
Research on Intelligent Control Methodologies at theInstituto de Sistemas e Rob�otica ofInstituto Superior T�ecnico�Pedro Lima, Jo~ao SentieiroInstituto de Sistemas e Rob�otica, Instituto Superior T�ecnico,Av. Rovisco Pais, 11096 Lisboa Codex, PORTUGAL.E-mail: pal@isr.ist.utl.ptAbstractThe Instituto de Sistemas e Rob�otica (ISR) is aPortuguese research institution whose work focus onSystems Theory, Control, Robotics and Automation.In this paper we describe past and recent activity atthe di�erent Laboratories of the Instituto SuperiorT�ecnico pole of ISR, in the area of Intelligent Control.A particular approach to the design and evaluation ofIntelligent Control Systems, proposed by ISR Intelli-gent Control Lab, is also summarized in the paper.1 INTRODUCTIONThe Instituto de Sistemas e Rob�otica (ISR) is aPortuguese research institution organized in threepoles, located at Lisboa, Coimbra and Porto. TheLisboa pole is located within the campus of InstitutoSuperior T�ecnico (IST | Faculty of Engineering ofthe Technical University of Lisbon). Sixty seven re-searchers work at ISR/IST, including twenty sevenwho hold a Ph.D. degree.In recent years, ISR/IST has been involved ina number of Portuguese and international R&Dprojects in the area of Robotics and Automation.The research interests of the Institute in this area aremainly focused on applications to land, underwaterand aerospatial autonomous or semi-autonomous mo-bile platforms, robotic manipulators, and productionplanning and scheduling. Techniques used come fromthe �elds of Automatic Control, Signal Processing,Arti�cial Intelligence, Computer Vision or ComputerScience, to name a few.The ISR/IST researchers currently working inRobotics and Automation have an historical back-ground in Control, Signals and Systems theory. Bythe end of the 1980s there was a raising interest onthe contributions from other �elds, such as Arti�-cial Intelligence and Computer Vision, to the Controland Operation of large-scale complex systems, rang-ing from chemical processes to robotic devices. Thegroup participated actively in the European ESPRIT-II project AIMBURN (\Advanced Intelligent Multi-Sensor System for Control of Boilers and Furnaces")[1], whose objective was to improve the e�ciency of a�Part of this research was supported by the Portuguese re-search program PRAXIS-XXI, under grant 3/3.1/TPR/23/94.

glass-melting furnace, based on optimal control tech-niques and the use of a vision system to extract fea-tures describing the 
ame and the non-melted mate-rials inside the furnace [17]. The vision system pro-vided additional information about the plant whichwas used by the control algorithms. A rule-based RealTime Expert Controller was also designed to coordi-nate the execution of the involved sub-systems andto handle exceptions, such as sensor/actuator faultsor extreme situations incorrectly handled by the low-level controllers [8].Intelligent Control is today a well-established �eldwithin the discipline of Control Systems. It emergedin the early 1970s as an attempt to characterizewhat distinguishes \machine intelligent" from \con-ventional" approaches, and to derive an analytic the-ory applicable, at least, to some classes of intelligentcontrol problems. Since then, many di�erent tech-niques have been used to provide alternative solutionsfor the control of dynamic systems, especially thosewhose mathematical modeling is di�cult or even im-possible. Fuzzy logic, arti�cial neural networks, ge-netic algorithms and expert systems are among thosetechniques. All those approaches share some bio-logical background and aim at integrating conven-tional control theory with computer science and com-puter engineering in an e�cient way, while keepingthe traditional control engineering methodology ofdesign[15, 16, 21].The AIMBURN project was the starting point forthe utilization of Intelligent Control techniques inan increasing number of projects at ISR. In 1995,two ISR researchers were co-organizers of the 1stUS/Portugal Workshop on Undersea Robotics andIntelligent Control [14], held in Lisbon and joiningabout 50 American and European leading experts inthe two areas. This paper is a survey of past andcurrent research using Intelligent Control techniques,carried out at many of ISR/IST Laboratories.The paper is organized as follows: in Section 2 wesurvey past and current contributions of researchersof the Institute, which was identi�ed as being relatedto the area of Intelligent Control. Section 3 sum-marizes a methodology for the design and evaluationof intelligent controllers, proposed by ISR IntelligentControl Lab. Conclusions are reported in the �nalSection.



2 INTELLIGENT CONTROL ATISRResearch which, according to the de�nition of theprevious section, includes Intelligent Control tech-niques and/or aims at developing Intelligent Controlmethodologies, has been carried out in the last fewyears at the di�erent ISR Laboratories. In this sec-tion we will summarize the most signi�cant resultsaccomplished so far. We have chosen to group thereferences by research areas, rather than by Labora-tories where the work was actually developed.Adaptive Control and Controller DesignPioneer work on Adaptive Control focused mainlyon the on-line modi�cation of the control law, forclosed loop systems whose controlled plant showedslowly time varying characteristics, due to changeson critical parameters and/or operating point (forsmooth non-linearities). In recent years, many re-searchers have attempted to apply less \conventional"techniques, such as neural networks, fuzzy logic andgenetic algorithms, to the adaptive control of stronglynon-linear plants, or \di�cult" linear systems, suchas non-minimumphase systems, systems with delays,and systems di�cult to model mathematically. Dueto their time consuming nature, some of those tech-niques could only be applied so far to the o�-line de-sign of controllers.At ISR, research on those topics started in the late1980s. Initially, work was driven by the increasing in-terest on fuzzy logic controllers (FLCs). However, de-spite some interesting features, such as design simplic-ity and capability to incorporate human expertise, thelack of a design methodology driven by speci�cationsfor the controlled process, proved to be a major draw-back of FLCs. Oliveira et al[12] approached this prob-lem by introducing an adaptive fuzzy controller wherea supervision level modi�ed on-line an FLC operat-ing in the control loop. The supervisor's algorithmconsisted of changing the center of the membershipfunctions describing the output linguistic terms of thecontroller, based on the di�erence between the ob-served and desired features of the closed loop responseto step inputs. The features used were the overshootand rise time. Supervisor action was triggered by thedetection of a step in the loop set point. Some restric-tions to the modi�cation of the membership functionswere implemented, to preserve the original linguisticmeaning of the rules provided by a human expert.The same authors[11] presented later a slightly di�er-ent approach, where the supervision was implementedby fuzzy meta-rules, and its application extended tothe on-line adaptation of PID controllers. Oliveira etal[13] tackled the same problem using a di�erent su-pervision technique | a genetic algorithm (GA). Theparameters of a PID controller were adjusted in orderto minimize the accumulated sum of the quadratic er-ror between the loop set point and the plant output,for a given time horizon. The �tness function used bythe GAs was the inverse of this performance index.The population of the GA was composed of stringsconcatenating a binary coded version of the three con-trol parameters. Due to the non-predictable and timeconsuming nature of this technique, tests of tentativecontrollers on a real plant, before convergence to anacceptable solution, may be tedious and/or danger-ous to the plant. Therefore, the methodology wassuggested only for o�-line controller design. Resultscomparable to those obtained by a Linear Quadratic

controller designed for the same plant were obtained.Cardoso[3] proposed a GA-based approach to the su-pervision of FLCs, allowing the simultaneous deter-mination of the set of fuzzy rules, the shape and lo-cation of membership functions and the universes ofdiscourse of the linguistic variables. The performanceindex consisted of measures of the integral over timeof the squared error between set point and plant out-put, or of the integral over time of the squared errormultiplied by the time.Vision-based Navigation and Guidance ofMobile RobotsOne of the most powerful senses of human beingsis the sight function. Thus, it is natural for mobilerobots to use computer vision as one of its sensors,specially for navigation (self-location and/or obsta-cle avoidance) and guidance (path or track following)purposes.A vision-based guidance controller for an Auto-mated Guided Vehicle (AGV) was developed in theearly 1990s by Cardoso et al[4]. The objective wasto follow a track composed of a white strip on a dullblack 
at ground. The tracks considered had topolo-gies frequently found in industrial plants, includingstraight lines, curves and crossing ways. The visionsystem acted as a smart sensor, capable of determin-ing the error between the vehicle heading and thetrack tangent at each sampling instant, as well as pre-dicting the track topology ahead of the vehicle. Thisinformation was used by a two-input two-output FLCto control the vehicle di�erential and common-modespeeds. Experimental tests made with this con�gura-tion showed the robustness of the guidance controllerto noise in the track image, mainly due to dirty 
oorsand shadows. The nature of the tracking problemalso lead to modest computing times for image acqui-sition and processing. Finally, the FLC was relativelysimple to design, and naturally prone to coping withdi�erent control states, such as trajectory junctions,derivations and crossings.Most work on autonomous navigation of mobilerobots using computer vision has been carried out inrecent years at the Vision Laboratory of ISR. Santos-Victor et al[18, 19] described two purposive (in thesense of being speci�c to the problem) approaches tovision-based navigation. The �rst work uses the nor-mal optical 
ow | computed over an image sequenceacquired by a single camera | to detect obstacles ly-ing on a 
at ground. With this input information, therobot is capable of avoiding obstacles on the ground.Actually, holes in the ground can also be detected us-ing this method, which dispenses any reconstructionof the environment surrounding the robot. At theinitialization stage, the projective transformation be-tween the image plane and the 
at ground plane areestimated. Obstacles are detected by analysis of theinverse projection of the normal 
ow �eld onto thehorizontal plane, noticing that (e.g., for translationalmotion) points on the ground plane should presentthe same 
ow vectors, while points lying above or be-low that plane will have respectively larger or smaller
ow values. In the second work cited, a mobile robotequipped with a pair of cameras looking laterally andendowed with a controller based on the comparisonbetween the apparent image velocity of the two cam-eras, is capable of navigating within narrow corridorswith curves and lateral obstacles. One of the inter-esting features of this approach is the emulation ofthe behavior of freely 
ying honeybees. The naviga-tion control loop is also studied analytically, based on



Figure 1: The MOONRAT vehicle.control theory methods.Small Autonomous VehiclesResearch on mobile robotics has always beendriven by the ultimate goal of building intelligent au-tonomous machines. Recently, there is a growing sci-enti�c interest on the development of small, cheapand modular vehicles, endowed with distributed con-trol systems and capable of integrating the informa-tion provided by several sensors, such as computervision, sonar, encoders or gyros.At ISR, work on small vehicles started in the 1980s,but it was usually directed towards speci�c applica-tions, such as AGVs or \light followers". Later on,an important milestone was the MOONRAT vehicle(see Figure 1), a small (37�28�34 cm), light (4 Kg)semi-autonomous platform, equipped with recharge-able batteries, di�erential drive locomotion, eight in-frared sensors for short distance and three sonar sen-sors for long distance obstacle detection, and under-neath sensors to detect holes in the ground. A ded-icated microprocessor handled all sensorial informa-tion, while a central microprocessor managed the 
owof information between sensors and actuators (wheelDC motors), and implemented motor speed and ve-hicle guidance control algorithms. An user-friendlygraphical interface was developed to help exchang-ing information between an external operator and therobot, which communicated through a radio link[23].Recently, work on the development of small 
exibleAGVs has been mainly driven by a competition ofmobile robots held annually at La Fert�e Bernard,France | the Festival International des Sciences etTechnologies. The participating robots must follow a5 cm wide track painted on a 
at 
oor, composed ofstraight lines and arcs (minimum radius = 1 m). The

track and background colors alternate between blackand white, in a chess-like pattern. Any track interrup-tion must be detected, and the point where the trackresumes after the interruption is signaled by a passivebeacon located one meter above the ground. Billiardballs of three di�erent colors (red, black and white)are scattered along the track and must be collectedand discriminated. Only red balls should be trans-ported until the arrival point. The �rst attempt tobuild such a robot was based on an originally teleop-erated toy car. The vehicle had four driving/steeringwheels, two driving DC motors and one steering ser-vomotor, a closed loop motor speed controller (in-cluding an optical encoder), eight infrared (IR) emit-ter/receiver pairs to follow the track and one addi-tional motor/IR system to search and move towardsthe passive beacon after a track interruption. A cen-tral microprocessor implemented the guidance con-trol loop and coordinated the whole system[7]. Cur-rently, an improved version of such a vehicle is beingbuilt (see Figure 2), with an original mechanical de-sign which includes a step-motor/IR system to collectand discriminate the balls, computer vision to recoverfrom track interruptions, and a distributed controlsystem using a central 80486 motherboard and threePIC16C74 microprocessors.Open Control Architecture for RoboticManipulatorsISR has a PUMA 560 industrial manipulatorwhichwas used in the past with its original UNIMATEMark-III controller, under VAL-II operating system.However, Mark-III controller architecture o�ers manyobstacles to its use for \high level control", such astask planning and task coordinated execution. De-spite its robustness and user-friendly features | suchas programming in a high level language and the ex-istence of a teach pendant | advanced control solu-tions, such as those based on vision and force sensors,are di�cult to implement in this closed architecture.To overcome those problems, an open control archi-tecture for the PUMA manipulator is currently underdevelopment at ISR. The methodology followed wasthe initial replacement of most control hardware by aboard, manufactured by Trident Robotics, which al-lows direct access to the manipulator joint positionsand torques by an external computer. Currently, alibrary of primitive tasks (e.g. move, plan trajectory,locate object) is being written to help future users of
Figure 2: ISR latest small autonomous vehicle.



Figure 3: Medusa stereo head.the testbed to develop their one task planners, forcecontrollers or visual servoing algorithms, to name justa few. The control architecture is now open, in thesense that all involved algorithms are accessible to theprogrammer, including the parameter settings used.Joint-level trajectory planning and position controlwere already implemented on a Pentium PC (133MHz) with a sampling frequency of 400 Hz and usingdi�erent algorithms, with successful results[10]. Fu-ture work will include experiments on force control,visual servoing and coordinated execution of robotictasks involving several pre-de�ned primitive tasks.Cooperation Among Robotic SystemsThe problem of coordinating multiple robot sys-tems, with di�erent types of motion constraints, ei-ther due to the mechanical design or the physicallinks between them, can be seen as a motion planningproblem in an usually wide con�guration space. Eventhough non-linear control techniques have been usedto extend the analytic results obtained for systemswith less degrees of freedom, this typically results intocomputationally heavy algorithms, and with littlecompliance to environment uncertainties. Sequeiraet al [20] introduced a behavioral cooperation archi-tecture for control of multiple robotic mechanisms.The architecture is composed of behavior blocks, eventsensor blocks and a task controller. Each robotic de-vice has an associated behavior block, which mapsthe con�guration space of the device onto itself orone of its tangent spaces. Behavior functions insideeach behavior block, are triggered by the occurrenceof an event (or combination of events) detected bythe event sensor block for the corresponding device.If an appropriate command for the robotic mecha-nism cannot be executed, another behavior functionof the the same block is triggered. Events may resultfrom environment sensing information or from statefeedback from other robotic devices. For instance, ifa manipulator mounted on a mobile platform cannotreach an object, it will create an event for the mobilerobot device to move towards the object. The taskcontroller is composed of a set of heuristic rules whichde�ne ranges of appropriate values for the timing ofeach task. The authors present results for a multi-ple robot system composed of a mobile platform, a 3degree of freedom manipulator mounted on the plat-form, and a 3 degree of freedom gripper mounted atthe tip of the manipulator.

Robotic Stereo HeadA robotic stereo head, named Medusa (see Fig-ure 3), was designed and built at the ISR Vision Labin the early 1990s. It has four mechanical degreesof freedom: common tilt, common pan and two in-dependent vergences, and can be controlled by anexternal computer equipped with an image acquisi-tion board. Some of the main ocular movementsavailable in the human ocolumotor system, such assaccades, smooth pursuit and vergence, were imple-mented in an initial stage, at speeds and accelerationscomparable to those of the human eye-system. In re-cent years, Medusa has been used to investigate theperformance of several di�erent visual servoing algo-rithms. Real-time vision-based control is frequentlyhard to accomplish, due to the long image acquisi-tion and processing times involved. Speed increaseis usually accomplished by a drastic reduction of theimage resolution, thus reducing the accuracy of thecontrol loop. Log-polar images provide an acceptabletradeo� for this problem. A log-polar mapping of acartesian image reduces the overall amount of data,while keeping an acceptable resolution at the centerof the image. Bernardino and Santos-Victor[2] de-scribed two di�erent vergence control strategies, bothbased on the correlation of low resolution log-polarimages. Besides being a especially suited techniquefor this control problem, log-polar mappings emulatethe human retina, which contains a central area |the fovea | with a high density of photoreceptors, incontrast with its periphery. The authors investigatedalso the performance of di�erent combinations of log-polar sensor layouts and control strategies, introduc-ing a set of quality criteria for performance evalua-tion.Production Planning and SchedulingProduction Planning and Scheduling (PPS) is avery important issue in the framework of ComputerIntegrated Manufacturing (CIM). As the manage-ment of production systems can be envisioned as aproblem of controlling complex systems (non-linearand time-variant), the PPS �eld not only proposesrich research subjects, but also provides real-worldtestbeds for tools and approaches developed in di�er-ent scienti�c areas.Complexity in such systems also results: (i) fromthe high number of variables involved, and (ii) fromthe interaction among these variables. In suchcases, the search for optimal solutions within ana-lytical methodologies should be abandoned in favorof heuristic approaches. Arti�cial Intelligence | andparticularly, expert systems, heuristic search, fuzzylogic, genetic algorithms, simulated annealing, amongother research topics | have developed pragmaticalapproaches which are capable of handling the controlof such systems.The application of Intelligent Control techniquesto Production Planning and Scheduling includes twomain topics:� Fuzzy Logic in PPS - Development and imple-mentation of a methodology to control a hierar-chical production system using Fuzzy Logic[5, 6];� Heuristic Search in PPS - Application of heuris-tic search to production scheduling in a projectjob-shop problem[22].Under the �rst topic, a hierarchical control struc-ture based on three decision levels (higher, middle,



lower), each responsible for a di�erent productionproblem with a di�erent time scale, is used. Thismethodology approaches the tasks associated witheach level using a heuristic formulation and solves theshort-range planning and scheduling problems with anonstationary policy. The higher decision level de-termines safety stock levels used to compensate forfuture resource failures. At the middle level, loadingrates are computed. This is accomplished through afuzzy controller that tends to minimize the error be-tween the cumulative production and the cumulativedemand while keeping the work in progress below ac-ceptable values. Finally, the lower level controls the
ow of parts among resources, using a fuzzy decisionmethod. This method has the ability to use severalcriteria to generate a decision. Simulation results re-veal that this approach exhibits good performance, interms of a high production percentage and a lowWIP,even under resource failures and demand variations.Regarding heuristic search in PPS, a project job-shop scheduling problem assumes that each job hasa set of operations in a particular sequence, with thepossibility of parallel execution of two or more opera-tions. Also, associated with the job there is a startingdate and a desired due date. The goal in a schedul-ing problem is to schedule the operations related toa set of jobs and determine which resources shouldbe allocated to each operation, according to the tech-nological constraints and due dates. The schedulingof a job-shop type production system is generally aNP-hard problem, so the computation time grows ex-ponentially with the problem dimension. However,for most real-world problems, a pragmatic approachis usually followed: �nding a reasonable solution inan acceptable amount of time. For this reason, themain goal of this research encompasses the e�cientachievement of feasible solutions, satisfying techno-logical restrictions, resource capacity constraints, anddue dates regarding each job. The approach taken isbased on a constraint management system allowingtwo types of solutions for project scheduling prob-lems: quasi-optimal albeit time consuming, or rea-sonable ones in an acceptable computation time.3 AN ANALYTIC APPROACH TOINTELLIGENT CONTROLAs mentioned before, there is an Intelligent Con-trol Lab at ISR, whose activity started two years ago.The group running the Lab has an horizontal per-spective, with the main purposes of applying Intelli-gent Control techniques to the control and operationof complex and/or large-scale systems, and of imple-menting control architectures encompassing low-levelcontrol, sub-systems coordination and task planning.The theoretical analysis and synthesis of IntelligentControl systems is a key research topic for ISR Intelli-gent Control researchers. This section represents thepoint of view of the ISR Intelligent Control group onthe future challenges faced by Intelligent Control asan autonomous discipline. A detailed description ofthese concepts can be found in Reference [9].The major objective of an intelligent control loop isto accomplish a goal communicated by a command (adesired set point, in traditional control theory). How-ever, intelligent machines often operate inside com-plex environments that disturb the expected results oftheir actions. These disturbances result from incom-plete and/or imprecise environment modeling and un-expected events, such as hardware failures. Mathe-matical models of large complex systems are usuallyincomplete and/or imprecise. The reasons for this are

either the di�culty to derive mathematical expres-sions fully describing the system behavior and/or thehuge computational power needed to implement themodel in a computer. One way to handle this prob-lem is to model the uncertainty about the nominalsystem behavior instead. This is, roughly speaking,the approach of Stochastic Control and Robust Con-trol to the modeling of control systems where decisionmaking levels are not involved.A performance index should then include somemeasure of the uncertainty on the system operation.However, the maximization of such an index wouldgenerate highly reliable controllers, but in most casesat the cost of heavy computational e�orts. The pro-posed performance measure J is then a combinationof reliability R and cost C,J = 1� R+C :Reliability and cost must be de�ned in conjunc-tion. Reliability is understood as the probability thata given algorithm will meet its speci�cations after apreset execution time. Cost | in terms of used com-putational resources of any kind | is measured forthe worst sample of the information processed by thealgorithm, i.e., for the sample that leads to the relia-bility closest to a pre-speci�ed desired reliability. No-tice that those de�nitions are general enough, so thatthey can be applied to di�erent algorithms (e.g., con-trol, image processing, computer vision, planning).Despite its generality, the de�nition forces the de-signer to pre-establish a performance measure foreach of the algorithms composing the intelligent con-troller.The performance measure can be used for o�-linedesign of intelligent controllers, allowing a compari-son among alternative designs. Nevertheless, it is es-pecially suited for on-line improvement through feed-back from the environment where the machine oper-ates. In this case, the performance indexes of thedi�erent controller algorithms must be measurableon-line, and the controller must have a set of alter-native algorithms for each primitive operation thatmust be implemented (e.g., a set of PID controllerswith di�erent gains, for a closed loop controller). Asuccess/failure signal is generated after each executionof an algorithm, whether its speci�cations were metor not, respectively. This signal is used by a reinforce-ment learning algorithm to learn over time the bestalgorithm of the pre-de�ned set, given the current en-vironment conditions. Lima and Saridis [9] proposedsuch an algorithm and proved its convergence withprobability one for the best algorithm.4 CONCLUSIONSIntelligent Control has grown fast from an emerg-ing to an established discipline within control theory.Its scope includes contributions not only from controltheory, but also from other �elds such as ComputerScience and Computer Engineering. Such a diver-sity of contributions leads to a di�cult de�nition ofwhat is Intelligent Control. Still, a few common char-acteristics can be identi�ed in the works of di�erentauthors: the emulation of biological systems, the useof non-conventional techniques, the attempt to for-malize solutions which integrate conventional controlwith decision making, learning, computer engineeringand computer science.Work developed at the di�erent Laboratories ofthe Instituto de Sistemas e Rob�otica of the Instituto
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