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Abstract

A general methodology for performance improvement of Intelligent Ma-
chines based on Hierarchical Reinforcement Learning is introduced. Machine
Decision Making and Learning are based on a cost function which balances
reliability and computational cost of algorithms at the three levels of the hier-
archy proposed by Saridis. Despite this particular framework, the methodology
intends to be sufficiently general to encompass different types of architectures
and applications.

Novel contributions of this work include the definition of a cost function
combining reliability and complexity, recursively improved through feedback,
a Hierarchical Reinforcement Learning and Decision Making algorithm which
uses that cost function, and a coherent joint definition of algorithm cost and
reliability.

Results of simulations show the application of the formalism to an Intelligent
Robotic System mounted on an Autonomous Underwater Vehicle.

1 INTRODUCTION

Most of the work done in the last few years towards building Hierarchical and
Goal Directed Intelligent Machines (HGDIM) [15] quite often mentions the need for
a methodology of designing the IM and a measure of how successful the final result is.
An analytic design based on measures of performance recursively improved through
feedback, assures some degree of certainty about the measurability and robustness
of that design. Previous results within the framework of the Analytic Theory of
Intelligent Machines developed by Saridis et al [17] established a general architecture
for the IM and detailed this architecture for the different levels. However, the flow of
feedback through the hierarchy with the purpose of improving the overall performance
by updating the decision making structure, has never been detailed for the complete
hierarchy.

The present work proposes a methodology for performance improvement of In-
telligent Machines based on Hierarchical Reinforcement Learning. Different options
to accomplish a goal or a subgoal may be found at all levels of the IM: the Orga-
nization Level has to decide among different tasks capable of executing a given



goal (command) sent to the machine; given the chosen task, composed by subgoals
(events), the Coordination Level has to determine, for each event, the best among
the set of primitive algorithms capable of solving each subgoal.

To compare the different alternatives at each level we further need a cost function.
The proposed procedure recursively estimates a cost function combining reliability
and computational cost of tasks, events and primitive algorithms. This approach has
the advantage of providing a cost measure applicable to several different problems,
since it is based on reliability (defined as the probability that an algorithm will meet
some set of specifications in a given state of the environment) and complexity of a
problem, i.e. minimum computational cost of the algorithm which solves the problem,
here considered not only in terms of computation time (time-complexity) but also
more general features such as memory and other resources usage (space-complexity).

When dealing with very large systems, some amount of uncertainty exists in the
model of the system to be controlled. Hence there is always uncertainty about the
result of a given command sent to the controlled system. Uncertainty is present
at all levels of a HGDIM, as defined by Saridis: at the execution level, there
is uncertainty in terms of features like rise-time or overshoot, since mathematical
models never match exactly the real controlled system. At the coordination level,
there is uncertainty in terms of the success of each of the primitive events (e. g.
strut grabbed, path planned, manipulator did not move) composing a task. At the
organization level, there is uncertainty in terms of the success of the task executed.

The different algorithms used at the FExecution Level of an Intelligent Machine
are frequently designed in order to meet a set of specifications or, without loss of
generality, in order to keep the error of a set of involved variables below some desired
accuracy € > 0. The uncertainty involved in the design of these algorithms is mostly
due to approximate or incomplete modeling, and statistical fluctuations around nom-
inal parameters. Hence it can be modeled statistically. Previous work in this area by
Mclnroy and Saridis (1990)[11] and Musto and Saridis (1993)[12] describe a model-
based approach where the most reliable from a set of different algorithms is selected
by an entropy-based technique. However, the most reliable algorithm may have a non
feasible computational cost, in terms of the time it takes to complete, the amount of
memory it uses or the number of resources (e.g. processors) required. No attempt is
made in those works to deal with this problem, with the exception of plan execution
time, modeled as a specification by Mclnroy and Saridis (1990)[11]. Also, reliability
is not learned from experience, but model-based.

Autonomous Underwater Vehicles (AUVs) are Unmanned and Untethered Mobile
Robots capable of carrying out exploratory missions at sea. The diversity of sub-
systems composing AUVs (positioning, obstacle detection and recognition, control,
path planning, communications, mission management) and the vehicles autonomy re-
quirements make them particularly well suited for applications of Intelligent Control
methodologies. The problem addressed by this particular instance of our methodol-
ogy is: given a set of alternative tasks (sequences of calls to any subsystem but the
Mission Management) capable of implementing commands coming from the Mission
Management subsystem, and a set of alternative algorithms capable of solving the
problems associated to the other subsystems, learn the best translations at each level
to improve the overall performance, defined as a balanced sum of reliability and cost.

The paper is organized as follows: after this introduction, we briefly outlook in
section 2 the joint definition of reliability and complexity of an algorithm. Section 3



explains the hierarchical decision making and learning algorithms, including the def-
inition of the cost function. Afterwards, section 4 describes the application to a
manipulator mounted on an Autonomous Underwater Vehicle, and section 5 presents
preliminary conclusions and directions of future work.

2 COMBINED DEFINITION OF RELIABILITY AND COST

In order to coherently combine the definitions of cost and reliability for a given
problem, the key is the desired accuracy or error specification ¢ for the problem, which
must be the same in both definitions. This may be done using the background of the
Theory of Information-Based Complexity[16]. To save space, we briefly summarize
our formulation next. A more detailed and rigorous mathematical treatment may be
found in [7].

We desire to compute a solution approximation U(f, ¢) of S(f), where S(f) is
called a problem solution. U(f,¢) is the result of an algorithm ¢, capable of solving
the problem, when operating over the data or problem element f. Typically, S(f) is
a vector of specifications for a given problem, for example the desired joints position
overshoot of control algorithms that can solve the move robot problem, and the prob-
lem element f is a vector with the output and set point signals used to compute the ac-
tual overshoot U(f, ¢) when algorithm ¢ is applied. To measure the distance between
S(f) and U(f,¢) we use an absolute error criterion, ||S(f) — U(f, ¢)||, where ||(.)]]
represents some norm. U(f, @) is an e-approxzimation of S(f) iff ||S(f)—U(f, ¢)|| < e.
We call ¢ the accuracy of the approximation. In a probabilistic setting[16] the speci-
fication error is required to be below ¢ except in a subset with a small measure.

The e-cost (cost for short) of a problem as defined in [9] as the lowest cost among
the available algorithms capable of approximating the problem solution to some de-
sired accuracy €. The cost includes the prices of getting information and processing
it. Depending on the model used, different features are weighted (CPU time, memory
space, number of processors).

Given some desired accuracy e, Reliability of algorithm ¢ is defined as:

R(f,¢) = Pr{||S(f) = L(f, 9)|| < €} (1)

The cost of an algorithm ¢ given a problem element f has two components:

cost(g, f) = ci(Z(f), ) + (6, Z([)) (2)

where ¢; is the cost of getting information about f needed by algorithm ¢, and ¢,
is the combinatorial cost of processing that information by algorithm ¢. The term
¢; 1s inherent to information-based complexity. Information is gathered to reduce
uncertainty. ¢, would be the only term in the absence of uncertainty.

Given € and 6, we define the cost of algorithm ¢ for the most unfavorable problem
element f whose approximated solution U(f) still belongs to the subset of G with
measure 1 — 6:

f al’g}lelfF{PI’{HS(f) — U, ol < et 2 Pr{|IS(f) = U(f,9)l| < e} > 1 -6}
cost(¢) = cost(e, f7) (3)



or, taking into account (1) and making Rq = 1 — 6, where Ry is some desired
reliability:

f1= g inf{R(6.£) 3 R(o.) = Ra) (1)
C(6) = cost(6. f°) (5)

that is, among all f € F' capable of keeping the specification error for algorithm ¢
below e with reliability at least R4, the one leading to the worst-case, i.e. the f leading
to the largest probability of error, is picked. Here and henceforth, the reliability will
be denoted as R(¢) = R(¢, [*).

The link between the definitions of reliability and cost is the assumption that
all algorithms are designed to meet an error specification € of the problem they
can solve. Given some desired reliability for the problem, the cost of obtaining that
reliability can be determined for each of the algorithms, according to the cost measure
defined (number of operations, elapsed CPU-time, memory used) for the problem.
Conversely, if the cost measure is fixed at different values for the different algorithms,
this will correspond to different reliabilities for each of them.

For example, N image frames or more need to be averaged to increase past a
certain value R4 the probability that the error of locating an object in a noisy image
is below e. Every image resulting from the average of a different number frames is
a problem element. If the cost of processing that information is not considered, the
overall cost will be equal to ¢; and proportional to the number of averaged frames.
Among the number of image frames which have to be averaged, N corresponds to
the worst-case specification error. A greater number of averages will decrease the
error probability, while a smaller number will push the corresponding approximated
problem solution to the subset of (¢ with measure ¢, for which R(¢) < Rq.

Tasks implemented by Intelligent Robotic Systems may generally be decomposed
on primitive events. Among these the most typical events are perhaps Move Robot,
Locate Object, Plan Path, Grasp Object. Algorithms capable of solving these problems
belong to the areas of Motion Control, Computer Vision, Trajectory Generation and
Compliant Grasping. Next we will give a few examples on how the performance
of some of these algorithms may be computed under the paradigm just formulated.
Emphasis is put on cost measures other than execution or computing time, to enhance
the flexibility of the definition.

2.1 Motion Control

The dynamics of a n-degree of freedom robot manipulator can be expressed by
the following compact form of Euler-Lagrange’s equations of motion:

D))+ NL(8,8) = u (6)

where § € R" is the joint angles vector, u € %" is the control torques vector,
D(8) : R* — R"™" is the inertia matrix, and NL(8,0) : R"xR" — R" is the vector
representing nonlinear coupling of Coriolis, centrifugal, gravity and friction torques.
Luo and Saridis (1985)[10] formulated the optimal control solution for the problem of
making the manipulator track a desired trajectory. They identified the system state



with z(t) = (8(¢) Q(t))T and suggested the performance index

1 Lt . .
Jw) = LT )Geltg) + 5 [T 0Qe) + (S0l M)
0 0 ) ) o )
where S = 0 S | G is a 2nx2n and Sy a nxn real symmetric, positive definite
0
matrix, Q is a real non-negative 2nx2n matrix, e(f) = z4(t) — z(t) and z4(t) =

(0,,(1)8,4(1))7 is the desired state vector. When ¢y — oo, the control law reduces to
w = DO 1)+ K l0a(t) — 0] + Kbty — 000} + NL@.B) (8

which has the same form of the Computed Torque Method, with K, = S5 Py, and

K, = 5Py P = “ji 22

] is the solution of a continuous algebraic Ricatti
equation.

If we assume complete information about the state, but measurements are noisy
and cancellation of non-linear terms is not perfect, and if we further model these
uncertainties as additive gaussian noise, we will end up with a particular case of a
Linear Quadratic Gaussian problem, where information about the state is complete.

Given the optimal control law, the discretized closed loop model becomes:
&((k + 1)Ts) — Adcl&(kTs) + Bdclﬂd(kTs) + DQ(kTs) (9)

where v is a gaussian noise vector with E[v(kT,)] = 0, E[o(kT,)v(kT,)T] = C,,

Uy = (Q(:;Q;F@ ) and T, is the sampling period.

The performance index has to be modified when the noise is actually added to the
open loop system, and it becomes [(u) = E[J(u)]. For this motion control problem
(event move robot) we identify the algorithms cost with the optimal value of I:

C = I(u*) = ¢(0)" Pe(0) + i tr(PDC, DY) (10)

k=1

where P is the solution of a discrete algebraic Ricatti equation (Lewis, 1986) [6], and
N the number of samples in the trajectory.

A lower bound for the Reliability can be obtained based on a method described by
Mclnroy and Saridis (1990) [11], when the specifications are quadratic in the tracking
error e(kT):

Q(kTs)TQSQ(kTs) < ¢, k= 17 oo 7N7 Qs >0 (11)

If
CIHKT,) = Qu(KTy) 2 0.Yk = 1,... N (12)

then
R = [V (13)

where \3 is a chi-square distribution with d degrees of freedom, C.(kT5) is the covari-
ance of the tracking error, N the number of points the specifications are concerned



with, and d the dimension of the state vector (d = 2n for a n-degree of freedom
manipulator). C.(kTs) can be determined by solving the difference equation

Co((k+D)T,) = AgqCo (KT, AL, + DO (KT,) DT (14)

Given )5 and ¢, the reliability lower bound is given by (13) for all different C.
which satisfy (12). The value of C, depends on Agy which in turn is a function of
the weighting matrices (), .5, G in the performance index. Hence, for different lower
bound reliabilities, different Costs C' will be obtained, and a performance function
balancing the two would help selecting the best choice of ), S, G. Such a performance
function is introduced in section 3.2. In this example, it would balance error penalty
and cost of control (by penalizing joint accelerations) to track a given trajectory, and
the reduction of uncertainty due to measurement noise and incomplete modeling.

2.2 Computer Vision

The event locate object for AUVs endowed with a stereo vision system, can be
translated by algorithms that require moving an AUV to different viewpoints to
improve vision measurements. Hence, uncertainty associated to the event results
from incomplete modeling of AUV dynamics, measurement noise on AUV speed and
position sensors, camera calibration process, inaccuracies in stereo matching due to
bad lighting, disparity errors due to pixel resolution and bad lighting.

Assuming that the camera calibration is reliable enough and spot noise is filtered,
pixel truncation error is the main cause of errors for the vision subsystems. The
pose estimate degrades with the distance of the object from the cameras due to
this irreducible (from the vision point of view) uncertainty. However Mclnroy and
Saridis(1990)[11] use N, different viewpoints to estimate the pose of an object by
stereo vision, and reduce the estimation uncertainty by averaging the N, estimates.
Therefore, one natural measure of Cost, given a desired Reliability, is N,. Lower
bounds for the Reliability may be found in the above reference. The average over a
number of viewpoints does also reduce spot noise, thus it influences the quality of
the matching process. Algorithms translating this event are thus distinguished by
the viewpoints and the number of viewpoints they use.

2.3 Compliant grasping

A manipulator comes in contact with the environment while performing many
useful tasks. Thus it may be required to exhibit a particular functional relation
between the force it exerts and the displacement that results. One possible control
strategy to achieve that is impedance control. Impedance control involves issuing a
position command and assigning a relationship between the interaction forces and
deviations from the desired position command. Thus, impedance control consists of
a position control loop with the assigned impedance determining the stiffness of the
manipulator[4].

Let ¢ be the nominal end-effector trajectory and  be the actual end-effector tra-
jectory. Let f be the forces on the manipulator due to contact with the environment.

[ =Kz —a0) + B(& — Zo) + J(Z — ) (15)
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Figure 1: Continuous Mass, Spring and Damper block diagram.

Equation (15) represents a relationship between the force at the end-effector and
motion about a nominal trajectory. If x = x, the force f is zero. Thus z, can be
considered the non-contact trajectory. The choice of the parameters K, B, and J
depend upon the response desired from the system. If the specifications require that
the actual force f is in a neighborhood € of some desired force f;, the uncertainty
about the actual forces on the manipulator due to force sensor noise will lead to a
compliant grasping not completely reliable.

Suppose a manipulator has to grasp some object using impedance control. After
getting to a position above the object with the required tool pose and xy position, the
manipulator tip (tool) must approach the object with a vertical downward movement
along the z axis. Once the object is reached, the manipulator will try to grasp it after
some desired force in the positive z direction is obtained or the pre-established dura-
tion time for the movement expires, whichever occurs first. In this study, compliance
is assumed to work for all other components of z, and K, B and J are scalars.

If the downward movement is exclusively due to a desired force fy, the closed
loop manipulator-environment can be roughly modeled as in Figure 1. The environ-
ment is modeled as a spring of constant A, and errors from the manipulator position
controller are ignored. K. = 0 before contact, and K. > K after contact (very
stiff object). The initial position of the manipulator is the nominal position. Mea-
surement noise f, is added to the force sensor. This is a reasonable model for all
situations except immediately after contact, where a non-linear system behavior has
been experimentally observed[14].

We may assign a zero cost to the algorithms if we are just interested on distin-
guishing them by their grasping reliability only. Other possible measures for the cost
are the delay-time or rise-time of the deviation from the nominal position, if the con-
cern is about the time taken by the movement before contact. From Figure 1, and



ignoring the force sensor noise, the closed loop transfer function is

AZ(s) _ % , (16)
Fa(s) s + ?5 + %

where K’ = K+ K. and AZ(s), Fu(s) are the Laplace Transforms of the displacement
from the nominal trajectory along z and the desired force f; respectively.
Hence the following expressions are obtained for the natural frequency w, and

the damping &:
w, =+/K'/J, {=B/(2VK'J) (17)

A reasonable approximation for the delay-time (time elapsed while the system
response raises from its initial value to 50% of the final value) when 0 < £ < 1.2 is

given by [3]
1 +0.66 4 0.15£2 J 03B 0.0375B%
tq = . ¢ e e (18)
W, K" K’ K'VK'J

The delay-time depends on the 3 parameters J, K’', B. Assuming a fixed J, t4
increases with B for a fixed K’ and decreases with K’ for a fixed B.

After contact, the main concern is about the time taken by the force sensed at
the manipulator tip to settle down to the desired force fy. If specifications require
the force error in the z direction, |f. — f.,4] to be less than some accuracy by the time
the object should be grasped, the system settling-time together with the force sensor
noise will affect the reliability.

One definition of settling-time as the time the response takes to go from its initial
value to within 5% of the final value leads to the following approximation:

ls o 5% (19)
Ew, B

Hence the settling-time and consequently the reliability do not depend on K’.
Again there is a tradeoff between cost and reliability: for some fixed K and J, it B
is increased, the cost (identified here with the delay-time) will increase, but settling-
time will decrease and the system will have more chances to attain the desired force
before timeout, thus increasing its reliability.

The following instantiations of the definitions above for this particular example
summarize and clarify the application of the formalism:

e problem element f = (f. f.4)

e problem solution S(f) = f.4

e solution approximation U(f,¢) = f. + f,, as obtained by algorithm ¢

e algorithm ¢ = Az, from the position accommodation controller.



3 HIERARCHICAL DECISION MAKING AND REINFORCEMENT
LEARNING

When dealing with large complex systems such as mobile robots, common ques-
tions are “how to measure performance?” and “how to improve performance”. En-
ergy consumption is an usual performance measure. However, it may be very difficult,
if not impossible, to relate energy consumption with the performance of the under-
lying subsystems.

Here, we assume that each subsystem is designed to achieve its best possible per-
formance, in the sense of not failing to meet its specifications the maximum possible
number of times, without using too many resources. Assuming a fixed cost along
time, in terms of resources consumption, if we can monitor whether a subsystem fails
to meet its specifications each time its service is required, then it is possible to learn
along time the best subsystem among a set of pre-designed alternatives, for each
subgoal. Overall, the best task which accomplishes the main goal, is chosen based
on the performance of the subsystems composing the task. The approach provides a
cost function to compare different designs, which will be distinguished by the quality
of the pre-designed algorithms and the way they are composed into tasks. It also
provides the methodology to obtain convergence to the best possible solution given
a design. Better designs will converge to smaller cost functions. Furthermore, it
provides a simple way of improving performance along time through feedback, here
consisting of success/failure signals only.

The design process follows a bottom-up approach, where the alternative primitive
algorithms capable of implementing the problem represented by an event and the
different events feasible for a given command are pre-specified. Subsequently, the
planning problem (not considered here) consists of composing these events to build
a task, as opposed to a top-down approach, where an original goal is recursively
decomposed until a feasible task is obtained. On the other hand, the execution process
flows both top-down (for decision-making) and bottom-up (for feedback). For each
command, a task is selected based on the current probability distribution over the set
of tasks. A task, in turn, is a sequence of events. The primitive algorithms translating
each event are selected based on the current probability distribution over the set of
algorithms for the event. Feedback from the environment where the HGDIM operates
consists of successes and failures of the algorithms to meet their specifications. These
are used to update in a bottom-up fashion the probability distributions at the decision
levels. Figure 2 shows a diagram of the hierarchy just described. In the figure, LSA
denotes a Learning Stochastic Automaton (see following section).

3.1 Hierarchical Decision Making

There are 2 stages of decision in the hierarchy considered here: the interface
between the Organization and Coordination Levels, where commands are translated
into tasks, and the interface between the Coordination and Execution Levels, where
primitive events composing a task are translated into primitive algorithms. At each
stage we need a performance measure to assist the decision making process. To avoid
local minima, there must be, at each step, a chance of exploring decisions which
are not the current best action. With this purpose, the interfaces of the IM are
modeled by a 2-stage Hierarchical Stochastic Automaton(HSA) [2, 13](see Figure 2).
At each stage, and at each step, the IM chooses the task or primitive algorithm to
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apply by random decision, based on the probability distribution function over the
corresponding set. The probabilities are updated along time, based on the update of
the cost function estimates.

3.2 Cost Function

The coherent definition of reliability and complexity introduced in the previous
section allows the definition of a cost function combining the two, assuming that each
algorithm is designed to meet a set of specifications:

J=1—-R+pC (20)

where R is the reliability, C' the cost and p a weight factor which balances the two.
In general p will be such that pC € [0,1], so that the cost does not overwhelm the

reliability. Examples of p are p = m or p= ﬁ, where A is the set of
a a€EA a

algorithms capable of solving a problem.

Equation (20) applies to all levels of the HGDIM, i.e., the performance of an
algorithm, primitive event or task can evaluated by (20) if the cost and reliability are
appropriately propagated bottom-up through the hierarchy.

A task ¢ is composed by several events ¢, € E*, where E' is the set of events
composing task ¢, occurring in sequence or in parallel. For each event ¢; there exist
a set of alternative algorithms A capable of solving the problem represented by the
event. The propagation equations are:

Cost of event ¢, € E' is the minimum cost among all algorithms translating the

event:
C(ex) 2 min {C'(a)}
ae k

Action probability p, of algorithm a € A* is the current probability of a
being applied.
Reliability of event ¢;, is the average reliability among all algorithms translating

the event: N
R(ek) = Z paR(Cl)

ac Ak

where R(a) is the reliability of algorithm a.
The cost of parallel execution of events e, ¢, is

Cler//ez) & max {C(e1),C(e2)}

e1,e2 eKt

while the cost of n events e;,...,¢, € E' executed in series is
Al
Cler]...leq) = 520(6,»).
=1

The successive application of these rules leads to the cost of a task, C(¢).
The parallel execution of events is not logically parallel from the reliability point of
view. In fact, all events must be successful to complete a task. Hence, the reliability

of task ¢ is N
R(t) == H R(ek)

ekEEt
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3.3 Hierarchical Reinforcement Learning

The a priort knowledge of the actual cost function, using for example a model-
based approach, is impractical in most cases. Hence we are interested on improving
along time an estimate of the cost function, using feedback from the environment.
A recursive estimate also provides some capability of adaptation to environment
changes, thus reducing the need to predict all environment states. A model-based
determination of Reliability assumes a stationary environment.

At the lowest stage of the HSA, the procedure recursively estimates Reliability
of the primitive algorithms. This estimation is subsequently propagated to the up-
per stage, where its complement is added to the Cost to obtain the cost function
estimate. These estimates of J are used by Reinforcement Learning Algorithms to
update the subjective probabilities of the different algorithms capable of translating a
primitive event and the different tasks capable of translating a command sent to the
machine. The HSA becomes a HLSA (Hierarchical Learning Stochastic Automaton).
A diagram showing the modeling of the IM translations interfaces as an HLSA is
depicted in Figure 3.



The stochastic approximation reinforcement learning scheme used here at both
stages was proposed by Fu[3] for its expediency. First, the reliability of primitive
algorithms is estimated by

N N

R(N;; +1) = R(Ny) + [2(Nij + 1) = R(N;j)l/(Nij + 1) (21)

which is the recursive version of the sample mean of the instantaneous performance
function z € {0,1}, 0 being a penalty (algorithm failed to meet the problem speci-
fications) and 1 a reward. N;; is the number of occurrences of environment state ¢
and algorithm j. It is known that the sample mean estimate converges with prob-
ability one (w.p. 1) to the actual value: Pr{lim, fx’(n) = R} = 1. From (21),
JA(NU) =1- ]%(Nij) + pC'. Next, JA(NU) is propagated bottom-up, using the propa-
gation equations of subsection 3.2.

To update the probability density function over the set of tasks or algorithms,
Fu’s stochastic approximation reinforcement learning algorithm is also used:

Pii(Ni + 1) = pij(Ni) + 7(No) (Ai; (Ni) = pig (Ni)) (22)
where N; = 37, Nyj, 0 < Aj(N;) <1, 325 M;(N;) = 1,2 = 1,...,d denotes environ-
ment states, j = 1,...,r denotes tasks or primitive algorithms. Given the estimates

of the performance function at each time instant, A;;(N;) is defined by

oo 1A J(N) = ming J(Nig)
Hialfl) = { 0 if J(V;;) # minz f(Nz:) (23)

We use y(N;) = ﬁ, which satisfies the condition of Theorem 2 in [3]. Hence, the

probability density function of the action probabilities at state ¢ will converge w.p. 1
to zeros for all the actions except the optimal action m, i. e., Pr{limy, —co pim(N;) =
1} = 1, where action m for state ¢ is such that J(N;,) = ming{J(Ni)}, and J is
the cost function at the decision stage under consideration. Using Fu’s stochastic ap-
proximation reinforcement learning algorithm at both stages, the HLSA will converge
w.p.1 to the optimal decisions at the two stages[7].

4 APPLICATION TO AN INTELLIGENT ROBOTIC SYSTEM

A manipulator mounted on an AUV has to grasp a cable whose 3D pose (position
+ orientation) is roughly known. The AUV has a pair of cameras overviewing the
working space of the manipulator and used by a stereo vision system to determine
more accurately the 3D pose of objects to be grasped. The manipulator motion
may be compliant. Muddy waters may deteriorate the accuracy of vision algorithms.
Hence, we consider a two-state environment: state 0 corresponds to clear waters and
state 1 to muddy waters. Only one command is available: grasp cable. The event
set F is composed by 5 events: e; : move-manipulator, e, : grasp-object-compliant, ej :
locate-object, e4 : plan-path, e5 : grasp-object-hard.

Event e; represents a movement along a pre-planned path. Two computed-torque
control algorithms are capable of translating e; corresponding to distinct choices
of matrices Q and S in the performance index of equation (7). Both are prone
to errors resulting from incomplete modeling of the manipulator dynamics. Fvent



specifications state that at the end of the movement along the path the end-effector
frame of the manipulator must be located within a boundary ¢; of the pose set point
- established by the vision system or by the initial rough estimate of the cable pose.

Event e; assumes that the manipulator is close enough to the object to be grasped.
The manipulator gripper is opened, and compliantly approaches the object, until the
desired 3D force and torque components are obtained. Then, the gripper is closed and
the object grasped. Here, different algorithms correspond to different parameteriza-
tions of the impedance controller resulting in different equivalent mass-spring-damper
(MSD) systems. The four algorithms translating e; are MSD1, MSD2, MSD3, MSD4,
in increasing order of stiffness of the damping parameter. The stlffer the 1mpedance
controller the harder is to grasp an object if its location is not accurately known
or if the AUV motion controller does poorly (for example in the presence of strong
currents). On the other hand, with a very accurate location estimate and a stable
AUV position, one may desire compliant control, but not too underdamped, so that
grasping is more precise. The specification for e; requires an absolute steady state
force error below some ¢, specification. In the simulation, the reliability increases
with stiffness under environment state 0, since the vision system may provide a more
accurate pose estimation, but decreases with stiffness under state 1, where only the
rough pose estimate is available.

Event e; determines the pose of an object using stereo vision algorithms. Both
algorithms estimate the pose by averaging the results of a number of viewpoints
Ny for algorithm 0 and N; for algorithm 1. The specification for es requires that
the trace of the error covariance matrix of pose estimation is inside some tolerance
interval [—es, €3]. The trace will normally increase from state 0 to state 1 for both
algorithms. Assuming N; > Ny, and making the cost proportional to the number of
viewpoints, we simulate a better reliability and a larger cost for algorithm 1.

Event e4 plans a path in cartesian space, conveniently samples that path, and
using inverse kinematics routines, maps the path into joint space of the manipulator.
This path goes to a memory space shared with e;. This memory space is part of the
World Model, if one exists. e, needs an argument stating the destination of the path,
given the current departure pose. To simplify, we assume a completely reliable and
zero cost path planner. It is also implicit that the AUV has moved to a position such
that the cable is within the workspace of the manipulator.

Event e5 is a non-compliant version of e;. All compliance will be passive, i. e., a
result of the manipulator mechanical compliance (assuming a “stiff” AUV position
controlling system, which is not completely possible). Specifications are also related
to the steady state force error, which is required to be less than ¢5 = ¢3. The reliability
of the only algorithm used, a PI controller with no explicit compensation of dynamics,
is necessarily smaller than that of any of the active compliance algorithms translating
€2, since no force control exists.

Table 1 shows the reliabilities and costs assigned to the simulation models of each
primitive algorithm (except R(es) = 1 and C(eq) = 0). The values were assigned
based on the physical considerations above. Notice that specifications are made for
each event, not for each algorithm. Cost does not change with the environment
state. During the simulation, the reliabilities of the algorithms are estimated from
the rewards/penalties resulting from successes/failures of their application over the
environment, respectively. The algorithm rate of successes/failures is simulated by
a Monte Carlo method from the tabulated reliabilities for each pair state/algorithm,



Table 1: Event specifications and simulated reliabilities and costs for the translating
algorithms.

|| algorithm || ctel | cte2 | msd1 | msd2 | msd3 | msd4 | Ny | Ny | pi ||
specs |ss-err| < €1 [force ss-err| < €3 err var < ez | [force ss-err| < €3
reliab/st0 || 0.85 | 0.95 | 0.80 | 0.85 | 0.90 | 0.95 | 0.85 | 0.95 0.65
reliab/st1 || 0.85 | 0.95 | 0.95 | 0.90 | 0.85 | 0.80 | 0.70 | 0.80 0.65
p cost 0.1 0.3 0.0 0.0 0.0 0.0 0.3 0.5 0.1

and 1t is unknown to the HGDIM. Alternative tasks differ by the inclusion or not
of compliance and by the refining or not of the knowledge of the strut pose. The
stochastic regular grammar[l, 8] for the command is

0.5 p0 S — e3A
05 pl S — A

1.0 p2 A — e B
05 p3 B — ¢ C
05 p4 B — e C
1.0 pb C — e1e

The numbers to the left of the productions are the initial production probabilities.

Equations (21) and (22) were used to recursively learn the algorithms and task
that minimize the cost function (20). The production probabilities are updated after a
task is applied. A recursive sample mean with forgetting factor[7] was used to improve
the adaptation of Reliability estimate, necessary when there is an unforeseen change
in the state of the environment.

Figure 4 shows an interesting example of adaptation of the IM to an environment
change not acknowledged by the IM. The figure shows the sample mean over 50 runs.
At step 400 the environment reliabilities in table 1 are switched from state 0 (clear
water) to state 1 (muddy water). Events e; and es suffer dramatic changes, but only
the latter influences the production sequence and thus the chosen task. The change
in ey is only internal, i. e., when the environment state changes, so does the choice of
the best algorithm translating the event. The change in the reliability estimate of e3
provokes a task change from estimating the pose using stereo to the use of the apriori
estimate, as expected, since stereo cost function is poor under bad lighting conditions.
Notice that the reliability of applying production 1 is kept constant and equal to 0.5.
For the initial environment states, the algorithms and productions learned the best
translations. After the state change, the best algorithm of event ey is not selected
with maximum probability during the time window plotted, but its probability is
slowly converging to 1.

5 CONCLUSIONS

In this paper we formally stated a solution for the problem of Decision Making and
Learning in Intelligent Machines, based on a cost function which includes reliability
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Figure 4: Evolution of probabilities for algorithms translating events ey and es (top),
and pairs of alternative productions (bottom).

and cost of the involved algorithms at the 3 levels of the hierarchy proposed by
Saridis. A case study was presented where the proposed formalism is applied to
a robotic system requiring coordination among control, vision and path planning.
Results show the convergence of the reliability estimation and reinforcement scheme
algorithms at the different levels of the IM hierarchy, and some degree of adaptation
to changes in the state of the environment.

The methodology seems promising as a design tool for hierarchical controllers
of large autonomous systems. It relies on existing knowledge to build the various
subsystems, and provides a measure to compare different solutions and a mechanism
to converge to the best solutions given a design.
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