
An Integrated Learning, Planning and Reacting Algorithm Applied to aReal Mobile RobotALEX WEISERLehrstuhl f�ur Proze�rechnertechnikTechnische Universit�at M�unchen80333 M�unchen, GermanyPEDRO LIMAInstituto de Sistemas e Rob�oticaInstituto Superior T�ecnico - Torre NorteAv. Rovisco Pais, 11096 Lisboa Codex, PortugalAbstractSutton's Dyna algorithm for integrated learning,planning and reacting is applied to a real mobile plat-form (Robosoft's Robuter). The mobile robot usessonar to scan for obstacles and odometry for self-localization. Practical problems associated with theimplementation of the algorithm on a real setup andresults from real experiments are presented and dis-cussed.Keywords: Reinforcement Learning, Planning,Reacting, Mobile Robots, Dyna algorithm.1 IntroductionMany researchers have applied learning to Robo-tics. A robot can learn from the data provided byits external sensors (e.g. cameras, ultrasound trans-ducers, proximity detectors) or internal alarms (e.g.battery failure, timeout while running a process). Re-inforcement learning, where limited information isavailable about the algorithm instantaneous perfor-mance, typically in the form of success or failure sig-nals, is particularly interesting for Robotics as it in-volves the exchange of small bandwidth information(failure and success signals only) between robotic sub-systems. In the last few years, Barto, Sutton andtheir associates have explored reinforcement learningalgorithms [1]. Recently, the adaptive behavior com-munity has applied extended versions of Sutton's TD-learning [4] and Watkins' Q-learning [6] algorithms toRobotics [2, 3].A frequent limitation of reinforcement learningapplications to Robotics is the problem large statespace. Lin [2] has attempted to tackle this by provid-ing some initial knowledge to the robot and by en-

dowing it with generalization capabilities using neu-ral nets. Sutton [5] describes an algorithm (Dyna)that learns from experiences with the real world in-termixed with virtual experiences done on an internalworld model to speed up the learning process. Bothauthors use Watkins' Q-learning algorithm, which in-cludes a performance function [6]. A drawback ofthese approaches is the fact that they rely on a directand error-free evaluation of task success. This is notalways realistic in real implementations, since check-ing if the goal was reached or navigating through aworld full of obstacles are usually di�cult and errorprone tasks.This paper describes an implementation of Sut-ton's Dyna algorithm [5] on a real mobile robot, theRobuter platform built by the French company Ro-bosoft. The mobile robot uses sonar to scan for ob-stacles and odometry for self-localization. Practicalproblems associated with the implementation of thealgorithmon a real setup and results from real experi-ments are presented and discussed. The task consistsof navigating a mobile robot through a maze, froman initial to a goal position. The maze is initially un-known to the mobile robot. We also discuss possibleextensions which may be helpful to study the applica-tion of this type of reinforcement learning algorithmsto situations more realistic than the simulations usu-ally described in the literature.In Section 2 there is an overview of the algorithm,followed by two Sections containing a description ofthe mobile robot used, and of the implementation ofthe algorithm in a real setup. Finally, results andconclusions are presented in Sections 5 and 6, respec-tively.



2 Dyna Algorithm2.1 The ModelThe Dyna algorithm is based on three modules.Two of them are the world (or world model) and thepolicy. This part of the algorithm works like a reac-tive system. The policy associates to each world statean action that moves the robot to a new world state.In addition, an evaluation is calculated for eachstate according to successive reinforcement signals re-ceived from the world after each move. The learningscheme updates the policy and the evaluation func-tions. By updating its policy, the robot is e�ectivelyplanning a set of reaction rules to be used in the nextstep.In the application described here, the world is rep-resented by a grid of square cells (states); therefore,the world model is a cell matrix. The policy containsfor each cell a probability for each action that movesthe robot to one of the four neighbor cells. The eval-uation is also a matrix containing an entry for eachcell.2.2 Real and Hypothetical ExperiencesA step is a motion from one cell to a neighbor-ing cell. Hypothetical and real steps are performed.In a real step the robot moves from one position toanother and provides new information to the worldmodel. A hypothetical step, however, is a simulatedstep in the world model. Both real and hypotheti-cal steps use the same algorithm, updating the policyand evaluation through a learning process. A trialconsists of a sequence of real steps from the startingpoint to the goal. A �xed number of hypotheticalsteps is performed between real steps.2.3 The AlgorithmAn outline of the Dyna algorithm follows[5]:1. Decide if it is a real step or a hypothetical one.2. Pick a state x. If this is a real step, use thecurrent state. If this is a hypothetical experi-ence, choose a random state that is already inthe world model.3. Form prior evaluation of state x according to theresult of the evaluation function: e = Eval(x).4. Choose an action a to be taken from state x byconsulting the policy.5. Execute the action a if there is no obstacle inthis direction in the world and world model. Ifthe action is executable, obtain next state y andreward ry from world or world model.

0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00

0.00

0.00

0.00

0.00 0.00 0.00 0.00

0.000.00

START

Figure 1: Initial values6. Form posterior evaluation e0 of the old statex using the evaluation of the new state y nowreached: e0 = ry + Eval(y).7. If this is a real step, update x and ry in the worldmodel.8. Update the evaluation function so that the eval-uation of the old state x is closer to the posteriorevaluation e0 rather than to the prior evaluatione.9. Update the policy. Strengthen or weaken thetendency to perform the action a from state xagain according to the di�erence between theposterior and prior evaluation: e0 � e.10. Go to step 1.The policy matrix has an entry wxa for every pairof state x and action a, i.e., four entries for eachstate in the world model, corresponding to actionsup, down, left, right. Actions are chosen randomlybased on a Boltzmann probability distribution, ob-tained by turning the four policy values for a givenstate in probabilities using . The probability for eachaction a from state x is then represented by Pfa j xgaccording to Equation(1):Pfa j xg = ewxaPactionsj ewxj (1)The evaluation table is updated according to thesimplest version of the temporal di�erence learningmethod: Eval(x) = Eval(x) + �(e0 � e): (2)Figure 1 displays all the information available tothe algorithm. It shows a sample model with the di-mensions of 4x5 cells. The arrow lengths indicate theprobability to execute an action. The number in eachcell represents the evaluation. After initialization theaction probability is uniformly distributed and the



evaluations are zero. A white cell is a KNOWN(OCCUPIED | when crossed | or EMPTY) cell,whereas the dark cells are UNKNOWN. When therobot moves in an environment like the one repre-sented in the right side of Figure 1, during the sec-ond trial the informationmay look like what Figure 2shows, with OCCUPIED cells and still UNKNOWNcells. The evaluation increases towards the goal andthe policy brings the system to the goal from anyempty cell. The policy becomes weaker the higherthe distance from goal because the evaluation di�er-ences are lower. The �rst trial proceeds in a com-pletely random fashion. After the goal is reached forthe �rst time, a reward is received, making the goalcell attractive to neighboring cells. This \attraction"to the goal cell is backpropagated to the start cell bya dynamic programming algorithm, embedded in theTD-learning method.
0.53

START

0.00 0.00

0.00

0.00

0.00

GOAL

1.00

1.00

0.90

0.90

0.90

0.81

0.81

0.81

0.81

0.73

0.73

0.73

0.67

0.59Figure 2: Example with adjusted values3 Using a Real Mobile Robot3.1 The Robuter PlatformExperiments with the real robot requires atten-tion to some additional points that are ignorable dur-ing simulation. The real robot calculates its positionthrough odometry, detects obstacles by sonar scan-ning, and needs to execute an evasive action whenit �nds an obstacle while moving from one positionto another. The robot has an acceleration and de-celeration phase in the movements and it cannot stopinstantly. There are errors in the sensor readings thatmust be taken into account. The robot must returnto its start position at the beginning of a new trial.Finally, the localization of the goal may be a di�culttask requiring complex sensing and reasoning.The robot, shown in Figure 3, consists of a mo-bile rectangular platform with the dimensions of1000x700mm. It has two independent propulsivewheels at the back and two free rotating and freeturning wheels at the front. Both back wheels are

Figure 3: Robuter Platformequipped with encoders for positioning. The rota-tion axis is located over the center of the drivingaxis. There are 24 ultrasonic transducers positionedaround the vehicle for obstacle detection, and also aninfrared camera.3.2 Albatros Operating SystemThe Robuter's operating system is Albatros, a real-time operating system speci�cally designed to con-trol, with minimal hardware and maximume�ciency,any kind of multi-axis and multi-sensor device. It hasa multi-tasking organization with prede�ned priori-ties and �xed scheduling for tasks.The application program can share the same pro-cessor with the Operating System allowing the use ofits resources through system calls. It is possible tolink the Albatros kernel with the user's speci�c pro-grams.4 Experimental SetupThe size of a cell is shown Figure 4. Although thelength of the platform is only one meter, the minimumsize of a cell must be equal to 4 m2. When the robotis positioned in a cell its rotation axis should be in thecenter of the square to give the robot space enough toturn around without crossing the border of the cell.In addition, there is a safety margin of 20 cm.To detect the obstacles, the robot uses the threesensors located on its sides, respectively. The val-ues returned from a sensor correspond to the timeelapsed between emission and reception of an ultra-sonic wave. The distance can be approximately com-puted through the returned value. The returned valuehowever changes depending on the type of the objects,external temperature, etc.



Sp
ac

e 
to

 T
ur

n

Safety Margin

Si
ze

 o
f 

on
e 

C
el

l

Si
ze

 o
f 

th
e 

R
ob

ot

Space to Turn

Figure 4: The Size of a CellThe calibration of the sonar was made by posi-tioning the objects at a desired distance and makinga sensor data read. This value was then used as athreshold. All objects situated closer to the robotthan the threshold distance are identi�ed as obsta-cles and therefore make the robot stop.To keep the odometry failures low, sonar scanswere made prior to any motion. Before the robotstarts a movement it scans the direction it is going tomove along. In this scan, the threshold reaches themiddle of the neighbor cell in order to check for anobstacle.Once the robot begins to move, the threshold de-creases proportionally to the distance traversed in or-der not to cross the border of the target cell, therebyavoiding the detection of an obstacle located in thecell after the one the robot is moving into.The position of the robot is only determined byodometry: therefore, the decrease of the sonar thresh-old is computed from the encoder readings. Prior toevery movement the encoders are reset. If at the endof a move there is an o�set between the desired posi-tion and the actual robot position, this o�set is sub-tracted from the desired distance in the next motionstep.Because the rotation axis of the robot is not lo-cated over the center of the platform the thresholdused cannot be the same for all directions relative tothe robot. Thus, a margin is added when the direc-tion to scan is not the front side.Figure 5 shows a ow chart of the implementedalgorithm. In the ow chart, the MotionProcess isa routine running as an independent and interrupt-ible process. It starts every 10 clock cycles, handlingall the communication with Albatros concerning thetranslations and rotations, the emergency stop, con-trols the sonar scanning and continuously updates thestatus of the movement.The RelPosError refers to the error of the positionof the robot relative to the desired end position.The MotionProcess runs parallel to the main pro-cess of the application program and communicateswith it through a common area. This has the advan-

** MotionProcess **

Communic = EM_STOP YesNo

Code = EXECUTING
Communic = ACK

MOTN KILL

** END **** part 2 **

** part 2 **

Communic = NEW_COMMAND
No Yes

Send MOTN
Failed

SonarAlarm

Code = ABORTED

Done

Code = EXECUTING

Communic = ACK

** END **** part 3 **

** part 3 **

Communic = INITIALIZE
No Yes

Code = EXECUTING
Communic = ACK

** END **
** part 4 **

** part 4 **

No

** part 4 **

Yes

Yes
SonarOn

Scan
Yes

SonarAlarm
No Yes

Status =
OBSTACLE
SonarAlarm =
FALSEStatus = OKTROUBLE

Status =

** END **

No < 0.1
RelPosError 

Yes

Get RelPosError

Code = READY
Direction = STOPPED

No

No
Code = EXECUTING

Send MOTN STATUS

Moving?

** part3 **

Code = ABORTEDNo Yes

Status = OBSTACLE

** END **

Figure 5: Flow Chart of MotionProcess
Obstacle in the World

GOALSTART

Wall

Simulated Obstacles

Si
m

ul
at

ed
 O

bs
ta

cl
es

W
al

lFigure 6: Obstacles in the World



tage that the motion can be stopped at any time byanother process or any external sensor that uses thesame common area. The main process could executeanother tasks while the robot is moving with the eva-sive action being controlled by the motion process.5 ResultsThe more hypothetical steps are performed, thefaster is the learning process. The learning algorithmalways converges without getting caught in local min-ima. The random number generator has a large inu-ence in the duration of the experiment since it is usedto choose the actions and to determine the states forthe hypothetical steps.An environment with obstacles positioned in theworld, as shown in Figure 6, is used for an experi-ment. The walls of the room are used as obstacles.Wood �berboard of the size of 120x50cm is positionedvertically representing additional obstacles. Some ob-stacles are still simulated to avoid the robot runninginto obstacles that can not be detected by the sonars,e.g stairs, and to prevent the system from leaving theboundaries of the world model.Below are the results of the experiments for threetrials using 50 hypothetical steps. The numbers in-dicate the number of visits of the robot to each cell,and the sign # represents an identi�ed obstacle.TRIAL 1## 3 1 1# 11 # # 1# 5 2 2 2#28 steps 21 calls 16 motionsTRIAL 2## 8 # 1 1# 4 # # 1# 1 1 1 1#19 steps 11 calls 12 motionsTRIAL 3## # 1 1# 1 # # 1# 1 1 1 1#8 steps 8 calls 8 motionsIn this run, the shortest path was found in 3 trials,requiring 8 steps to reach the goal.The implementation showed the di�culty of im-plementing the algorithm in a real mobile robot. Itis necessary to control the robot motion keeping arecord of its location through odometry, to scan for

obstacles, to perform evasive actions, and to dealwith inaccurate sensor data and accumulated errors.The results of the algorithm, however, are exactly thesame as the ones obtained in the simulation, exceptthat it was necessary to reset the robot position onceevery 3{4 trials, due to the accumulation of odometryerrors.In a real setup, the robot needs not move on ev-ery real step. Some steps can be blocked via hier-archically higher software levels, when an obstacle isdetected, consulting the world model or using sonarscans before starting to move the robot in the direc-tion of the obstacle, as explained above.6 PreliminaryConclusions and FutureExtensionsIn this paper we attempted to verify a concept andits functionality by using an internal world modelbuilt from real sensors to speed up the incrementallearning by a mobile robot, of a set of reaction ruleswhich allow it to �nd the shortest way out of a maze.In future work, a set of modi�cations and addi-tional functions can be implemented to improve theperformance of the robot:� The simple search method used here combinedwith the simple reward make the �rst trial verytime consuming, with low information gain. Thesystem is not learning and planning and therobot runs aimlessly until it happens to �nd thegoal. To speed up the �rst trial one could makeuse of other approaches, such as lateral scanninginstead of scanning only in the direction of move-ment, storing the detected obstacles in the worldmodel.� The policy might be changed when the robotbumps into an obstacle, using a di�erent learn-ing process without modifying the evaluationof a cell. Currently, reinforcement consists ofa reward only when the goal is reached, andno penalties (e.g., when an obstacle is detectedahead of the robot).� An attempt can be made by using bigger virtualcells in the beginning of an experiment just to�nd the goal more quickly and later divide ev-ery cell of the world into smaller ones. That,however, may contradict the idea that , once anobstacle has been located in a cell, the entire cellis assumed to be occupied until the end of thealgorithm.The use of beacons and an infrared camera canhelp the robot to improve its self-localization. Byturning the camera while staying at a �xed posi-tion, the robot determines the angles #1 and #2



ϑ ϑFigure 7: Localization using Infrared Camerashown in Figure 7, and the robot position can bedetermined by triangulation.Large odometry failures can shift or twist theworld model in such a way that it simply doesn'tmodel the real world anymore. The robot thensees an obstacle in one cell, which in the begin-ning was located in a neighboring cell. The in-frared camera and beacons can be used to cor-rect the position of the robot and therefore theodometry failures. Goal self-localization wouldthen be a particular example of this application.� The use of parallel processing by performing thehypothetical steps simultaneously to a real stepis not very interesting for this experiment specif-ically due to the robot used. However, whenusing a smaller and quicker robot such an ap-proach would be interesting. Actually, a eetof small robots running in parallel through themaze, while updating a centralized world model,would be another interesting extension of thiswork, with the objectives of speeding up the al-gorithm and testing strategies of cooperation.AcknowledgmentsThis work was partially supported by the grantPRAXIS/3/3.1/TPR/23/95. The �rst author wouldlike to thank Dipl.-Ing. Alexa Hauck from Lehrstuhlf�ur Hochfrequenztechnik for her constant supportthroughout this work.References[1] A. G. Barto, R. S. Sutton, and C. W. Anderson.Neuronlike elements that can solve di�cult learn-ing control problems. IEEE Transactions on Sys-tems, Man and Cybernetics, SMC{13(5):835{846,1983.[2] Long-Ji Lin. Scaling up reinforcement learning forrobot control. In Proceedings of the Tenth Inter-national Conference on Machine Learning, 1994.

[3] S. P. Singh. Transfer of learning by composingsolutions of elemental sequential tasks. MachineLearning, 8:323{339, 1992.[4] R. S. Sutton. Learning to predict by the methodsof Temporal Di�erences. Machine Learning, 3:9{44, 1988.[5] R. S. Sutton. First results with Dyna, an inte-grated architecture for learning, planning and re-acting. In Neural Networks for Control. The MITPress, 1990.[6] C. J. C. H. Watkins and P. Dayan. Q-learning.Machine Learning, 8:279{292, 1992.


