
HIERARCHICAL REINFORCEMENT LEARNING AND DECISION MAKING FORINTELLIGENT MACHINESPEDRO LIMA, GEORGE SARIDISElectrical, Computer and Systems Engineering DepartmentRensselaer Polytechnic InstituteTroy, NY 12180-3590AbstractA methodology for performance improvement of In-telligent Machines based on Hierarchical Reinforce-ment Learning is introduced. Machine Decision Mak-ing and Learning are based on a cost function which in-cludes reliability and computational cost of algorithmsat the three levels of the hierarchy proposed by Saridis.Despite this particular formalization, the methodologyintends to be su�ciently general to encompass di�er-ent types of architectures and applications.Novel contributions of this work include the de�ni-tion of a cost function combining reliability and com-plexity, recursively improved through feedback, a Hier-archical Reinforcement Learning and Decision Makingalgorithm which uses that cost function, and a method-ology supported on Information-Based Complexity forjoint measure of algorithm cost and reliability.Results of simulations show the application of theformalism to Intelligent Robotic Systems.1 IntroductionMost of the work done in the last few years to-wards building Hierarchical Intelligent Machines (IM)[8] quite often mentions the need for a methodology ofdesigning the IM and a measure of how successful the�nal result is. An analytic design based on measures ofperformance recursively improved through feedback,assures some degree of certainty about the measura-bility and reliability of that design.The methodology intends to be su�ciently generalto encompass di�erent types of architectures and ap-plications. Despite this, the work described is devel-oped within the framework of the Analytic Theoryof Intelligent Machines developed by Saridis et al [9].Previous results within this framework established ageneral architecture for the IM and detailed this ar-chitecture for the di�erent levels. However, the 
ow

of feedback through the hierarchy with the purposeof improving the overall performance by updating thedecision making structure, has never been detailed forthe complete hierarchy. Furthermore, even though thegeneral goal is to decrease entropy at all levels, and re-liability has been proposed as an equivalent measure ofentropy before[5], neither cost has ever been includedin the cost function, nor has a recursive estimate ofreliability been considered.The present work proposes a methodology for per-formance improvement of Intelligent Machines basedon Hierarchical Reinforcement Learning. Di�erent op-tions to accomplish a goal or a subgoal may be foundat all levels of the IM: the Organization Level hasto decide among di�erent tasks capable of executing agiven goal (command) sent to the machine; given thechosen task, composed by subgoals (events), the Co-ordination Level has to determine, for each event,the best among the set of primitive algorithms capableof solving each subgoal. A cost function is necessary tocompare the di�erent alternatives at each level. Theproposed procedure recursively estimates a cost func-tion combining reliability and computational cost oftasks, events and primitive algorithms.This approach has the advantage of providing a costmeasure applicable to several di�erent problems, sinceit is based on reliability (de�ned as the probability thatan algorithm will meet some set of speci�cations in agiven state of the environment) and complexity of aproblem, i.e. minimum computational cost of the al-gorithm which solves the problem, here considered notonly in terms of computation time (time-complexity)but also more general features such as memory andother resources usage (space-complexity). These aresu�ciently general measures in the sense that the suc-cess of any primitive algorithm (e.g. a controller, asensor), event or task, can be measured by determin-ing how reliable the algorithm is, while imposing somecomplexity constraint(s).



The paper is organized as follows: after this in-troduction, section 2 de�nes the hierarchical, goal-oriented architecture assumed in the sequel and ex-plains the corresponding decision making and learn-ing algorithms, including the de�nition of the costfunction. Afterwards, section 3 describes the appli-cation to an Intelligent Robotic System, and section 4presents preliminary conclusions and directions of fu-ture work.2 Hierarchical Reinforcement Learn-ing and Decision MakingWhen dealing with large complex systems of dif-ferent types, such as industrial processes or mobilerobots, common questions are \how to measure per-formance?" and \how to improve the performancemeasure?". Usual performance measures are energyconsumption and �nal product quality for process in-dustries, or whether the mission was accomplished ornot for an autonomous mobile robot. However, theseare measures pertaining to each system. Furthermore,it is very di�cult, if not impossible, to relate theseperformance variations to the performance of the un-derlying subsystems, in order to learn how to improveperformance.Here, we assume that each subsystem is designedto achieve its best possible performance, in the senseof not failing to meet its speci�cations the maximumpossible number of times, without using too many re-sources. Assuming a �xed cost, in terms of resourcesconsumption, if we can monitor whether a subsystemfails to meet its speci�cations each time its service isrequired, then it is possible to learn along time thebest subsystem among a set of pre-designed alterna-tives, for each subgoal. Overall, the best task whichaccomplishes the main goal, is chosen based on theperformance of the subsystems composing the task.The approach provides a measure to compare di�er-ent designs, which will be distinguished by the qualityof the pre-designed algorithms and the way they arecomposed into tasks. It also provides the methodol-ogy to obtain convergence to the best possible solutiongiven a design. Better designs will converge to smallercost functions. Furthermore, it provides a simple wayof improving performance through feedback, here con-sisting of success/failure signals only.The design process follows a bottom-up approach,where the alternative primitive algorithms capable ofimplementing the problem represented by an eventand the di�erent events feasible for a given commandare pre-speci�ed. Subsequently, the planning problemis to compose these events to form a task, as opposed

to a top-down approach, where an original goal is re-cursively decomposed until a feasible task is obtained.On the other hand, the execution process 
ows bothtop-down (for decision-making) and bottom-up (forfeedback). For each command, a task is selected basedon the current probability distribution over the setof tasks. A task, in turn, is a sequence of events.The primitive algorithms translating each event areselected based on the current probability distributionover the set of algorithms for the event. Feedbackfrom the environment where the IM operates consistsof successes and failures of the algorithms to meet theirspeci�cations. These are used to update in a bottom-up fashion the probability distributions at the decisionlevels.2.1 The Hierarchical, Goal-Oriented In-telligent MachineIn this subsection we formally de�ne the compo-nents of the hierarchical IM.A command is received by the machine from an ex-ternal subject. This may either be an operator or asubgoal of a mission or plan. However, this commandis the goal for the IM and may be translated by morethan one task. T i = fti1; : : : ; tilig is the set of tasks ca-pable of implementing command ci; i = 1; : : : ; nc. Atask is an ordered sequence of events. E is the set of allprimitive events. jEj = ne. Ei = fei1; : : : ; emi ig � Eis the set of primitive events compatible with com-mand ci. This de�nition reduces the search spacewhen looking for events to compose a task. We fur-ther associate to command i a language Li whose setof terminal symbols is Ei. Hence, task tij is a string ofLi. Moreover, T i � Li = Ei+; jT ij = li, that is, tasktij; j = 1; : : : ; li is one of the possible strings composedby elements of Ei, excluding the null string. The sizeof T i depends on the constraints imposed by a givencommand to its compatible primitive events. Theseconstraints are expressed by a grammar Gi which gen-erates T i and whose start symbol represents commandci. Alternative tasks for a given command have di�er-ent abilities to achieve the corresponding goal. Thisis re
ected by a probability density function de�nedover the set of tasks, introduced in the next subsec-tion. Hence, T i must be a stochastic language, and Gimust be a proper stochastic grammar[1].An event is represented by a non-null string of prim-itive events. Notice that events are non-terminal sym-bols of the grammar Gi which generates T i. A prim-itive event is an event which is no further decompos-able. It represents a problem which can be solved bysome primitive algorithm. For each event there is at



least one algorithm which translates the event, e. g.,one primitive algorithm which can solve the problemrepresented by the event. Primitive events are termi-nal symbols of the grammar Gi which generates T i.Ak = fak1; : : : ; ankkg is the set of alternative primi-tive algorithms which may translate primitive eventek; k = 1; : : : ; ne.2.2 Hierarchical Decision MakingThere are 2 levels of decision in the hierarchy de-scribed in the previous subsection: the OrganizationLevel, where commands are translated into tasks, andthe Coordination Level, where primitive events com-posing a task are translated into primitive algorithms.At each level we need a performance measure to assistthe decision making process. To avoid local minima,there must be, at each step, a chance of exploring de-cisions which are not the current best action. Withthis purpose, the IM is modeled by a 2-level Hierar-chical Stochastic Automaton (HSA)[6]. At each level,and at each step, the IM chooses the task or primitivealgorithm to apply by random decision, based on theprobability distribution function over the correspond-ing set. The probabilities are updated along time,based on the update of the cost function estimates.2.3 Cost FunctionAs explained before, it is desirable that the Intelli-gent Machine chooses the task and algorithms whichminimize the Cost while maximizing the Reliabil-ity. The following cost function is proposed:Ja� = 1�Ra� + �Ca� (1)where R is the reliability, C the cost and � a weightfactor which balances the two. In general � will besuch that �C 2 [0; 1], so that the cost does not over-whelm the reliability when directing the search for theoptimal action. The same cost function is used for the2 levels of decision. Hence, a represents either a taskor a primitive algorithm, depending on the level underconsideration. The cost function is conditioned by thestate of the environment �, which is assumed to bemulti-state and stochastic.Reliability and Cost of a primitive algorithm in (1)are determined given the desired accuracy (e. g., theerror with respect to the speci�cations for the prob-lem to be solved by the algorithm) and the formalismdescribed by the authors in [3]. Rules for propagat-ing bottom-up the cost function, from algorithms toevents and from these to tasks are presented in [4].

2.4 Hierarchical Reinforcement LearningUntil now we have been talking of the actual costfunction. Such a cost function may be determined bya model-based approach [3, 5]. The optimal design, inthe sense of minimizing (1), is obtained o�-line. How-ever, this is impractical in most cases, hence we areinterested in improving along time an estimate of thecost function, using feedback from the environment.A recursive estimate also provides some capability ofadaptiveness to environment changes, thus reducingthe need to predict all environment states. A model-based determination of Reliability assumes a station-ary environment.At the lowest level of the hierarchy, the procedurerecursively estimates Reliability of the primitive algo-rithms. This estimation is subsequently propagatedto the upper levels, where it is added to the Cost toobtain the cost function estimate. These estimates ofJ are used by Reinforcement Learning Algorithms toupdate the subjective probabilities of the di�erent al-gorithms capable of translating a primitive event andthe di�erent tasks capable of translating a commandsent to the machine. The HSA becomes a HLSA (Hi-erarchical Learning Stochastic Automaton).The stochastic approximation reinforcement learn-ing scheme used here at both levels was proposed byFu[2] for its expediency. First, the reliability of prim-itive algorithms is estimated byR̂ij(Nij+1) = R̂ij(Nij)+ 1Nij + 1[zij(Nij+1)�R̂ij(Nij)](2)which, when R̂ij(0) = 0, is no more than the recursiveversion of the sample mean of the instantaneous per-formance function zij 2 f0; 1g, 0 being a penalty (al-gorithm failed to meet the problem speci�cations) and1 a reward. Nij is the number of occurrences of envi-ronment state i and algorithm j. It is known that thesample mean estimate converges with probability one(w.p. 1) to the actual value[7]: Prflimn!1 R̂ij(n) =Rijg = 1. From (2), Ĵij(Nij) = 1 � R̂ij(Nij) + �Cij.Then, Ĵij(Nij) is propagated bottom-up, to be usedin the update of task probabilities.To update the probability density function over theset of tasks or algorithms, Fu's stochastic approxima-tion reinforcement learning algorithm is used:pij(Ni + 1) = pij(Ni) + 
(Ni)(�ij(Ni) � pij(Ni + 1))(3)where Ni = Pj Nij ; 0 � �ij(Ni) � 1; Pj �ij(Ni) =1, i = 1; : : : ; d denotes environment states, j = 1; : : : ; rdenotes tasks or primitive algorithms. Given the es-timates of the performance function at each time in-



stant, �ij(Ni) comes�ij(Ni) = � 1 if Ĵij(Nij) = mink Ĵik(Nik)0 if Ĵij(Nij) 6= mink Ĵik(Nik) (4)We use 
(Ni) = 1Ni+1 , which satis�es the condition ofTheorem 2 in [2]. Hence, the probability density func-tion of the action probabilities at state i will convergew.p. 1 to zeros for all the actions except the optimalaction u�, i. e., Prflimn!1Prfu�jig = 1g = 1, whereu� for state i is de�ned as Ji�(Ni�) = minkfJik(Nik)g,and Jij is the cost function at the decision level underconsideration, for state i and algorithm j.3 Application to an Intelligent RoboticSystemA manipulator with 6 DOF has to grasp a strutwhose 3D pose (position + orientation) is roughlyknown. There is a pair of cameras in the ceiling,overviewing the working space of the manipulator andused by a stereo vision system to determine more ac-curately the 3D pose of the object. The manipula-tor motion can be position or force controlled. Thelatter is known as compliant motion. The scene iswell illuminated but from time to time lights go o�,deteriorating the accuracy of vision algorithms. Theenvironment has 2 states, one corresponding to lightson (0) and the other to lights o� (1). The only com-mand available is c =Grab-Strut. The event set E iscomposed by 5 events:� e1 : move-manipulator;� e2 : grab-object-compliant;� e3 : locate-object;� e4 : plan-path;� e5 : grab-object-hard.Event e1 represents a movement along a pre-plannedpath. Two algorithms are capable of translat-ing e1: a Proportional-Integral controller (PI) anda Proportional-Derivative controller (PD). None ofthem attempts to cancel the non-linear terms in thedynamics of the manipulator, for the sake of simplicityof implementation. Hence, both are prone to errors re-sulting from incomplete modeling of the manipulatordynamics. Event speci�cations state that at the endof the movement along the path the end-e�ector frameof the manipulatormust be located within a boundary�1 of the pose set point - established by the vision sys-tem or by the initial rough estimate of the strut pose.Given this speci�cation, the PI controller is more re-liable due to its capability of canceling steady state

error of the step response of linear systems, and con-stant disturbances, such as those due to ignoring thenonlinear dynamics when motion is slow.Event e2 assumes that the manipulator is closeenough to the object to be grasped. The manipu-lator gripper is opened, and compliantly approachesthe object, until the desired 3D force and torque com-ponents are obtained. Then, the gripper is closed andthe object grasped. Even though the same methodis used to accomplish compliant control of the ma-nipulator { Position Accommodation Control (PAC){ di�erent parameterizations of the method result indi�erent algorithms. PAC is a form of position-basedforce control where the manipulator nominal positioncan be modi�ed in such a way that it \complies" withexternal forces. The usual solution to this problem isbased on the simulation by the controller of a mechan-ical impedance of the manipulator to its environment,using mass-spring-damper (MSD) equations. The fouralgorithms translating e2 are MSD1, MSD2, MSD3,MSD4, in increasing order of sti�ness of the damp-ing parameter. The sti�er the PAC the harder is tograsp an object if its location is not accurately known.On the other hand, with a very accurate location es-timate, one may desire compliant control, but not toounderdamped, so that grasping is more precise. Thespeci�cation for e2 requires an absolute steady stateforce error below some �2 speci�cation. The reliabil-ity increases with sti�ness under environment state 0,since a more accurate pose estimation is possible, butdecreases with sti�ness under state 1.Event e3 determines the pose of an object usingstereo vision algorithms. The uncertainty on pose de-termination by stereo vision is mainly due to errors ofthe matcher when determining image points in the twocameras corresponding to the same world frame point,and pixel resolution which implies that the greater thedistance of the object from the cameras, the worstis the depth estimate. Since in this case the cameraposition is �xed, the �rst factor prevails. If severalframes are taken each time the event is invoked andthe matcher works over the resulting average frame,noise will be reduced. The same matcher with aninput frame resulting from the average of a di�erentnumber of frames (N0 and N1) corresponds to 2 dif-ferent algorithms (M0 and M1). The speci�cation fore3 requires that the estimated error statistics whendetermining the object pose are inside some toleranceinterval [��3; �3]. One such measure could be the es-timated variance of the matcher error which increasesfrom state 0 to state 1, because lighting conditionsseriously a�ect the matcher error variance. Hence, ifN0 < N1, reliability will be greater for M1, but will



decrease for both algorithms from state 0 to state 1.Also, if cost is made proportional to the number ofaveraged samples,M1 will cost more than M0 in bothstates.Event e4 plans a path in cartesian space, conve-niently samples that path, and using inverse kinemat-ics routines, maps the path into joint space of the ma-nipulator. This path goes to a memory space sharedwith e1 - which is part of the World Model, if oneexists. e4 needs an argument stating the destina-tion of the path, given the current departure pose.For a cartesian path planner, statistical 
uctuationsaround the nominal parameters of the manipulator arethe sources of uncertainty when the inverse kinemat-ics routines (based on nominal parameters) are called.Only one algorithm is considered here, based on Paul'smethod for planning a straight line trajectory in carte-sian space. Its reliability is considered 100% and thecost is 0.Event e5 is a non-compliant version of e2. All com-pliance will be passive, i. e., a result of the manip-ulator mechanical compliance. Speci�cations are alsorelated to the steady state force error, which is re-quired to be less than �5 = �2. The reliability of theonly algorithm used - a PI controller - is necessarilysmaller than that of any of the algorithms translatinge2, which provide active compliance, since no forcecontrol exists.Table 1 shows the reliabilities and costs assignedto the di�erent events for simulation purposes. No-tice that speci�cations are made for each event, notfor each algorithm. Cost does not change with the en-vironment state. The reliabilities of the algorithmsare estimated from the rewards/penalties resultingfrom successes/failures of their application over theenvironment, respectively. The algorithm rate ofsuccesses/failures is simulated by a Monte Carlomethod from the tabulated reliabilities for each pairstate/algorithm, and it is unknown to the IM. Alterna-tive tasks di�er by the inclusion or not of complianceand by the re�ning or not of the knowledge of the strutpose. The set of rules R of the stochastic regular gram-mar G = (fe1; e2; e3; e4; e5g; fS;A;B;Cg; R; P; S) forthe command is:0.5 S ! e3 A0.5 S ! A1.0 A ! e4 e1 B0.5 B ! e2 C0.5 B ! e5 C1.0 C ! e4 e1The numbers to the left of the productions are theinitial production probabilities P (0). They were as-sumed equal for both environment states.

event e1 e2algorithm pd pi msd1 msd2 msd3 msd4specs jss-errorj < �1 jforce ss-errorj < �2reliab/st0 0.85 0.95 0.80 0.85 0.90 0.95reliab/st1 0.85 0.95 0.95 0.90 0.85 0.80cost 0.1 0.1 0.2 0.2 0.2 0.2event e3 e4 e5algorithm M0 M1 Paul's pispecs error var < �3 - jforce ss-errorj < �2reliab/st0 0.85 0.95 1.00 0.65reliab/st1 0.70 0.80 1.00 0.65cost 0.3 0.5 0 0.1Table 1: Event speci�cations, translating algorithmsand their simulated reliabilities and costs.All results shown are averages over 50 sample func-tions of the corresponding stochastic process, for ex-ample action probabilities as a function of time. Theproduction probabilities are updated after a task is ap-plied. In the �gures, `iterations' means the number ofproduction probabilities updates. A recursive samplemean with forgetting factor was used to improve theadaptiveness of Reliability estimate. Notice howeverthat no proof of convergence exists for the multi-stateenvironment when using the forgetting factor.Figures 1-2 show an interesting example of adapta-tion of the IM to an environment change that it doesnot recognize. At step 400 the environment reliabil-ities in table 1 are switched from state 0 to state 1(lights o�). Both events e2 and e3 su�er dramaticchanges, but only the latter in
uences the productionsequence. The change in e2 is only internal, i. e., whenthe environment state changes, so does the choice ofthe best algorithm translating the event. The changein the reliability estimate of e3 provokes a task changefrom estimating the pose using stereo to the use of theapriori estimate, as expected, since stereo reliability ispoor under bad lighting conditions. Convergence tothe optimal actions (algorithms and productions) areobserved in state 0.An usual problem with learning methods is thenumber of iterations it takes to learn the optimal ac-tion. Notice however that since our methodology givesmuch credit to the designer of the primitive algorithmsand tasks, when the actual best action is not the oneselected, the incurred error is not greater than thedi�erence in reliability between the most and least re-liable tasks. This guarantees a safe convergence to theselection of the optimal task after some runs.4 Preliminary Conclusions and FutureWorkIn this paper we formally stated a solution for theproblem of Decision Making and Learning in Intel-



0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

ab
ilit

y

e2: MSD1 (-), MSD2 (--), MSD3 (...), MSD4 (-.)

0 200 400 600 800
0.2

0.3

0.4

0.5

0.6

iterations

1 
- R

 +
 C

e2: MSD1 (-), MSD2 (--), MSD3 (...), MSD4 (-.)

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

ab
ilit

y

e3: M0 (-), M1 (--)

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

iterations

1 
- R

 +
 C

e3: M0 (-), M1 (--)Figure 1: Evolution of probabilities and cost functionsfor algorithms translating events e2 and e3, showingadaptability to a change in the environment at step400.ligent Machines, based on a cost function which in-cludes reliability and cost of the involved algorithmsat the 3 levels of the hierarchy proposed by Saridis.A case study was presented where the proposed for-malism is applied to a robotic system requiring co-ordination among control, vision and path planning.Preliminary results from a conceptual simulation showthe convergence of the reliability estimation and rein-forcement scheme algorithms at the di�erent levels ofthe IM hierarchy, and adaptiveness to changes in stateenvironment.Future work will consider a more realistic simula-tion (including manipulator dynamics), increasing theconvergence speed of the reinforcement learning algo-rithms, and an application to process control, to showthe 
exibility of the method.AcknowledgmentsThe �rst author was supported by the por-tuguese research institution JNICT, under Grant#BD/1357/91-IA. The second author was supportedby the NASA Center for Intelligent Robotic Sys-tems for Space Exploration (CIRSSE) under Grant#NAGW-1333.References[1] K. S. Fu and T. L. Booth. Grammatical inference:Introduction and survey { part II. IEEE Trans-actions on Systems, Man and Cybernetics, SMC-5(4), 1975.

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

ab
ilit

y

production 0 (-), production 1 (--)

0 200 400 600 800
0.3

0.4

0.5

0.6

iterations

1 
- R

 +
 C

production 0 (-), production 1 (--)

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

ab
ilit

y

production 3 (-), production 4 (--)

0 200 400 600 800
0.2

0.4

0.6

0.8

iterations

1 
- R

 +
 C

production 0 (-), production 4 (--)Figure 2: Evolution of probabilities and cost functionsfor productions 0,1,3 and 4, showing adaptability to achange in the environment at step 400.[2] K. S. Fu and Z. J. Nikoli�c. On some reinforce-ment techniques and their relation to the stochas-tic approximation. IEEE Transactions on Auto-matic Control, AC-11(2):756{758, 1966.[3] P. U. Lima and G. N. Saridis. Measuring Com-plexity of Intelligent Machines. In Proceedings of1993 IEEE Int. Conf. Robotics and Automat., may1993.[4] P. U. Lima and G. N. Saridis. Performance im-provement of Autonomous Underwater Vehiclesbased on hierachical reinforcement learning. InProceedings of 1st ISR Workshop on AutonomousUnderwater Vehicles. Kluwer, 1995.[5] J. E. McInroy and G. N. Saridis. Entropy searchesfor robotic reliability assessment. In Proceedingsof 1993 IEEE Int. Conf. Robotic Automat., May1993.[6] K. S. Narendra andM. A. L. Thathachar. LearningAutomata - an Introduction. Prentice Hall, 1989.[7] A. Papoulis. Probability, Random Variables andStochastic Processes. NY:McGraw-Hill, 1965.[8] Technical Committee on Intelligent Control. Re-port of task force on Intelligent Control, IEEEControl Systems Society. IEEE Control SystemsMagazine, 14(3), June 1994. P. Antsaklis, editor.[9] K. P. Valavanis and G. N. Saridis. IntelligentRobotic Systems. Kluwer Publishers, 1992.


