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Abstract

A methodology for performance improvement of In-
telligent Machines based on Hierarchical Reinforce-
ment Learning is introduced. Machine Decision Mak-
g and Learning are based on a cost function which in-
cludes reliability and computational cost of algorithms
at the three levels of the hierarchy proposed by Saridis.
Despite this particular formalization, the methodology
intends to be sufficiently general to encompass differ-
ent types of architectures and applications.

Nowel contributions of this work include the defini-
tion of a cost function combining reliability and com-
plexity, recursively improved through feedback, a Hier-
archical Reinforcement Learning and Decision Making
algorithm which uses that cost function, and a method-
ology supported on Information-Based Complexity for
joint measure of algorithm cost and reliability.

Results of simulations show the application of the
formalism to Intelligent Robotic Systems.

1 Introduction

Most of the work done in the last few years to-
wards building Hierarchical Intelligent Machines (IM)
[8] quite often mentions the need for a methodology of
designing the IM and a measure of how successful the
final result is. An analytic design based on measures of
performance recursively improved through feedback,
assures some degree of certainty about the measura-
bility and reliability of that design.

The methodology intends to be sufficiently general
to encompass different types of architectures and ap-
plications. Despite this, the work described 1s devel-
oped within the framework of the Analytic Theory
of Intelligent Machines developed by Saridis et al [9].
Previous results within this framework established a
general architecture for the IM and detailed this ar-
chitecture for the different levels. However, the flow

of feedback through the hierarchy with the purpose
of improving the overall performance by updating the
decision making structure, has never been detailed for
the complete hierarchy. Furthermore, even though the
general goal 1s to decrease entropy at all levels, and re-
liability has been proposed as an equivalent measure of
entropy before[5], neither cost has ever been included
in the cost function, nor has a recursive estimate of
reliability been considered.

The present work proposes a methodology for per-
formance improvement of Intelligent Machines based
on Hierarchical Reinforcement Learning. Different op-
tions to accomplish a goal or a subgoal may be found
at all levels of the IM: the Organization Level has
to decide among different tasks capable of executing a
given goal (command) sent to the machine; given the
chosen task, composed by subgoals (events), the Co-
ordination Level has to determine, for each event,
the best among the set of primitive algorithms capable
of solving each subgoal. A cost function is necessary to
compare the different alternatives at each level. The
proposed procedure recursively estimates a cost func-
tion combining reliability and computational cost of
tasks, events and primitive algorithms.

This approach has the advantage of providing a cost
measure applicable to several different problems, since
it is based on reliability (defined as the probability that
an algorithm will meet some set of specifications in a
given state of the environment) and complexity of a
problem, i.e. minimum computational cost of the al-
gorithm which solves the problem, here considered not
only in terms of computation time (time-complexity)
but also more general features such as memory and
other resources usage (space-complexity). These are
sufficiently general measures in the sense that the suc-
cess of any primitive algorithm (e.g. a controller, a
sensor), event or task, can be measured by determin-
ing how reliable the algorithm is; while imposing some
complexity constraint(s).



The paper is organized as follows: after this in-
troduction, section 2 defines the hierarchical, goal-
oriented architecture assumed in the sequel and ex-
plains the corresponding decision making and learn-
ing algorithms, including the definition of the cost
function. Afterwards, section 3 describes the appli-
cation to an Intelligent Robotic System, and section 4
presents preliminary conclusions and directions of fu-
ture work.

2 Hierarchical Reinforcement Learn-
ing and Decision Making

When dealing with large complex systems of dif-
ferent types, such as industrial processes or mobile
robots, common questions are “how to measure per-
formance?” and “how to improve the performance
measure?”’. Usual performance measures are energy
consumption and final product quality for process in-
dustries, or whether the mission was accomplished or
not for an autonomous mobile robot. However, these
are measures pertaining to each system. Furthermore,
it 1s very difficult, if not impossible, to relate these
performance variations to the performance of the un-
derlying subsystems, in order to learn how to improve
performance.

Here, we assume that each subsystem is designed
to achieve its best possible performance, in the sense
of not failing to meet its specifications the maximum
possible number of times, without using too many re-
sources. Assuming a fixed cost, in terms of resources
consumption, if we can monitor whether a subsystem
fails to meet its specifications each time its service is
required, then it is possible to learn along time the
best subsystem among a set of pre-designed alterna-
tives, for each subgoal. Overall, the best task which
accomplishes the main goal, 1s chosen based on the
performance of the subsystems composing the task.
The approach provides a measure to compare differ-
ent designs, which will be distinguished by the quality
of the pre-designed algorithms and the way they are
composed into tasks. It also provides the methodol-
ogy to obtain convergence to the best possible solution
given a design. Better designs will converge to smaller
cost functions. Furthermore, 1t provides a simple way
of improving performance through feedback, here con-
sisting of success/failure signals only.

The design process follows a bottom-up approach,
where the alternative primitive algorithms capable of
implementing the problem represented by an event
and the different events feasible for a given command
are pre-specified. Subsequently, the planning problem
is to compose these events to form a task, as opposed

to a top-down approach, where an original goal is re-
cursively decomposed until a feasible task is obtained.

On the other hand, the execution process flows both
top-down (for decision-making) and bottom-up (for
feedback). For each command, a task is selected based
on the current probability distribution over the set
of tasks. A task, in turn, is a sequence of events.
The primitive algorithms translating each event are
selected based on the current probability distribution
over the set of algorithms for the event. Feedback
from the environment where the IM operates consists
of successes and failures of the algorithms to meet their
specifications. These are used to update in a bottom-
up fashion the probability distributions at the decision
levels.

2.1 The Hierarchical, Goal-Oriented In-
telligent Machine

In this subsection we formally define the compo-
nents of the hierarchical IM.

A command is received by the machine from an ex-
ternal subject. This may either be an operator or a
subgoal of a mission or plan. However, this command
is the goal for the IM and may be translated by more
than one task. T* = {t{,... 1] } is the set of tasks ca-
pable of implementing command ¢;, t = 1,...,nc. A
taskis an ordered sequence of events. E isthe set of all
primitive events. |E| =ne. E' = {e}, ...  en, } CE
is the set of primitive events compatible with com-
mand ¢;. This definition reduces the search space
when looking for events to compose a task. We fur-
ther associate to command ¢ a language L; whose set
of terminal symbols is E*. Hence, task t; is a string of
L;. Moreover, T C L; = Ei+, |T%| = I;, that is, task
t;, j=1,...,1; 1s one of the possible strings composed
by elements of £?, excluding the null string. The size
of T% depends on the constraints imposed by a given
command to its compatible primitive events. These
constraints are expressed by a grammar G; which gen-
erates 7% and whose start symbol represents command
¢;. Alternative tasks for a given command have differ-
ent abilities to achieve the corresponding goal. This
is reflected by a probability density function defined
over the set of tasks, introduced in the next subsec-
tion. Hence, 7% must be a stochastic language, and G;
must be a proper stochastic grammar{l].

An event is represented by a non-null string of prim-
itive events. Notice that events are non-terminal sym-
bols of the grammar ; which generates 7%. A prim-
itive event is an event which is no further decompos-
able. It represents a problem which can be solved by
some primitive algorithm. For each event there is at



least one algorithm which translates the event, e. g.,
one primitive algorithm which can solve the problem
represented by the event. Primitive events are termi-
nal symbols of the grammar (; which generates T°.
AP = Lak ... a,,*} is the set of alternative primi-
twe algorithms which may translate primitive event
er, k=1,..., ne.

2.2 Hierarchical Decision Making

There are 2 levels of decision in the hierarchy de-
scribed in the previous subsection: the Organization
Level, where commands are translated into tasks, and
the Coordination Level, where primitive events com-
posing a task are translated into primitive algorithms.
At each level we need a performance measure to assist
the decision making process. To avoid local minima,
there must be, at each step, a chance of exploring de-
cisions which are not the current best action. With
this purpose, the IM is modeled by a 2-level Hierar-
chical Stochastic Automaton (HSA)[6]. At each level,
and at each step, the IM chooses the task or primitive
algorithm to apply by random decision, based on the
probability distribution function over the correspond-
ing set. The probabilities are updated along time,
based on the update of the cost function estimates.

2.3 Cost Function

As explained before, it is desirable that the Intelli-
gent Machine chooses the task and algorithms which
minimize the Cost while maximizing the Reliabil-
ity. The following cost function is proposed:

Jao- = 1_Rao'+pca0' (1)

where R is the reliability, C' the cost and p a weight
factor which balances the two. In general p will be
such that pC' € [0, 1], so that the cost does not over-
whelm the reliability when directing the search for the
optimal action. The same cost function is used for the
2 levels of decision. Hence, a represents either a task
or a primitive algorithm, depending on the level under
consideration. The cost function is conditioned by the
state of the environment o, which is assumed to be
multi-state and stochastic.

Reliability and Cost of a primitive algorithm in (1)
are determined given the desired accuracy (e. g., the
error with respect to the specifications for the prob-
lem to be solved by the algorithm) and the formalism
described by the authors in [3]. Rules for propagat-
ing bottom-up the cost function, from algorithms to
events and from these to tasks are presented in [4].

2.4 Hierarchical Reinforcement Learning

Until now we have been talking of the actual cost
function. Such a cost function may be determined by
a model-based approach [3, 5]. The optimal design, in
the sense of minimizing (1), is obtained off-line. How-
ever, this is impractical in most cases, hence we are
interested in improving along time an estimate of the
cost function, using feedback from the environment.
A recursive estimate also provides some capability of
adaptiveness to environment changes, thus reducing
the need to predict all environment states. A model-
based determination of Reliability assumes a station-
ary environment.

At the lowest level of the hierarchy, the procedure
recursively estimates Reliability of the primitive algo-
rithms. This estimation i1s subsequently propagated
to the upper levels, where it 1s added to the Cost to
obtain the cost function estimate. These estimates of
J are used by Reinforcement Learning Algorithms to
update the subjective probabilities of the different al-
gorithms capable of translating a primitive event and
the different tasks capable of translating a command
sent to the machine. The HSA becomes a HLSA (Hi-
erarchical Learning Stochastic Automaton).

The stochastic approximation reinforcement learn-
ing scheme used here at both levels was proposed by
Fu[2] for its expediency. First, the reliability of prim-
itive algorithms is estimated by

Rij(Nij+1) = Rij(NZ»]»)+ﬁ[zij(Nij+1)—Rij(Ni»)]
i

A (2)
which, when R;;(0) = 0, is no more than the recursive
version of the sample mean of the instantaneous per-
formance function z;; € {0, 1}, 0 being a penalty (al-
gorithm failed to meet the problem specifications) and
1 a reward. N;; is the number of occurrences of envi-
ronment state ¢ and algorithm j. It is known that the
sample mean estimate converges with probability one

(w.p. 1) to the actual value[7]: Pr{lim, .., R;j(n) =
Rij} = 1. From (2), J;](NZ]) =1- R”(N”) + pCZ']'.
Then, fij(Nij) is propagated bottom-up, to be used
in the update of task probabilities.

To update the probability density function over the
set of tasks or algorithms, Fu’s stochastic approxima-
tion reinforcement learning algorithm is used:

pij (Ni + 1) = pij (Ni) + 7(Ni)(Xi; (Ni) — pij (Ni + 1()))

3
where Nz' = E]» Nij, 0 S /\Z](NZ) S 1, E]» /\Z](NZ) =
1,2 =1,...,ddenotes environment states, j = 1,...,r
denotes tasks or primitive algorithms. Given the es-
timates of the performance function at each time in-



stant, A;;(N;) comes
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We use y(N;) = ﬁ, which satisfies the condition of
Theorem 2 in [2]. Hence, the probability density func-
tion of the action probabilities at state ¢ will converge
w.p. 1 to zeros for all the actions except the optimal
action u*, 1. e., Pr{lim, o Pr{u*|i} = 1} = 1, where
u* for state ¢ is defined as J;.(N;.) = ming{J;x(Nix) },
and J;; is the cost function at the decision level under
consideration, for state ¢ and algorithm j.

3 Application to an Intelligent Robotic
System

A manipulator with 6 DOF has to grasp a strut
whose 3D pose (position + orientation) is roughly
known. There is a pair of cameras in the ceiling,
overviewing the working space of the manipulator and
used by a stereo vision system to determine more ac-
curately the 3D pose of the object. The manipula-
tor motion can be position or force controlled. The
latter 1s known as compliant motion. The scene is
well illuminated but from time to time lights go off,
deteriorating the accuracy of vision algorithms. The
environment has 2 states, one corresponding to lights
on (0) and the other to lights off (1). The only com-
mand available is ¢ =Grab-Strut. The event set E' is
composed by 5 events:

e ¢1 : move-manipulator;

e ¢5 : grab-object-compliant;
e e3 : locate-object;

e ¢4 : plan-path;

® ¢5 : grab-object-hard.

Event e; represents a movement along a pre-planned
path.  Two algorithms are capable of translat-
ing e;: a Proportional-Integral controller (PI) and
a Proportional-Derivative controller (PD). None of
them attempts to cancel the non-linear terms in the
dynamics of the manipulator, for the sake of simplicity
of implementation. Hence, both are prone to errors re-
sulting from incomplete modeling of the manipulator
dynamics. Event specifications state that at the end
of the movement along the path the end-effector frame
of the manipulator must be located within a boundary
€1 of the pose set point - established by the vision sys-
tem or by the initial rough estimate of the strut pose.
Given this specification, the PI controller is more re-
liable due to its capability of canceling steady state

error of the step response of linear systems, and con-
stant disturbances, such as those due to ignoring the
nonlinear dynamics when motion is slow.

Event e; assumes that the manipulator is close
enough to the object to be grasped. The manipu-
lator gripper is opened, and compliantly approaches
the object, until the desired 3D force and torque com-
ponents are obtained. Then, the gripper is closed and
the object grasped. Even though the same method
is used to accomplish compliant control of the ma-
nipulator — Position Accommodation Control (PAC)
— different parameterizations of the method result in
different algorithms. PAC is a form of position-based
force control where the manipulator nominal position
can be modified in such a way that it “complies” with
external forces. The usual solution to this problem is
based on the simulation by the controller of a mechan-
ical impedance of the manipulator to its environment,
using mass-spring-damper (MSD) equations. The four
algorithms translating es are MSD1, MSD2, MSD3,
MSD4, in increasing order of stiffness of the damp-
ing parameter. The stiffer the PAC the harder is to
grasp an object if its location is not accurately known.
On the other hand, with a very accurate location es-
timate, one may desire compliant control, but not too
underdamped, so that grasping is more precise. The
specification for ey requires an absolute steady state
force error below some €5 specification. The reliabil-
ity increases with stiffness under environment state 0,
since a more accurate pose estimation is possible, but
decreases with stiffness under state 1.

Event es determines the pose of an object using
stereo vision algorithms. The uncertainty on pose de-
termination by stereo vision is mainly due to errors of
the matcher when determining image points in the two
cameras corresponding to the same world frame point,
and pixel resolution which implies that the greater the
distance of the object from the cameras, the worst
is the depth estimate. Since in this case the camera
position is fixed, the first factor prevails. If several
frames are taken each time the event is invoked and
the matcher works over the resulting average frame,
noise will be reduced. The same matcher with an
input frame resulting from the average of a different
number of frames (Ny and Nj) corresponds to 2 dif-
ferent algorithms (Mg and M;). The specification for
ez requires that the estimated error statistics when
determining the object pose are inside some tolerance
interval [—eg, €3]. One such measure could be the es-
timated variance of the matcher error which increases
from state 0 to state 1, because lighting conditions
seriously affect the matcher error variance. Hence, if
Ny < Ny, reliability will be greater for M7, but will



decrease for both algorithms from state 0 to state 1.
Also, if cost i1s made proportional to the number of
averaged samples, M7 will cost more than My in both
states.

Event e4 plans a path in cartesian space, conve-
niently samples that path, and using inverse kinemat-
ics routines, maps the path into joint space of the ma-
nipulator. This path goes to a memory space shared
with e; - which is part of the World Model, if one
exists. e4 needs an argument stating the destina-
tion of the path, given the current departure pose.
For a cartesian path planner, statistical fluctuations
around the nominal parameters of the manipulator are
the sources of uncertainty when the inverse kinemat-
ics routines (based on nominal parameters) are called.
Only one algorithm is considered here, based on Paul’s
method for planning a straight line trajectory in carte-
sian space. Its reliability is considered 100% and the
cost 1s 0.

Event es 1s a non-compliant version of e5. All com-
pliance will be passive, 1. e., a result of the manip-
ulator mechanical compliance. Specifications are also
related to the steady state force error, which is re-
quired to be less than e5 = e5. The reliability of the
only algorithm used - a PI controller - is necessarily
smaller than that of any of the algorithms translating
es, which provide active compliance, since no force
control exists.

Table 1 shows the reliabilities and costs assigned
to the different events for simulation purposes. No-
tice that specifications are made for each event, not
for each algorithm. Cost does not change with the en-
vironment state. The reliabilities of the algorithms
are estimated from the rewards/penalties resulting
from successes/failures of their application over the
environment, respectively. The algorithm rate of
successes/failures is simulated by a Monte Carlo
method from the tabulated reliabilities for each pair
state/algorithm, and it is unknown to the IM. Alterna-
tive tasks differ by the inclusion or not of compliance
and by the refining or not of the knowledge of the strut
pose. The set of rules R of the stochastic regular gram-
mar G = ({e1,e9,€3,€e4,e5}, {S, A4, B,C}, R, P,S) for

the command is:

05 S — esA
05 S — A

1.0 A — €4 €1 B
05 B — e C
05 B — e C
1.0 C — €4 €1

The numbers to the left of the productions are the
initial production probabilities P(0). They were as-
sumed equal for both environment states.

event e1 eg
algorithm pd | pi msdl | msd2 | msd3 | msd4
specs [ss-ertor] < <1 [force ss-error] < €
reliab/st0 0.85 0.95 0.80 0.85 0.90 0.95
reliab/st1 0.85 0.95 0.95 0.90 0.85 0.80
cost 0.1 0.1 0.2 0.2 0.2 0.2
event es ca es
algorithm My [ My Paul’s pi

specs eTroT var < g N [force ss-ertor] < eg
reliab/st0 0.85 0.95 1.00 0.65
reliab/st1 0.70 0.80 1.00 0.65

cost 0.3 0.5 0 0.1

Table 1: Event specifications, translating algorithms
and their simulated reliabilities and costs.

All results shown are averages over 50 sample func-
tions of the corresponding stochastic process, for ex-
ample action probabilities as a function of time. The
production probabilities are updated after a task is ap-
plied. In the figures, ‘iterations’ means the number of
production probabilities updates. A recursive sample
mean with forgetting factor was used to improve the
adaptiveness of Reliability estimate. Notice however
that no proof of convergence exists for the multi-state
environment when using the forgetting factor.

Figures 1-2 show an interesting example of adapta-
tion of the IM to an environment change that it does
not recognize. At step 400 the environment reliabil-
ities in table 1 are switched from state 0 to state 1
(lights off). Both events e; and ez suffer dramatic
changes, but only the latter influences the production
sequence. The change in es is only internal, i. e., when
the environment state changes, so does the choice of
the best algorithm translating the event. The change
in the reliability estimate of e3 provokes a task change
from estimating the pose using stereo to the use of the
apriori estimate, as expected, since stereo reliability is
poor under bad lighting conditions. Convergence to
the optimal actions (algorithms and productions) are
observed in state 0.

An usual problem with learning methods is the
number of iterations it takes to learn the optimal ac-
tion. Notice however that since our methodology gives
much credit to the designer of the primitive algorithms
and tasks, when the actual best action is not the one
selected, the incurred error is not greater than the
difference in reliability between the most and least re-
liable tasks. This guarantees a safe convergence to the
selection of the optimal task after some runs.

4 Preliminary Conclusions and Future
Work

In this paper we formally stated a solution for the
problem of Decision Making and Learning in Intel-
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Figure 1: Evolution of probabilities and cost functions
for algorithms translating events e, and es, showing
adaptability to a change in the environment at step

400.

ligent Machines, based on a cost function which in-
cludes reliability and cost of the involved algorithms
at the 3 levels of the hierarchy proposed by Saridis.
A case study was presented where the proposed for-
malism is applied to a robotic system requiring co-
ordination among control, vision and path planning.
Preliminary results from a conceptual simulation show
the convergence of the reliability estimation and rein-
forcement scheme algorithms at the different levels of
the IM hierarchy, and adaptiveness to changes in state
environment.

Future work will consider a more realistic simula-
tion (including manipulator dynamics), increasing the
convergence speed of the reinforcement learning algo-
rithms, and an application to process control, to show
the flexibility of the method.
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