended for future deveéopment and test of biped locomotion cortrollers. The
pap presents results for a 8 DOF biped robd, showing the dfed of different step periods andlengths on the roba walking
behaviour, aswell as onthe net power which would berequired in areal implementation.

1. Introduction

Walking robas may be used, with advantage over wheded robas, to smulate human locomation, to move dong
odd surfaces, or to implement active suspension through careful control of locomotion.

The first steps in this areawere given by datic
walking robdas. In those pionea walkers, the
projedion of the roba centre of masson the ground
was always within the aea inscribed by the fed,
resulting in some restrictions to the structure ad
efficiency. Those robas had hig fed and walked
with small steps. A summary of those works can be
found in Todd [2] andRaibert [3].

Since then, many walking robas have been built.
Kagjita, Yamaura and Kobayashi developed a simple
model of linea differential equations, assuming
masdesslegs. Afterwards, they built a prototype with
very light legs that could walk over flat surfaces [4].
Another example of pioneea work in dynamic gait is
the Kenkyaku-2, a roba that works in 2 dmensions,
courting on wide fed to keep its sagittal balance[5].
Miller developed a roba controlled by a neural
network that after some leaning could wak with
small steps, without any prior knowledge of its
structure [6]. Prototypes with dynamic, three
dimensional (3D) gait over flat surfaces, such as
BLR-G1 [7], and its latest version BLR-G2, were
aso developed. The robas WABOT WL - 10RD
and its latest version WABOT WL - 12 were the first
capable of climbing stairs and small slopes [8].

Nevertheless none of the published prototypesis
based upon an algorithm truly flexible, that allows
Figure 1 - Biped smulator image. the roba to walk over odd surfaces, turn, walk at any

b

speed allowed by the actuators and start or stop at any moment.

This paper describes a 3D graphicd simulator of biped locomotion, based on the dynamic model introduced by
Vukobratovic et al [1]. The model allows any prescribed movement of a subset of the roba joints (e.g., the leg joints)
and computes the motion of the remaining joints (e.g., the trunk joints) such that the whole system keeps its balance
The motion of prescribed joints can be determined from measures of human gait as in this work, even thoughit could
also result from minimisation of energy consumption [9], or any other suitable method. The model asaumes that the



links are rigid and the friction forces between the ground and the fed are big enough to prevent the roba from
dipping. The only restriction is the need for the roba to keep at least one foot on the ground. In Sedion 2 we
summarize the fundamentals\tfikobratovic’s model.

Sedion 3 describes the implementation of the simulator. Results of the simulation of an eight degreeof-freedom
(DOF) biped robat, with trunk but no arms, are presented in Sedion 4. The results sow the dfed of changing the step
period and length on the roba walking behaviour and also on the net power which would be required by a red
implementation.

2. Basic Concepts

In this section wasummarize the work d&fukobratovicet al[1], used in our simulator.
The dynamic behaviour of a biped robotmfoints can be described by the following equation:

HG+h=P (1)
where P isthe nx 1vedor of the torques applied to the joints, q is the relative joint angles nx1 vedor, H isa nxn

massc matrix that depends on the systems gate (§ and q) and on the geometric parameters, and finally h isa nx1

vedor that contains the centripetal, Coriolli s and graviti ¢ forces which depends on g and on the geometric and dynamic
parameters of the robot.
The torques P can be diredly obtained from equation (1) and from the knowledge of the joint acceerations § and

the system state q and ¢ . Alternatively, knowing the torques P and the system state g and ¢, the accéerations ¢ can

be determined solving a second order non-linear differential equation system.

A third posshility is to start with the system state, part of the joint accéerations and part of the torques, and
determine the remaining acceerations and torques. This intermediate solution is used to solve the dynamics of biped
robas where some torques P, and the crresponding initial states g, (0) and ¢, (0) are prescribed. In this work, the

prescription of two torques, concerning the trunk two degrees of freedom, alows the roba to keep the frontal and
sagittal balance. Two initial states (the two joints of the trunk) are determined to ensure that the gait is laterally and
sagittally symmetric. The kinematics of the remaining joints (denoted as q,, §, and ¢,) is obtained from biometric

measures of a normal human gait.
Therefore, with the prescription of the two torques P,, two accederations ¢, will be determined at ead instant.

From the knowledge of all the accéerations, the n - 2 unkrown torques P, can be obtained. This approach to the

bipeds dynamic problem solves the problem without simplificatiofinearizations.
The algorithm to compute the dynamics of a forward step canrbenarized as follows:

1. Computation oH andh matrices;
2. Prescription of the twtorquesP, so that the robot keeps its frontal esadittal balance;

3. Do Determination of the unkrown joint acceerations until initial step state g (0) and ¢, (0) is equa (or
symmetric) to the final statg, (T) andq, (T), whereT is the step period;
4. Computation of nominabrquesP to ensure forward stepssiabilized speed.

The details of the algorithm are described in the following two subsections.

2.1. Dynamics

In this subsedion we cover step 1 d the dgorithm, presenting a method to oltain the H and h matrices. The
method will be described first for smple chains, and subsequently modified to include complex chains. Complex
chains correspond to robot that besides legs, may have trunk and eventually arms.

2.11. Simple chains
The robot is modelled as a set of rigid bodies, interconnected by one degree of freedom revolution joints.
A link of the robat is defined by the set of parameters L, = (C‘,D‘), where C, represents the subset of kinematic

parameters and D, the subset of dynamic parameters of link i. The medhanism kinematics is defined by the set
C = (?R, P, E‘) , Where 'R defines the locd frame orientation, with its origin in the masscentre of linki. P, ={f>‘k}

isthe set of position vedors of link i masscentre referred to the centre of joint k. E, = {éki} is the set of rotation axes



unit vedors of the joints that conned link i with link k, where i>k. When k=i-1, &, will be abreviated to €.
Examples of position and € vedors are shown in Figure 1. The medanism dynamics is defined by the set

D, :(mi,J‘) where m, isthe massof linki and J, =[Jix J, Jiz]T are theinertial moments of linki locd frame
axis.

A kinematic pairP, represents a pair of Iinl{si_i , Lk} interconnected by a joint at poidt, , wherei<k.

A chain W, is the set o kinematic pairsW, ={P,} whereiON, kON and N={1, 2, ..., n}.

A simple chairis a chain where none of the links OiON, is part of more than @nematic pairs.

An open chairis a chain with at least a link, iON, that belongs to only orlénematic pair.

The method used to compute matrices H and h is divided in four stages. A comprehensive explanation of those
stages can be found Yfukobratovicet al.[1].

In the first stage, the position and arientation of the locd frames are computed with resped to the reference frame,
assuming that all the joint relative angles are zero.

In the second stage, the position and arientation of the locd frames are computed again with resped to the
reference frame, but this time as a function of the joint relative angles.

In the third stage, the linea and anguar acceéerations of the links masscentres are wmputed in terms of the joint
positions, velocities and accelerations.

Finaly, in stage 4 the matrices H and h are obtained. First, the joint forces IQ:iL and torques I\7IiL that ad on eat

link are computed from link i = 1 to n. Next, the joint forces FJ and torques I\7IiJ are omputed from joint n to 1

Finally, the net jointorquesP are determined and matridgdsandh built.
The forces antbrques that act on each link are composed of inertiagemdtic terms.

F=F+F. M =M +M’ 2
Inertial forces andorques can be determined from the following equations
:[{;ﬂ1 e @ 0 - o]qﬂ*;f

_Iiil
e - - ()
M:=Pu-~ b 0 - qq+w

where the vedors a and b are obtained from Newton’s law and Euler’s dynamic eguations applied to the accéerations
determined in the'3stage.
Gravitic forces are applied to the mass centre of links only:

FP=mg M?=0 @
The joint forces antbrques can now be computed from equations (2)-(4) by

§J=‘ZEL’ Mf:—i(l\q/lﬁf)hﬂff) ©)

=

The forces and the torque component orthogonal to the rotation axis have no dired effed on the joint torques, but
they may be useful modelli ng friction. However, this was not considered in our work. Hence, the i component of the
torques vectoP is given by

R=g+M/ ©)
wheree represents the dot product. Rewrit{{6y, and using equations (2)-(5), we finally obtain:

P=Hg+h, with

Ho=gs 3 (buvhixa) @

| i

n=-g-Y (50 +p, x(& +F°))



2.12. Complex chains
A complexchainis a chain where at least one libk JiON is part of more than twkinematic pairs.

A complex chain can be subdivided in ssimple chains. For ead chain, the first link is the common suppart to all the
chains and the last link belongs to only &meematic pair and is different of the terminal links of the other chains.

The dgorithm described in the previous subsedion can be gplied separately to eah simple chain, with the
resulting complex chain torquié equal to the sum of thierques of the simple chains that share the common joint.

2.2. Prescribed torques

The prescription of the two torques P, will allow the roba to keep its balance The initial state (q, (0) and ¢, (0))

is computed so that the beginning of ead roba step is equal or symmetric to its end. In this sdion we explain how to
compute the two accéerations ¢, given those @nstraints. Then, all the system accéerations will be known, allowing

the computation of all thorques using equatiqi) - step 4 of the dynamics simulation algorithm.

2.21.Torques

The gait of bipeds has two phases. the single-suppart phase, where only one foat is touching the ground; and the
double-suppart phase, where both fed are touching the ground. Nevertheless should we @nsider that only one foat is
suppating the roba weight at ead instant, the model of the mechanism will be a open complex chain. This is
physicdly possble becaise, when bath fed are touching ground, the roba weight may be moved from one foat to the
other, by changing the joint torques. This can be done dmost instantly. Therefore, only open complex chains will be
used to model the robot.

Since dl the readion forces under the foot have the same diredion, they can be replaced by a resulting force N

and a resulting torqu&’l at the centre of the foot.
There is however a paint, denoted as the zero

harizontal moment paint (ZMP) - shown in Figure 2 - ZMP
where the readion forces can be replaced by an N
equivalent force R and a verticd friction torque L
M, #0. The components of the torque parallel to //CJ M
the foot support plane are zero: P T F T
M,=0, M, =0 (8) T T

It is aufficient to keep the ZMP within the aea R
inscribed by the fed, to ensure that the roba will Figure 2 - Longtudina distribution of the foat pressure
show balanced motion. and zero haizontal moment paint (ZMP).

When the ZMP position is prescribed, the biped

looses, at ead instant, two degrees of freedom, leading to the determination of ¢, . Notice that, by prescribing the
ZMP position, we are indirectly prescribing tloeequesP, .

Considering the forces F* and the torques M" that operate in the mass centre of ead link and the link i mass
centre position with respect to the ZMP vectpf'("), equationg8) may be rewritten as

n
- ~ZMP _ =L , L 9
uk.igl(pi ><Fi +Mi):O' k =x,y ()

where T, , k = x,y ae unit vedors which span a plane parallel to the foot suppat surface Separating g, from q,,
rewriting (9) in matrix form and using equati(?),

g, +¢@ =0, where

(10



where p*™" is the position of the ZMP with resped to the reference frame 0, n, is the number of joints of q,, n, is
the number of jointsof q,, Z isavedor whose dements are the indices of the joints belongingto q,, and X isavedor
whose elements are the indices of the joints belongimyg to

The solution of this g/stem of differential equations is the accéeration vedor ¢, of the dynamic compensation
joints (between the legs and the trunk, in this work).

2.22. Initial state

The symmetry conditi ons of the initial and final step states must be dedked to complete the implementation of step
3 of the dynamics simulation algorithm. The initial state will be linearly approximated until the condition

WE% 0 _ 0 an
XE == 11
0.0 o0
is met. The matrix W is diagonal, with diagonal elements equal to +1 or —1 depending on if the joint paosition and
velocity in the end of the step is equal or symmetric to the initial position and velocity.
Asaming that an approximate solution of the problem is known, a solution with a pre-defined acaracy can be

obtained based on linear approximations around the final solution.
Assuming that small changes in the initial state produce small changes in the final state, we obtain

O
W%D m_q__D D mq _ (12)

ek

Furthermore, for small changes,

DAq (T) i Aq, (T)D
1 g, (0) 24, (0)7

T Tozm, LA, () B¢, (F)0 (13
E! i g
BAa, (0) | A4, (0)F
i=1..,n j=L...,n

Hence, from(13) and(12), and solving with respect to the correction on the initial state,

oA

q,.0 _ ,H0a, 0 a,0 O
BgiH = © DRI T RLEE a9

In summary, the dynamics smulation algorithm works as follows: first, matrices H and h are cmputed using
equation (7). Then, two torques P,are prescribed to ensure that the roba keeps its sagittal and longitudinal balance

From equation (10) it is possble to determine the two unkrown acceerations of the trunk joints. This operation is
repeded, correding the initial conditi ons through equation (14), until the initial state is equal or symmetric to the fina
state, as sated by matrix W in equation (11), ensuring the repeaability of the gait. After convergence al joint
positions, velocities and accelerations are determined, as well as the correstmdiesy using equation (1).

3. The Graphical Simulator

The graphicd simulator was implemented in C++, runrning on a DEC AlphaStation urder OSFL Operating System.
The SPHIGS graphicd library was also used for image rendering. The program structure enulates a team producing a
cartoon motion picture. Figure 3 shows the organisation chart of the team.

The Di r ect or isthe responsible for all the operations. He receves the texts from the Wi t er , trandates them
into smple ommands and dstributes them by the Dr awer, Moti on Coordi nator and BopBop World
modules. The Dr awer draws the roba and any world oljeds or details. The Mot i on Coor di nat or computes the
motion of the guest star: the bip&bpBop (see Figure 1).

BopBop Worl d smulates the virtual world where BopBop lives, including external objeds, rough surfaces,
stairs, etc.



This module is not currently implemented.
BopBop till li ves in an ided world, moving aong
flat surfaces with no objects around him.

Additional modules of general use ae the
Producer, which kees gatistics of CPU usage,
and the Mat hemat i ci an, which is needed for
relatively complex arithmetic operations. All
modules are implemented as objeds which
communicate with each other through mailboxes.

Figure 3 - Organisation chart

3.1. Writer

The Wi t er has the misson of colleding data from the user, classfying it as norma or urgent, pading it and
mailing it to theDi r ect or .

3.2. Director

The main loop d the Diredor cheds if there is any message in its mailbox, exeautes a ommand from the list of
ready-to-exeaute commands and loops through messages ent sequentialy to the Dr awer, Mbti on Coor di nat or
and BopBop Worl d modules. Each of these three objeds has an internal watch which is incremented after eat
cycle. The Di r ect or starts by triggering the Dr awer “s cycle. Then, it triggers the Mot i on Coor di nat or until
the watch of this module is greaer than or equal to the Dr awer s watch. Finaly, the BopBop Wor |l d’s cycle is
exeauted urtil its watch is greaer than or equal to the Dr awer “s watch, so that the three watches are synchronised.
This allows the three modules to have different sampling rates.

3.3. Drawer

The Dr awer “s job consists of building 3D images of the world and BopBop. To acamplish this task, the module
emulates a virtual camera that can be tranglated, rotated, zoomed in and out. The canera may aso follow the roba or
kegp a static viewpoint. The graphicd information is passd to SPHIGS through pdliethrons and 4x4
rotation/translation matrices.

3.4. Motion Coordinator

This module includes the cmputation of BopBop mation, such that postural and gait control are ensured, in the
absence of external disturbances.

To compute BopBop moves, Vukobratovic’s algorithm was used (see Sedion 2). The dynamic compensation
differential equation system was integrated by a Runge-Kutta method that can be found in reference [11]. Each move
step is computed by Runge-Kutta formulas of 4™ and 5" order with Cash-Karp parameters. In ead integration step,
two accéeration approximations are mmputed, one of the 4™ order the other of the 5™ order. In general, this algorithm
is faster than constant step Runge-Kutta dgorithms. However, there were small changes to the original algorithm in
order to include 2" order differential equations and save the accéeration values in constant intervals, despite the
variable steps.

4. Reaults

The behaviour of an eight DOF roba walking step forward at constant speed was gudied for different step periods
and lengths. The joints are located at the ankle, knee ad hip of the supparting and suspended legs, with another two
joints at the waist, between the legs and the trunk, all owing trunk motion which is a cmbination of lateral and sagittal
plane motions. There ae two additi onal joints between the foot of the supparting leg and the floor to alow foot lateral
and longitudinal motion. The kinematics were prescribed for the leg joints, while the waist joints move the trunk to
control locomotion.

Results are shown for situations close to the values assumed for the prescribed kinematics: step length of 0.204m
and step period d 0.75s. The zero haizontal moment point with resped to the foot centre (see Sedion 2) was
established as in the following table,



Time Position

Until 20% of step | -0.02 m
From 20% to 7594 O m

After 75% +0.035 m

corresponding to a “natural” sequence of the suppart foot motion, where body load is squentialy moved from the
back (heel) to the front (toes) of the foot.

The plots of Figures 4 and 6 were obtained as if there were apen at the top d the trunk recording a trgjedory on a
plane perpendicular to tleagittal and lateral planes and located at the waist height.

The results for a step length of 0.204m and different step periods are shown in Figure 4. In general, the longer the
step period, the further the trunk has to move sideways, in order to kee its latera balance
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Figure 5 - Power/energy vs dep period, for a step length

Figue 4 - Position of the top d the trunk for of 0.204m.
different step periods, given a step length of
0.204m.

Next, we studied the dfed of the step period a the net power required by the joint aduators, given a constant step
length (Figure 5). Generally, the slower the step, the less power it takes, but the energy spent per meter increases,
since the robot must spend more energy to keep its balance.

The next investigation concerned the dfed of the step length on the roba motion. The position of the top d the
trunk is plotted in Figure 6 for a step period d 0.75s. In general, the greaer the step length, the more the trunk hes to
move back and forth to keep gagittal balance.

025
vzt __oawmm 5
.’V/ Y B
0151 4 \
! e )

= r o bERme ) B 100
= o PSS
E . L Bdme T T T T e
= e - 80
w 005F A mgm———— "~ 1
E=) g L —e— Maximum power (W)
g < \\\w 60 +Avea:eu:wnm
e E W 1 = Enerav (3/ m)
H x\\\__r/!_/!‘
c _gosk [ L ] 40
8 0.05 |"."-\\ LY
2 T s A
5 011 v 1 20
E \ o T .fl

0.15 ‘\ HJ

'\7 7_.’ 0.104 0124 0.144 0164 0184 0204 0224 0.243 0.263 0.282 0.302
Y L e T Sep lenath (m)
-0.28 -
015 0.1 -0.05 0 0.05 0.1 015
. o vt meral dan .
intersention wif lateral dae () Figure 7 - Power/energy vs dep length, for a step
Figue 6 - Postion of the top o the trunk for period of 0.75s.

different step lengths, given a step period of 0.75s.



Finaly, we studied the dfed of step length in the net power required by the joint actuators (Figure 7). In general,
the larger the step, the greaer is the required pawver. However, for step lengths greaer than 0.270m the trend is
reversed. This gep length corresponds to an average trunk inclination of 45°. For larger inclinations (corresponding to
larger steps) the benefits of the cantripetal forces generated by the quasi-€lli ptic motion of the top d the trunk are more
important, thus reducing the actuators effort.

5. Conclusions and Future Work

The 3D graphicd simulator described in this paper is the first step towards the development and test of a biped
roba. The simulation of the locomotion dynamics was based on an algorithm proposed by Vukobratovic and his
associates. A postural and gait control planner module gentatass for the simulator.

The aurrent implementation can only plan forward steps of fixed period and length for the roba motion. Future
work will replacethis by a more general planner, aready developed [10], ensuring general trgjedory planning, with
way points described by frames. Trajedories will be based either on human data (as in the implementation here
described), or as a result of the minimisation of some performance aiterion, such as the power required. Results
presented in this paper allow the comparison among the power requirements of different step lengths and periods, thus
helping the future design of a red prototype. Should prescribed data cme from antropamorphic measures, biped
construction and control may lead to structures helpful to handicapped people.

Such a prototype will require the development, test and implementation of a locomotion controller. The cntroll er
will i ntegrate information from fee sole presaure sensors and joint paositions to compute the dynamic compensation of
the trunk and keep the balance, despite external disturbances and uncertainties in sensor data and model parameters.
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