
HIERARCHICAL REINFORCEMENT LEARNING APPLIED TOAUTONOMOUS UNDERWATER VEHICLESPEDRO LIMA, GEORGE SARIDISElectrical, Computer and Systems Engineering DepartmentRensselaer Polytechnic InstituteTroy, NY 12180-3590AbstractA general methodology for performance improvement of Intelligent Ma-chines based on Hierarchical Reinforcement Learning is introduced. MachineDecision Making and Learning are based on a cost function which balancesreliability and computational cost of algorithms at the three levels of the hier-archy proposed by Saridis. Despite this particular framework, the methodologyintends to be su�ciently general to encompass di�erent types of architecturesand applications.Novel contributions of this work include the de�nition of a cost functioncombining reliability and complexity, recursively improved through feedback,a Hierarchical Reinforcement Learning and Decision Making algorithm whichuses that cost function, and a coherent joint de�nition of algorithm cost andreliability.Results of simulations show the application of the formalism to an IntelligentRobotic System mounted on an Autonomous Underwater Vehicle.1 INTRODUCTIONMost of the work done in the last few years towards building Hierarchical andGoal Directed Intelligent Machines (HGDIM) [15] quite often mentions the need fora methodology of designing the IM and a measure of how successful the �nal result is.An analytic design based on measures of performance recursively improved throughfeedback, assures some degree of certainty about the measurability and robustnessof that design. Previous results within the framework of the Analytic Theory ofIntelligent Machines developed by Saridis et al [17] established a general architecturefor the IM and detailed this architecture for the di�erent levels. However, the ow offeedback through the hierarchy with the purpose of improving the overall performanceby updating the decision making structure, has never been detailed for the completehierarchy.The present work proposes a methodology for performance improvement of In-telligent Machines based on Hierarchical Reinforcement Learning. Di�erent optionsto accomplish a goal or a subgoal may be found at all levels of the IM: the Orga-nization Level has to decide among di�erent tasks capable of executing a given



goal (command) sent to the machine; given the chosen task, composed by subgoals(events), the Coordination Level has to determine, for each event, the best amongthe set of primitive algorithms capable of solving each subgoal.To compare the di�erent alternatives at each level we further need a cost function.The proposed procedure recursively estimates a cost function combining reliabilityand computational cost of tasks, events and primitive algorithms. This approach hasthe advantage of providing a cost measure applicable to several di�erent problems,since it is based on reliability (de�ned as the probability that an algorithm will meetsome set of speci�cations in a given state of the environment) and complexity of aproblem, i.e. minimumcomputational cost of the algorithm which solves the problem,here considered not only in terms of computation time (time-complexity) but alsomore general features such as memory and other resources usage (space-complexity).When dealing with very large systems, some amount of uncertainty exists in themodel of the system to be controlled. Hence there is always uncertainty about theresult of a given command sent to the controlled system. Uncertainty is presentat all levels of a HGDIM, as de�ned by Saridis: at the execution level, thereis uncertainty in terms of features like rise-time or overshoot, since mathematicalmodels never match exactly the real controlled system. At the coordination level,there is uncertainty in terms of the success of each of the primitive events (e. g.strut grabbed, path planned, manipulator did not move) composing a task. At theorganization level, there is uncertainty in terms of the success of the task executed.The di�erent algorithms used at the Execution Level of an Intelligent Machineare frequently designed in order to meet a set of speci�cations or, without loss ofgenerality, in order to keep the error of a set of involved variables below some desiredaccuracy � � 0. The uncertainty involved in the design of these algorithms is mostlydue to approximate or incomplete modeling, and statistical uctuations around nom-inal parameters. Hence it can be modeled statistically. Previous work in this area byMcInroy and Saridis (1990)[11] and Musto and Saridis (1993)[12] describe a model-based approach where the most reliable from a set of di�erent algorithms is selectedby an entropy-based technique. However, the most reliable algorithmmay have a nonfeasible computational cost, in terms of the time it takes to complete, the amount ofmemory it uses or the number of resources (e.g. processors) required. No attempt ismade in those works to deal with this problem, with the exception of plan executiontime, modeled as a speci�cation by McInroy and Saridis (1990)[11]. Also, reliabilityis not learned from experience, but model-based.Autonomous Underwater Vehicles (AUVs) are Unmanned and Untethered MobileRobots capable of carrying out exploratory missions at sea. The diversity of sub-systems composing AUVs (positioning, obstacle detection and recognition, control,path planning, communications, mission management) and the vehicles autonomy re-quirements make them particularly well suited for applications of Intelligent Controlmethodologies. The problem addressed by this particular instance of our methodol-ogy is: given a set of alternative tasks (sequences of calls to any subsystem but theMission Management) capable of implementing commands coming from the MissionManagement subsystem, and a set of alternative algorithms capable of solving theproblems associated to the other subsystems, learn the best translations at each levelto improve the overall performance, de�ned as a balanced sum of reliability and cost.The paper is organized as follows: after this introduction, we briey outlook insection 2 the joint de�nition of reliability and complexity of an algorithm. Section 3



explains the hierarchical decision making and learning algorithms, including the def-inition of the cost function. Afterwards, section 4 describes the application to amanipulator mounted on an Autonomous Underwater Vehicle, and section 5 presentspreliminary conclusions and directions of future work.2 COMBINED DEFINITION OF RELIABILITY AND COSTIn order to coherently combine the de�nitions of cost and reliability for a givenproblem, the key is the desired accuracy or error speci�cation � for the problem, whichmust be the same in both de�nitions. This may be done using the background of theTheory of Information-Based Complexity[16]. To save space, we briey summarizeour formulation next. A more detailed and rigorous mathematical treatment may befound in [7].We desire to compute a solution approximation U(f; �) of S(f), where S(f) iscalled a problem solution. U(f; �) is the result of an algorithm �, capable of solvingthe problem, when operating over the data or problem element f . Typically, S(f) isa vector of speci�cations for a given problem, for example the desired joints positionovershoot of control algorithms that can solve the move robot problem, and the prob-lem element f is a vector with the output and set point signals used to compute the ac-tual overshoot U(f; �) when algorithm � is applied. To measure the distance betweenS(f) and U (f; �) we use an absolute error criterion, kS(f) � U(f; �)k, where k(:)krepresents some norm. U (f; �) is an �-approximation of S(f) i� kS(f)�U(f; �)k � �.We call � the accuracy of the approximation. In a probabilistic setting[16] the speci-�cation error is required to be below � except in a subset with a small measure.The �-cost (cost for short) of a problem as de�ned in [9] as the lowest cost amongthe available algorithms capable of approximating the problem solution to some de-sired accuracy �. The cost includes the prices of getting information and processingit. Depending on the model used, di�erent features are weighted (CPU time, memoryspace, number of processors).Given some desired accuracy �, Reliability of algorithm � is de�ned as:R(f; �) = PrfkS(f)� U(f; �)k < �g (1)The cost of an algorithm � given a problem element f has two components:cost(�; f) = ci(I(f); f) + cp(�;I(f)) (2)where ci is the cost of getting information about f needed by algorithm �, and cpis the combinatorial cost of processing that information by algorithm �. The termci is inherent to information-based complexity. Information is gathered to reduceuncertainty. cp would be the only term in the absence of uncertainty.Given � and �, we de�ne the cost of algorithm � for the most unfavorable problemelement f whose approximated solution U(f) still belongs to the subset of G withmeasure 1� �:f� = arg inff2FfPrfkS(f)� U(f; �)k < �g 3 PrfkS(f)� U(f; �)k < �g � 1� �gcost(�) = cost(�; f�) (3)



or, taking into account (1) and making Rd = 1 � �, where Rd is some desiredreliability: f� = arg inff2FfR(�; f) 3 R(�; f) � Rdg (4)C(�) = cost(�; f�) (5)that is, among all f 2 F capable of keeping the speci�cation error for algorithm �below � with reliability at least Rd, the one leading to the worst-case, i.e. the f leadingto the largest probability of error, is picked. Here and henceforth, the reliability willbe denoted as R(�) = R(�; f�).The link between the de�nitions of reliability and cost is the assumption thatall algorithms are designed to meet an error speci�cation � of the problem theycan solve. Given some desired reliability for the problem, the cost of obtaining thatreliability can be determined for each of the algorithms, according to the cost measurede�ned (number of operations, elapsed CPU-time, memory used) for the problem.Conversely, if the cost measure is �xed at di�erent values for the di�erent algorithms,this will correspond to di�erent reliabilities for each of them.For example, N image frames or more need to be averaged to increase past acertain value Rd the probability that the error of locating an object in a noisy imageis below �. Every image resulting from the average of a di�erent number frames isa problem element. If the cost of processing that information is not considered, theoverall cost will be equal to ci and proportional to the number of averaged frames.Among the number of image frames which have to be averaged, N corresponds tothe worst-case speci�cation error. A greater number of averages will decrease theerror probability, while a smaller number will push the corresponding approximatedproblem solution to the subset of G with measure �, for which R(�) < Rd.Tasks implemented by Intelligent Robotic Systems may generally be decomposedon primitive events. Among these the most typical events are perhaps Move Robot,Locate Object, Plan Path, Grasp Object. Algorithms capable of solving these problemsbelong to the areas of Motion Control, Computer Vision, Trajectory Generation andCompliant Grasping. Next we will give a few examples on how the performanceof some of these algorithms may be computed under the paradigm just formulated.Emphasis is put on cost measures other than execution or computing time, to enhancethe exibility of the de�nition.2.1 Motion ControlThe dynamics of a n-degree of freedom robot manipulator can be expressed bythe following compact form of Euler-Lagrange's equations of motion:D(�)�� +NL(�; _�) = u (6)where � 2 <n is the joint angles vector, u 2 <n is the control torques vector,D(�) : <n ! <nxn is the inertia matrix, and NL(�; _�) : <nx<n ! <n is the vectorrepresenting nonlinear coupling of Coriolis, centrifugal, gravity and friction torques.Luo and Saridis (1985)[10] formulated the optimal control solution for the problem ofmaking the manipulator track a desired trajectory. They identi�ed the system state



with x(t) = (�(t) _�(t))T and suggested the performance indexJ(u) = 12eT (tf )Ge(tf) + 12 Z tft0 [eT (t)Qe(t) + _eT (t)S _e(t)]dt (7)where S = " 0 00 S0 #, G is a 2nx2n and S0 a nxn real symmetric, positive de�nitematrix, Q is a real non-negative 2nx2n matrix, e(t) = xd(t) � x(t) and xd(t) =(�d(t) _�d(t))T is the desired state vector. When tf !1, the control law reduces tou� = D(�)f��d(t) +Kp[�d(t)� �(t)] +Kv[ _�d(t)� _�(t)]g+NL(�; _�) (8)which has the same form of the Computed Torque Method, with Kp = S�10 P12 andKv = S�10 P22. P = " P11 P12P12 P22 # is the solution of a continuous algebraic Ricattiequation.If we assume complete information about the state, but measurements are noisyand cancellation of non-linear terms is not perfect, and if we further model theseuncertainties as additive gaussian noise, we will end up with a particular case of aLinear Quadratic Gaussian problem, where information about the state is complete.Given the optimal control law, the discretized closed loop model becomes:x((k + 1)Ts) = Adclx(kTs) +Bdclud(kTs) +Dv(kTs) (9)where v is a gaussian noise vector with E[v(kTs)] = 0; E[v(kTs)v(kTs)T ] = Cv,ud = (�Td _�Td ��Td )T and Ts is the sampling period.The performance index has to be modi�ed when the noise is actually added to theopen loop system, and it becomes I(u) = E[J(u)]. For this motion control problem(event move robot) we identify the algorithms cost with the optimal value of I:C = I(u�) = e(0)TPe(0) + NXk=1 tr(PDCvDT ) (10)where P is the solution of a discrete algebraic Ricatti equation (Lewis, 1986) [6], andN the number of samples in the trajectory.A lower bound for the Reliability can be obtained based on a method described byMcInroy and Saridis (1990) [11], when the speci�cations are quadratic in the trackingerror e(kTs): e(kTs)TQse(kTs) � �; k = 1; : : : ; N; Qs � 0 (11)If C�1e (kTs)�Qs(kTs) � 0;8k = 1; : : : ; N (12)then R � [�2d(�)]N (13)where �2d is a chi-square distribution with d degrees of freedom, Ce(kTs) is the covari-ance of the tracking error, N the number of points the speci�cations are concerned



with, and d the dimension of the state vector (d = 2n for a n-degree of freedommanipulator). Ce(kTs) can be determined by solving the di�erence equationCe((k + 1)Ts) = AdclCe(kTs)ATdcl +DCv(kTs)DT (14)Given Qs and �, the reliability lower bound is given by (13) for all di�erent Cewhich satisfy (12). The value of Ce depends on Adcl which in turn is a function ofthe weighting matrices Q;S;G in the performance index. Hence, for di�erent lowerbound reliabilities, di�erent Costs C will be obtained, and a performance functionbalancing the two would help selecting the best choice of Q;S;G. Such a performancefunction is introduced in section 3.2. In this example, it would balance error penaltyand cost of control (by penalizing joint accelerations) to track a given trajectory, andthe reduction of uncertainty due to measurement noise and incomplete modeling.2.2 Computer VisionThe event locate object for AUVs endowed with a stereo vision system, can betranslated by algorithms that require moving an AUV to di�erent viewpoints toimprove vision measurements. Hence, uncertainty associated to the event resultsfrom incomplete modeling of AUV dynamics, measurement noise on AUV speed andposition sensors, camera calibration process, inaccuracies in stereo matching due tobad lighting, disparity errors due to pixel resolution and bad lighting.Assuming that the camera calibration is reliable enough and spot noise is �ltered,pixel truncation error is the main cause of errors for the vision subsystems. Thepose estimate degrades with the distance of the object from the cameras due tothis irreducible (from the vision point of view) uncertainty. However McInroy andSaridis(1990)[11] use Nv di�erent viewpoints to estimate the pose of an object bystereo vision, and reduce the estimation uncertainty by averaging the Nv estimates.Therefore, one natural measure of Cost, given a desired Reliability, is Nv. Lowerbounds for the Reliability may be found in the above reference. The average over anumber of viewpoints does also reduce spot noise, thus it inuences the quality ofthe matching process. Algorithms translating this event are thus distinguished bythe viewpoints and the number of viewpoints they use.2.3 Compliant graspingA manipulator comes in contact with the environment while performing manyuseful tasks. Thus it may be required to exhibit a particular functional relationbetween the force it exerts and the displacement that results. One possible controlstrategy to achieve that is impedance control. Impedance control involves issuing aposition command and assigning a relationship between the interaction forces anddeviations from the desired position command. Thus, impedance control consists ofa position control loop with the assigned impedance determining the sti�ness of themanipulator[4].Let x0 be the nominal end-e�ector trajectory and x be the actual end-e�ector tra-jectory. Let f be the forces on the manipulator due to contact with the environment.f = K(x� x0) +B( _x� _x0) + J(�x� �x0) (15)
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fnFigure 1: Continuous Mass, Spring and Damper block diagram.Equation (15) represents a relationship between the force at the end-e�ector andmotion about a nominal trajectory. If x = x0 the force f is zero. Thus x0 can beconsidered the non-contact trajectory. The choice of the parameters K, B, and Jdepend upon the response desired from the system. If the speci�cations require thatthe actual force f is in a neighborhood � of some desired force fd, the uncertaintyabout the actual forces on the manipulator due to force sensor noise will lead to acompliant grasping not completely reliable.Suppose a manipulator has to grasp some object using impedance control. Aftergetting to a position above the object with the required tool pose and xy position, themanipulator tip (tool) must approach the object with a vertical downward movementalong the z axis. Once the object is reached, the manipulator will try to grasp it aftersome desired force in the positive z direction is obtained or the pre-established dura-tion time for the movement expires, whichever occurs �rst. In this study, complianceis assumed to work for all other components of x, and K;B and J are scalars.If the downward movement is exclusively due to a desired force fd, the closedloop manipulator-environment can be roughly modeled as in Figure 1. The environ-ment is modeled as a spring of constant Ke and errors from the manipulator positioncontroller are ignored. Ke = 0 before contact, and Ke � K after contact (verysti� object). The initial position of the manipulator is the nominal position. Mea-surement noise fn is added to the force sensor. This is a reasonable model for allsituations except immediately after contact, where a non-linear system behavior hasbeen experimentally observed[14].We may assign a zero cost to the algorithms if we are just interested on distin-guishing them by their grasping reliability only. Other possible measures for the costare the delay-time or rise-time of the deviation from the nominal position, if the con-cern is about the time taken by the movement before contact. From Figure 1, and



ignoring the force sensor noise, the closed loop transfer function is�Z(s)Fd(s) = 1Js2 + BJ s+ K0J (16)whereK 0 = K+Ke and �Z(s), Fd(s) are the Laplace Transforms of the displacementfrom the nominal trajectory along z and the desired force fd respectively.Hence the following expressions are obtained for the natural frequency wn andthe damping �: wn = qK 0=J ; � = B=(2pK 0J) (17)A reasonable approximation for the delay-time (time elapsed while the systemresponse raises from its initial value to 50% of the �nal value) when 0 < � < 1:2 isgiven by [5] td ' 1 + 0:6� + 0:15�2wn = s JK 0 + 0:3BK 0 + 0:0375B2K 0pK 0J (18)The delay-time depends on the 3 parameters J; K 0; B. Assuming a �xed J , tdincreases with B for a �xed K 0 and decreases with K 0 for a �xed B.After contact, the main concern is about the time taken by the force sensed atthe manipulator tip to settle down to the desired force fd. If speci�cations requirethe force error in the z direction, jfz�fzdj to be less than some accuracy by the timethe object should be grasped, the system settling-time together with the force sensornoise will a�ect the reliability.One de�nition of settling-time as the time the response takes to go from its initialvalue to within 5% of the �nal value leads to the following approximation:ts ' 3�wn = 6JB (19)Hence the settling-time and consequently the reliability do not depend on K 0.Again there is a tradeo� between cost and reliability: for some �xed K and J , if Bis increased, the cost (identi�ed here with the delay-time) will increase, but settling-time will decrease and the system will have more chances to attain the desired forcebefore timeout, thus increasing its reliability.The following instantiations of the de�nitions above for this particular examplesummarize and clarify the application of the formalism:� problem element f = (fz fzd)� problem solution S(f) = fzd� solution approximation U(f; �) = fz + fn, as obtained by algorithm �� algorithm � = �z, from the position accommodation controller.



3 HIERARCHICAL DECISION MAKING AND REINFORCEMENTLEARNINGWhen dealing with large complex systems such as mobile robots, common ques-tions are \how to measure performance?" and \how to improve performance". En-ergy consumption is an usual performance measure. However, it may be very di�cult,if not impossible, to relate energy consumption with the performance of the under-lying subsystems.Here, we assume that each subsystem is designed to achieve its best possible per-formance, in the sense of not failing to meet its speci�cations the maximum possiblenumber of times, without using too many resources. Assuming a �xed cost alongtime, in terms of resources consumption, if we can monitor whether a subsystem failsto meet its speci�cations each time its service is required, then it is possible to learnalong time the best subsystem among a set of pre-designed alternatives, for eachsubgoal. Overall, the best task which accomplishes the main goal, is chosen basedon the performance of the subsystems composing the task. The approach provides acost function to compare di�erent designs, which will be distinguished by the qualityof the pre-designed algorithms and the way they are composed into tasks. It alsoprovides the methodology to obtain convergence to the best possible solution givena design. Better designs will converge to smaller cost functions. Furthermore, itprovides a simple way of improving performance along time through feedback, hereconsisting of success/failure signals only.The design process follows a bottom-up approach, where the alternative primitivealgorithms capable of implementing the problem represented by an event and thedi�erent events feasible for a given command are pre-speci�ed. Subsequently, theplanning problem (not considered here) consists of composing these events to builda task, as opposed to a top-down approach, where an original goal is recursivelydecomposed until a feasible task is obtained. On the other hand, the execution processows both top-down (for decision-making) and bottom-up (for feedback). For eachcommand, a task is selected based on the current probability distribution over the setof tasks. A task, in turn, is a sequence of events. The primitive algorithms translatingeach event are selected based on the current probability distribution over the set ofalgorithms for the event. Feedback from the environment where the HGDIM operatesconsists of successes and failures of the algorithms to meet their speci�cations. Theseare used to update in a bottom-up fashion the probability distributions at the decisionlevels. Figure 2 shows a diagram of the hierarchy just described. In the �gure, LSAdenotes a Learning Stochastic Automaton (see following section).3.1 Hierarchical Decision MakingThere are 2 stages of decision in the hierarchy considered here: the interfacebetween the Organization and Coordination Levels, where commands are translatedinto tasks, and the interface between the Coordination and Execution Levels, whereprimitive events composing a task are translated into primitive algorithms. At eachstage we need a performance measure to assist the decision making process. To avoidlocal minima, there must be, at each step, a chance of exploring decisions whichare not the current best action. With this purpose, the interfaces of the IM aremodeled by a 2-stage Hierarchical Stochastic Automaton(HSA) [2, 13](see Figure 2).At each stage, and at each step, the IM chooses the task or primitive algorithm to
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apply by random decision, based on the probability distribution function over thecorresponding set. The probabilities are updated along time, based on the update ofthe cost function estimates.3.2 Cost FunctionThe coherent de�nition of reliability and complexity introduced in the previoussection allows the de�nition of a cost function combining the two, assuming that eachalgorithm is designed to meet a set of speci�cations:J = 1�R + �C (20)where R is the reliability, C the cost and � a weight factor which balances the two.In general � will be such that �C 2 [0; 1], so that the cost does not overwhelm thereliability. Examples of � are � = 1maxa2A C(a) or � = 1Pa2A C(a), where A is the set ofalgorithms capable of solving a problem.Equation (20) applies to all levels of the HGDIM, i.e., the performance of analgorithm, primitive event or task can evaluated by (20) if the cost and reliability areappropriately propagated bottom-up through the hierarchy.A task t is composed by several events ek 2 Et, where Et is the set of eventscomposing task t, occurring in sequence or in parallel. For each event ek there exista set of alternative algorithms Ak capable of solving the problem represented by theevent. The propagation equations are:Cost of event ek 2 Et is the minimum cost among all algorithms translating theevent: C(ek) �= mina2AkfC(a)gAction probability pa of algorithm a 2 Ak is the current probability of abeing applied.Reliability of event ek is the average reliability among all algorithms translatingthe event: R(ek) �= Xa2Ak paR(a)where R(a) is the reliability of algorithm a.The cost of parallel execution of events e1; e2 isC(e1==e2) �= maxe1;e22EtfC(e1); C(e2)gwhile the cost of n events e1; : : : ; en 2 Et executed in series isC(e1j : : : jen) �= 1n nXi=1C(ei):The successive application of these rules leads to the cost of a task, C(t).The parallel execution of events is not logically parallel from the reliability point ofview. In fact, all events must be successful to complete a task. Hence, the reliabilityof task t is R(t) �= Yek2EtR(ek):
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Figure 3: HLSA model of the IM decision interfaces.3.3 Hierarchical Reinforcement LearningThe a priori knowledge of the actual cost function, using for example a model-based approach, is impractical in most cases. Hence we are interested on improvingalong time an estimate of the cost function, using feedback from the environment.A recursive estimate also provides some capability of adaptation to environmentchanges, thus reducing the need to predict all environment states. A model-baseddetermination of Reliability assumes a stationary environment.At the lowest stage of the HSA, the procedure recursively estimates Reliabilityof the primitive algorithms. This estimation is subsequently propagated to the up-per stage, where its complement is added to the Cost to obtain the cost functionestimate. These estimates of J are used by Reinforcement Learning Algorithms toupdate the subjective probabilities of the di�erent algorithms capable of translating aprimitive event and the di�erent tasks capable of translating a command sent to themachine. The HSA becomes a HLSA (Hierarchical Learning Stochastic Automaton).A diagram showing the modeling of the IM translations interfaces as an HLSA isdepicted in Figure 3.



The stochastic approximation reinforcement learning scheme used here at bothstages was proposed by Fu[3] for its expediency. First, the reliability of primitivealgorithms is estimated byR̂(Nij + 1) = R̂(Nij) + [z(Nij + 1)� R̂(Nij)]=(Nij + 1) (21)which is the recursive version of the sample mean of the instantaneous performancefunction z 2 f0; 1g, 0 being a penalty (algorithm failed to meet the problem speci-�cations) and 1 a reward. Nij is the number of occurrences of environment state iand algorithm j. It is known that the sample mean estimate converges with prob-ability one (w.p. 1) to the actual value: Prflimn!1 R̂(n) = Rg = 1. From (21),Ĵ(Nij) = 1 � R̂(Nij) + �C. Next, Ĵ(Nij) is propagated bottom-up, using the propa-gation equations of subsection 3.2.To update the probability density function over the set of tasks or algorithms,Fu's stochastic approximation reinforcement learning algorithm is also used:pij(Ni + 1) = pij(Ni) + (Ni)(�ij(Ni)� pij(Ni)) (22)where Ni = Pj Nij; 0 � �ij(Ni) � 1; Pj �ij(Ni) = 1, i = 1; : : : ; d denotes environ-ment states, j = 1; : : : ; r denotes tasks or primitive algorithms. Given the estimatesof the performance function at each time instant, �ij(Ni) is de�ned by�ij(Ni) = ( 1 if Ĵ(Nij) = mink Ĵ(Nik)0 if Ĵ(Nij) 6= mink Ĵ(Nik) (23)We use (Ni) = 1Ni+1 , which satis�es the condition of Theorem 2 in [3]. Hence, theprobability density function of the action probabilities at state i will converge w.p. 1to zeros for all the actions except the optimal action m, i. e., PrflimNi!1 pim(Ni) =1g = 1, where action m for state i is such that J(Nim) = minkfJ(Nik)g, and J isthe cost function at the decision stage under consideration. Using Fu's stochastic ap-proximation reinforcement learning algorithm at both stages, the HLSA will convergew.p.1 to the optimal decisions at the two stages[7].4 APPLICATION TO AN INTELLIGENT ROBOTIC SYSTEMA manipulator mounted on an AUV has to grasp a cable whose 3D pose (position+ orientation) is roughly known. The AUV has a pair of cameras overviewing theworking space of the manipulator and used by a stereo vision system to determinemore accurately the 3D pose of objects to be grasped. The manipulator motionmay be compliant. Muddy waters may deteriorate the accuracy of vision algorithms.Hence, we consider a two-state environment: state 0 corresponds to clear waters andstate 1 to muddy waters. Only one command is available: grasp cable. The eventset E is composed by 5 events: e1 : move-manipulator, e2 : grasp-object-compliant, e3 :locate-object, e4 : plan-path, e5 : grasp-object-hard.Event e1 represents a movement along a pre-planned path. Two computed-torquecontrol algorithms are capable of translating e1 corresponding to distinct choicesof matrices Q and S in the performance index of equation (7). Both are proneto errors resulting from incomplete modeling of the manipulator dynamics. Event



speci�cations state that at the end of the movement along the path the end-e�ectorframe of the manipulator must be located within a boundary �1 of the pose set point- established by the vision system or by the initial rough estimate of the cable pose.Event e2 assumes that the manipulator is close enough to the object to be grasped.The manipulator gripper is opened, and compliantly approaches the object, until thedesired 3D force and torque components are obtained. Then, the gripper is closed andthe object grasped. Here, di�erent algorithms correspond to di�erent parameteriza-tions of the impedance controller resulting in di�erent equivalent mass-spring-damper(MSD) systems. The four algorithms translating e2 are MSD1, MSD2, MSD3, MSD4,in increasing order of sti�ness of the damping parameter. The sti�er the impedancecontroller the harder is to grasp an object if its location is not accurately knownor if the AUV motion controller does poorly (for example in the presence of strongcurrents). On the other hand, with a very accurate location estimate and a stableAUV position, one may desire compliant control, but not too underdamped, so thatgrasping is more precise. The speci�cation for e2 requires an absolute steady stateforce error below some �2 speci�cation. In the simulation, the reliability increaseswith sti�ness under environment state 0, since the vision system may provide a moreaccurate pose estimation, but decreases with sti�ness under state 1, where only therough pose estimate is available.Event e3 determines the pose of an object using stereo vision algorithms. Bothalgorithms estimate the pose by averaging the results of a number of viewpointsN0 for algorithm 0 and N1 for algorithm 1. The speci�cation for e3 requires thatthe trace of the error covariance matrix of pose estimation is inside some toleranceinterval [��3; �3]. The trace will normally increase from state 0 to state 1 for bothalgorithms. Assuming N1 > N0, and making the cost proportional to the number ofviewpoints, we simulate a better reliability and a larger cost for algorithm 1.Event e4 plans a path in cartesian space, conveniently samples that path, andusing inverse kinematics routines, maps the path into joint space of the manipulator.This path goes to a memory space shared with e1. This memory space is part of theWorld Model, if one exists. e4 needs an argument stating the destination of the path,given the current departure pose. To simplify, we assume a completely reliable andzero cost path planner. It is also implicit that the AUV has moved to a position suchthat the cable is within the workspace of the manipulator.Event e5 is a non-compliant version of e2. All compliance will be passive, i. e., aresult of the manipulator mechanical compliance (assuming a \sti�" AUV positioncontrolling system, which is not completely possible). Speci�cations are also relatedto the steady state force error, which is required to be less than �5 = �2. The reliabilityof the only algorithm used, a PI controller with no explicit compensation of dynamics,is necessarily smaller than that of any of the active compliance algorithms translatinge2, since no force control exists.Table 1 shows the reliabilities and costs assigned to the simulation models of eachprimitive algorithm (except R(e4) = 1 and C(e4) = 0). The values were assignedbased on the physical considerations above. Notice that speci�cations are made foreach event, not for each algorithm. Cost does not change with the environmentstate. During the simulation, the reliabilities of the algorithms are estimated fromthe rewards/penalties resulting from successes/failures of their application over theenvironment, respectively. The algorithm rate of successes/failures is simulated bya Monte Carlo method from the tabulated reliabilities for each pair state/algorithm,



Table 1: Event speci�cations and simulated reliabilities and costs for the translatingalgorithms.algorithm ctc1 ctc2 msd1 msd2 msd3 msd4 N0 N1 pispecs jss-errj < �1 jforce ss-errj < �2 err var < �3 jforce ss-errj < �2reliab/st0 0.85 0.95 0.80 0.85 0.90 0.95 0.85 0.95 0.65reliab/st1 0.85 0.95 0.95 0.90 0.85 0.80 0.70 0.80 0.65� cost 0.1 0.3 0.0 0.0 0.0 0.0 0.3 0.5 0.1and it is unknown to the HGDIM. Alternative tasks di�er by the inclusion or notof compliance and by the re�ning or not of the knowledge of the strut pose. Thestochastic regular grammar[1, 8] for the command is0.5 p0 S ! e3 A0.5 p1 S ! A1.0 p2 A ! e4 e1 B0.5 p3 B ! e2 C0.5 p4 B ! e5 C1.0 p5 C ! e4 e1The numbers to the left of the productions are the initial production probabilities.Equations (21) and (22) were used to recursively learn the algorithms and taskthat minimize the cost function (20). The production probabilities are updated after atask is applied. A recursive sample mean with forgetting factor[7] was used to improvethe adaptation of Reliability estimate, necessary when there is an unforeseen changein the state of the environment.Figure 4 shows an interesting example of adaptation of the IM to an environmentchange not acknowledged by the IM. The �gure shows the sample mean over 50 runs.At step 400 the environment reliabilities in table 1 are switched from state 0 (clearwater) to state 1 (muddy water). Events e2 and e3 su�er dramatic changes, but onlythe latter inuences the production sequence and thus the chosen task. The changein e2 is only internal, i. e., when the environment state changes, so does the choice ofthe best algorithm translating the event. The change in the reliability estimate of e3provokes a task change from estimating the pose using stereo to the use of the aprioriestimate, as expected, since stereo cost function is poor under bad lighting conditions.Notice that the reliability of applying production 1 is kept constant and equal to 0:5.For the initial environment states, the algorithms and productions learned the besttranslations. After the state change, the best algorithm of event e2 is not selectedwith maximum probability during the time window plotted, but its probability isslowly converging to 1.5 CONCLUSIONSIn this paper we formally stated a solution for the problem of Decision Making andLearning in Intelligent Machines, based on a cost function which includes reliability
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Figure 4: Evolution of probabilities for algorithms translating events e2 and e3 (top),and pairs of alternative productions (bottom).and cost of the involved algorithms at the 3 levels of the hierarchy proposed bySaridis. A case study was presented where the proposed formalism is applied toa robotic system requiring coordination among control, vision and path planning.Results show the convergence of the reliability estimation and reinforcement schemealgorithms at the di�erent levels of the IM hierarchy, and some degree of adaptationto changes in the state of the environment.The methodology seems promising as a design tool for hierarchical controllersof large autonomous systems. It relies on existing knowledge to build the varioussubsystems, and provides a measure to compare di�erent solutions and a mechanismto converge to the best solutions given a design.AcknowledgmentsThe �rst author was supported by the portuguese research institution JNICT,under Grant #BD/1357/91-IA. The second author was supported by the NASAGrant #NAGW-1333.References[1] K. S. Fu and T. L. Booth. Grammatical inference: Introduction and survey {part II. IEEE Transactions on Systems, Man and Cybernetics, SMC-5(4), 1975.
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