An Integrated Learning, Planning and Reacting Algorithm Applied to a
Real Mobile Robot

ALEX WEISER
Lehrstuhl fur Prozefirechnertechnik
Technische Universitat Munchen
80333 Miinchen, Germany

PEDRO LIMA

Instituto de Sistemas e Robdtica

Instituto Superior Técnico - Torre Norte
Av. Rovisco Pais, 1

1096 Lisboa Codex, Portugal

Abstract

Sutton’s Dyna algorithm for integrated learning,
planning and reacting is applied to a real mobile plat-
form (Robosoft’s Robuter). The mobile robot uses
sonar to scan for obstacles and odometry for self-
localization. Practical problems associated with the
implementation of the algorithm on a real setup and
results from real experiments are presented and dis-
cussed.

Keywords: Reinforcement Learning, Planning,
Reacting, Mobile Robots, Dyna algorithm.

1 Introduction

Many researchers have applied learning to Robo-
tics. A robot can learn from the data provided by
its external sensors (e.g. cameras, ultrasound trans-
ducers, proximity detectors) or internal alarms (e.g.
battery failure, timeout while running a process). Re-
inforcement learning, where limited information is
available about the algorithm instantaneous perfor-
mance, typically in the form of success or failure sig-
nals, is particularly interesting for Robotics as 1t in-
volves the exchange of small bandwidth information
(failure and success signals only) between robotic sub-
systems. In the last few years, Barto, Sutton and
their associates have explored reinforcement learning
algorithms [1]. Recently, the adaptive behavior com-
munity has applied extended versions of Sutton’s 7'D-
learning [4] and Watkins’ @Q-learning [6] algorithms to
Robotics [2, 3].

A frequent limitation of reinforcement learning
applications to Robotics i1s the problem large state
space. Lin [2] has attempted to tackle this by provid-
ing some initial knowledge to the robot and by en-

dowing it with generalization capabilities using neu-
ral nets. Sutton [5] describes an algorithm (Dyna)
that learns from experiences with the real world in-
termixed with virtual experiences done on an internal
world model to speed up the learning process. Both
authors use Watkins’ @-learning algorithm, which in-
cludes a performance function [6]. A drawback of
these approaches is the fact that they rely on a direct
and error-free evaluation of task success. This is not
always realistic in real implementations, since check-
ing if the goal was reached or navigating through a
world full of obstacles are usually difficult and error
prone tasks.

This paper describes an implementation of Sut-
ton’s Dyna algorithm [5] on a real mobile robot, the
Robuter platform built by the French company Ro-
bosoft. The mobile robot uses sonar to scan for ob-
stacles and odometry for self-localization. Practical
problems associated with the implementation of the
algorithm on a real setup and results from real experi-
ments are presented and discussed. The task consists
of navigating a mobile robot through a maze, from
an initial to a goal position. The maze 1s initially un-
known to the mobile robot. We also discuss possible
extensions which may be helpful to study the applica-
tion of this type of reinforcement learning algorithms
to situations more realistic than the simulations usu-
ally described in the literature.

In Section 2 there is an overview of the algorithm,
followed by two Sections containing a description of
the mobile robot used, and of the implementation of
the algorithm in a real setup. Finally, results and
conclusions are presented in Sections 5 and 6, respec-
tively.

2 Dyna Algorithm
2.1 The Model

The Dyna algorithm is based on three modules.
Two of them are the world (or world model) and the
policy. This part of the algorithm works like a reac-
tive system. The policy associates to each world state
an action that moves the robot to a new world state.

In addition, an evaluation is calculated for each
state according to successive reinforcement signals re-
ceived from the world after each move. The learning
scheme updates the policy and the evaluation func-
tions. By updating its policy, the robot is effectively
planning a set of reaction rules to be used in the next
step.

In the application described here, the world is rep-
resented by a grid of square cells (states); therefore,
the world model is a cell matrix. The policy contains
for each cell a probability for each action that moves
the robot to one of the four neighbor cells. The eval-
uation is also a matrix containing an entry for each
cell.

2.2 Real and Hypothetical Experiences

A step is a motion from one cell to a neighbor-
ing cell. Hypothetical and real steps are performed.
In a real step the robot moves from one position to
another and provides new information to the world
model. A hypothetical step, however, is a simulated
step in the world model. Both real and hypotheti-
cal steps use the same algorithm, updating the policy
and evaluation through a learning process. A trial
consists of a sequence of real steps from the starting
point to the goal. A fixed number of hypothetical
steps i1s performed between real steps.

2.3 The Algorithm

An outline of the Dyna algorithm follows[5]:
1. Decide if it 1s a real step or a hypothetical one.

2. Pick a state x. If this is a real step, use the
current state. If this is a hypothetical experi-
ence, choose a random state that is already in
the world model.

3. Form prior evaluation of state x according to the
result of the evaluation function: e = Fval(z).

4. Choose an action a to be taken from state z by
consulting the policy.

5. Execute the action a if there is no obstacle in
this direction in the world and world model. If
the action is executable, obtain next state y and
reward r, from world or world model.

START

o
o
o
o

°
o
°
o

o
o
o
o

°
o
°
o

8(_@_) 8(_$_> 8(_@_) 8(_@_) 8(_$_>

8(_@_) 8+ 8(_@_) 8<_$_> 8(_@_)

8%_) 8%_) 2%_) 8(_@_) 8%_)

8(_@_) 8+ 8+ 8(_@_) '8(_@_)

o
)
o
o

Figure 1: Initial values

6. Form posterior evaluation ¢ of the old state
z using the evaluation of the new state y now
reached: e = ry + vEval(y).

7. If this is a real step, update x and ry, in the world
model.

8. Update the evaluation function so that the eval-
uation of the old state x is closer to the posterior
evaluation e’ rather than to the prior evaluation
e.

9. Update the policy. Strengthen or weaken the
tendency to perform the action a from state x
again according to the difference between the
posterior and prior evaluation: ¢/ — e.

10. Go to step 1.

The policy matrix has an entry w,, for every pair
of state # and action a, i.e., four entries for each
state in the world model, corresponding to actions
up, down, left, right. Actions are chosen randomly
based on a Boltzmann probability distribution, ob-
tained by turning the four policy values for a given
state in probabilities using . The probability for each
action a from state z is then represented by P{a | 2}
according to Equation(1):

eWea

Z?ctlons eWei

The evaluation table is updated according to the
simplest version of the temporal difference learning
method:

Plafz} = (1)

Eval(z) = Eval(z) + (e —e). (2)

Figure 1 displays all the information available to
the algorithm. It shows a sample model with the di-
mensions of 4x5 cells. The arrow lengths indicate the
probability to execute an action. The number in each
cell represents the evaluation. After initialization the
action probability is uniformly distributed and the

evaluations are zero. A white cell is a KNOWN
(OCCUPIED — when crossed — or EMPTY) cell,
whereas the dark cells are UNKNOWN. When the
robot moves in an environment like the one repre-
sented in the right side of Figure 1, during the sec-
ond trial the information may look like what Figure 2
shows, with OCCUPIED cells and still UNKNOWN
cells. The evaluation increases towards the goal and
the policy brings the system to the goal from any
empty cell. The policy becomes weaker the higher
the distance from goal because the evaluation differ-
ences are lower. The first trial proceeds in a com-
pletely random fashion. After the goal is reached for
the first time, a reward is received, making the goal
cell attractive to neighboring cells. This “attraction”
to the goal cell is backpropagated to the start cell by
a dynamic programming algorithm, embedded in the
TD-learning method.

START

gl
+

0.59 0.

Figure 2: Example with adjusted values

3 Using a Real Mobile Robot
3.1 The Robuter Platform

Experiments with the real robot requires atten-
tion to some additional points that are ignorable dur-
ing simulation. The real robot calculates its position
through odometry, detects obstacles by sonar scan-
ning, and needs to execute an evasive action when
it finds an obstacle while moving from one position
to another. The robot has an acceleration and de-
celeration phase in the movements and it cannot stop
instantly. There are errors in the sensor readings that
must be taken into account. The robot must return
to its start position at the beginning of a new trial.
Finally, the localization of the goal may be a difficult
task requiring complex sensing and reasoning.

The robot, shown in Figure 3, consists of a mo-
bile rectangular platform with the dimensions of
1000x700mm. It has two independent propulsive
wheels at the back and two free rotating and free
turning wheels at the front. Both back wheels are

Figure 3: Robuter Platform

equipped with encoders for positioning. The rota-
tion axis is located over the center of the driving
axis. There are 24 ultrasonic transducers positioned
around the vehicle for obstacle detection, and also an
infrared camera.

3.2 Albatros Operating System

The Robuter’s operating system is Albatros, a real-
time operating system specifically designed to con-
trol, with minimal hardware and maximum efficiency,
any kind of multi-axis and multi-sensor device. It has
a multi-tasking organization with predefined priori-
ties and fixed scheduling for tasks.

The application program can share the same pro-
cessor with the Operating System allowing the use of
its resources through system calls. It is possible to
link the Albatros kernel with the user’s specific pro-
grams.

4 Experimental Setup

The size of a cell is shown Figure 4. Although the
length of the platform is only one meter, the minimum
size of a cell must be equal to 4 m?. When the robot
1s positioned in a cell 1ts rotation axis should be in the
center of the square to give the robot space enough to
turn around without crossing the border of the cell.
In addition, there is a safety margin of 20 cm.

To detect the obstacles, the robot uses the three
sensors located on its sides, respectively. The val-
ues returned from a sensor correspond to the time
elapsed between emission and reception of an ultra-
sonic wave. The distance can be approximately com-
puted through the returned value. The returned value
however changes depending on the type of the objects,
external temperature, etc.

[~~~ Spaceto Tun

** MotionProcess **

Mﬂc = EM_STO Ves

MOTN KILL

Sizeof theRobot _—

Code = EXECUTING
Communic = ACK

Size of one Cell

s ** part 2 * END **
— ’* Safety Margin ** part 2 *
ommunic = NEW_COMMAND
No Yes
. . Send MOTN Failed
Figure 4: The Size of a Cell Done conaee

Code = EXECUTING Code = ABORTED

The calibration of the sonar was made by posi- Communie = ACK

* part 3 *

tioning the objects at a desired distance and making —=R
a sensor data read. This value was then used as a ———
threshold. All objects situated closer to the robot Communic = INITIALIZE Vo
than the threshold distance are identified as obsta- = Codo — EXECUTING
cles and therefore make the robot stop. Communic = ACK
To keep the odometry failures low, sonar scans pane” *END ™
were made prior to any motion. Before the robot
starts a movement it scans the direction it is going to * part3 **
move along. In this scan, the threshold reaches the No Code = ABORTED Yes
middle of the neighbor cell in order to check for an Status = OBSTACLE
obstacle. partar *END **
Once the robot begins to move, the threshold de-
creases proportionally to the distance traversed in or- **C”SS::EXECUTING
der not to cross the border of the target cell, thereby No Yes
avoiding the detection of an obstacle located in the Send MOTN STATUSM -
cell after the one the robot is moving into. No ovmg's‘mamn Yes
The position of the robot is only determined by EgiitflzfgsppED No -~ Yes
odometry: therefore, the decrease of the sonar thresh- Get RelPosError ~SonarAlarm.
old is computed from the encoder readings. Prior to o~ elposEror Vs Setue=
every movement the encoders are reset. If at the end Status = SonarAlarm =
TROUBLE | Status = OK FALSE

of a move there is an offset between the desired posi- R

tion and the actual robot position, this offset is sub-
tracted from the desired distance in the next motion
step.

Because the rotation axis of the robot is not lo-
cated over the center of the platform the threshold
used cannot be the same for all directions relative to
the robot. Thus, a margin is added when the direc-
tion to scan 1s not the front side.

Figure 5: Flow Chart of MotionProcess

Figure 5 shows a flow chart of the implemented el
algorithm. In the flow chart, the MotionProcess is START H eon %
a routine running as an independent and interrupt- — 3]
ible process. It starts every 10 clock cycles, handling g H:. j E %
all the communication with Albatros concerning the %
translations and rotations, the emergency stop, con- @
trols the sonar scanning and continuously updates the il il Qo

status of the movement.
The RelPosError refers to the error of the position HObS‘aC'ei”‘heWO”d
of the robot relative to the desired end position.
The MotionProcess runs parallel to the main pro- . .
cess of the application program and communicates Figure 6: Obstacles in the World

with it through a common area. This has the advan-

tage that the motion can be stopped at any time by
another process or any external sensor that uses the
same common area. The main process could execute
another tasks while the robot is moving with the eva-
sive action being controlled by the motion process.

5 Results

The more hypothetical steps are performed, the
faster is the learning process. The learning algorithm
always converges without getting caught in local min-
ima. The random number generator has a large influ-
ence in the duration of the experiment since 1t is used
to choose the actions and to determine the states for
the hypothetical steps.

An environment with obstacles positioned in the
world, as shown in Figure 6, is used for an experi-
ment. The walls of the room are used as obstacles.
Wood fiberboard of the size of 120x50cm is positioned
vertically representing additional obstacles. Some ob-
stacles are still simulated to avoid the robot running
into obstacles that can not be detected by the sonars,
e.g stairs, and to prevent the system from leaving the
boundaries of the world model.

Below are the results of the experiments for three
trials using 50 hypothetical steps. The numbers in-
dicate the number of visits of the robot to each cell,
and the sign # represents an identified obstacle.

TRIAL 1

#
3 1 1
11 # 1
2 2 2

28 steps 21 calls 16 motions

TRIAL 2
#
8 # 1 1
t 4 1
1 1 1 1
#

19 steps 11 calls 12 motions

TRIAL 3

#
1 1
1 # 1
1 1 1 1

#
8 steps 8 calls 8 motions

In this run, the shortest path was found in 3 trials,
requiring 8 steps to reach the goal.

The implementation showed the difficulty of im-
plementing the algorithm in a real mobile robot. It
is necessary to control the robot motion keeping a
record of its location through odometry, to scan for

obstacles, to perform evasive actions, and to deal
with inaccurate sensor data and accumulated errors.
The results of the algorithm, however, are exactly the
same as the ones obtained in the simulation, except
that 1t was necessary to reset the robot position once
every 3—4 trials, due to the accumulation of odometry
erTors.

In a real setup, the robot needs not move on ev-
ery real step. Some steps can be blocked via hier-
archically higher software levels, when an obstacle is
detected, consulting the world model or using sonar
scans before starting to move the robot in the direc-
tion of the obstacle, as explained above.

6 Preliminary Conclusions and Future
Extensions

In this paper we attempted to verify a concept and
its functionality by using an internal world model
built from real sensors to speed up the incremental
learning by a mobile robot, of a set of reaction rules
which allow it to find the shortest way out of a magze.

In future work, a set of modifications and addi-
tional functions can be implemented to improve the
performance of the robot:

e The simple search method used here combined
with the simple reward make the first trial very
time consuming, with low information gain. The
system 1s not learning and planning and the
robot runs aimlessly until it happens to find the
goal. To speed up the first trial one could make
use of other approaches, such as lateral scanning
instead of scanning only in the direction of move-
ment, storing the detected obstacles in the world
model.

e The policy might be changed when the robot
bumps into an obstacle, using a different learn-
ing process without modifying the evaluation
of a cell. Currently, reinforcement consists of
a reward only when the goal is reached, and
no penalties (e.g., when an obstacle is detected

ahead of the robot).

e An attempt can be made by using bigger virtual
cells in the beginning of an experiment just to
find the goal more quickly and later divide ev-
ery cell of the world into smaller ones. That,
however, may contradict the i1dea that , once an
obstacle has been located in a cell, the entire cell
is assumed to be occupied until the end of the
algorithm.

The use of beacons and an infrared camera can
help the robot to improve its self-localization. By
turning the camera while staying at a fixed posi-
tion, the robot determines the angles ¥; and ¥

Ny \ /7’
\ \
e\ //
\\\31 9.
N

Figure 7: Localization using Infrared Camera

shown in Figure 7, and the robot position can be
determined by triangulation.

Large odometry failures can shift or twist the
world model in such a way that it simply doesn’t
model the real world anymore. The robot then
sees an obstacle in one cell, which in the begin-
ning was located in a neighboring cell. The in-
frared camera and beacons can be used to cor-
rect the position of the robot and therefore the
odometry failures. Goal self-localization would
then be a particular example of this application.

The use of parallel processing by performing the
hypothetical steps simultaneously to a real step
is not very interesting for this experiment specif-
ically due to the robot used. However, when
using a smaller and quicker robot such an ap-
proach would be interesting. Actually, a fleet
of small robots running in parallel through the
magze, while updating a centralized world model,
would be another interesting extension of this
work, with the objectives of speeding up the al-
gorithm and testing strategies of cooperation.

Acknowledgments

This work was partially supported by the grant

PRAXIS/3/3.1/TPR/23/95. The first author would
like to thank Dipl.-Ing. Alexa Hauck from Lehrstuhl
fur Hochfrequenztechnik for her constant support
throughout this work.

References

(1]

A. G. Barto, R. S. Sutton, and C. W. Anderson.
Neuronlike elements that can solve difficult learn-
ing control problems. ITEFE Transactions on Sys-
tems, Man and Cybernetics, SMC-13(5):835-846,
1983.

Long-Ji Lin. Scaling up reinforcement learning for
robot control. In Proceedings of the Tenth Inter-
national Conference on Machine Learning, 1994.

[3]

[4]

S. P. Singh. Transfer of learning by composing
solutions of elemental sequential tasks. Machine

Learning, 8:323-339, 1992.

R. S. Sutton. Learning to predict by the methods
of Temporal Differences. Machine Learning, 3:9—

44, 1988.

R. 5. Sutton. First results with Dyna, an inte-
grated architecture for learning, planning and re-
acting. In Newral Networks for Control. The MIT
Press, 1990.

C. J. C. H. Watkins and P. Dayan. Q-learning.
Machine Learning, 8:279-292, 1992.

