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ABSTRACT

Most of the work done in the last few years by several researchers towards building
Autonomous Intelligent Controllers quite often mentions the need for a methodology
of design and a measure of how successful the final result is.

A new design methodology is introduced in this thesis for improvement of per-
formance of Intelligent Controllers developed by the Analytic Theory of Intelligent
Machines proposed by Saridis. The translation interfaces of a 3-level Hierarchical
Goal-Directed Intelligent Machine (HGDIM) are modeled by a 2-stage Hierarchical
Learning Stochastic Automaton (HLSA). The HLSA is an original extension of the
Generalized Learning Stochastic Automaton (LSA) proposed by K. S. Fu and his
associates. The decision probabilities at the two stages are recursively updated from
the success and failure signals received by the bottom stage whenever a primitive
algorithm of the HGDIM is applied to the environment where the machine oper-
ates. Under this learning scheme, the probability of selecting the optimal tasks and
primitive algorithms is proven to converge to 1 with probability 1. An optimal ac-
tion (task or primitive algorithm) is defined as the action which minimizes a cost
function recursively updated through feedback. This cost function of an action has
two terms: one is the cost of applying the action, and the other is the complement
of the reliability of the action.

Other novel contributions of this work include a coherent analytical measure
of algorithm cost and reliability, a new measure of performance for HGDIMs, and
an original Hierarchical Reinforcement Learning Scheme for HLSAs, based on the
bottom-up propagation of the cost function.

Results of simulations show the application of the methodologies to the Oper-

ations Management of a Glass Furnace, and Intelligent Robotic Systems.



CHAPTER 1

Introduction

The evolution of Control theory and applications in the past 60 years points towards
increasingly complex systems. Conventional control design techniques assume the
existence of mathematical models that capture the dynamical behavior of the sys-
tems to be controlled. The evolution from input-output to state-space models and
from fixed feedback controllers to adaptive and robust controllers, capable of deal-
ing with temporal changes and uncertainty about system parameters, corresponds
to an increasing complexity of the control design process, motivated by an increas-
ing complexity of design specifications and system models. As the mathematical
models become more involved, so does the number of simplifying assumptions, to
keep the model tractable. This may lead to control design strategies appropriate
to the models, but inappropriate to the real systems they model, since one hardly
corresponds to the other.

Since the late 60s, various strategies were proposed to address the control
of complex systems. K. S. Fu[l7] was probably the first to write about Learning
Control Systems and to coin as Intelligent Control Systems those systems of interdis-
ciplinary nature, in the intersection of Artificial Intelligence and Automatic Control.
An increasing number of other researchers have developed applications and theory
in the new discipline by introducing new ideas such as neural control[3, 25, 57], fuzzy
control[94, 28, 35], hybrid control[77] or hierarchical control[3, 88]. Intelligent Con-
trol techniques particularly qualify for applications to Robotics and Process Control,
due to the need to coordinate a diverse and large number of sensors and actuators.
They differ from “conventional” techniques by aiming to attain higher degrees of

autonomy, thus dealing with higher uncertainty. To accomplish this, Intelligent



Controllers need to adapt to unexpected situations, and learn how to solve prob-
lems associated in the past only with human decisions. In doing so, they attempt
to emulate mental faculties which are believed to be important attributes of human
intelligence. The name [Intelligent Control comes from this attempt.

This thesis introduces a design methodology for Intelligent Controllers based
on the Analytic Theory of Intelligent Machines developed by Saridis[69]. The
methodology relies on the existing knowledge about designing the different sub-
systems composing an Intelligent Machine. Its goal is to provide a measure of
performance applicable to any of the subsystems, and use that measure to learn
on-line the best among the set of pre-designed alternatives, given a state of the
environment where the machine operates. Different designs can be compared using

this novel approach.

1.1 Motivation

Most of the work done in the last few years towards building Intelligent
Controllers[77, 72, 3, 53, 10] quite often mentions the need for a methodology to de-
sign an Intelligent Machine (IM) and a measure of how successful the final result is.
An analytic design based on measures of performance recursively improved through
feedback assures some degree of certainty about the measurability, repeatability and
verifiability of that design. This point of view also emphasizes an approach based
on Control Systems Theory, even though the whole design is based on other multi-
disciplinary contributions, such as Artificial Intelligence and Operations Research.

The architecture for an IM proposed by Saridis is based on a 3-level hierarchy,
where more abstract actions are taken at the top Organization Level and more
precise actions are taken at the bottom Execution Level. Given an external com-
mand (goal), the Organization Level is responsible for sequencing the pre-defined

events into a task. The Execution Level executes a detailed translation of the task,



generated by the intermediate Coordination Level. This level further decomposes
the events composing the task, and distributes them by a number of coordinators
specialized in specific sub-tasks, such as vision, motion or path planning in an In-
telligent Robotic System. The coordinators invoke the Execution Level primitive
algorithms to precisely execute the task.

When dealing with very large systems, there is always uncertainty about the
behavior of the system to be controlled. Hence there is always uncertainty about the
result of a given command sent to the controlled system. Uncertainty is experienced

by all levels of the Intelligent Machine:

e at the execution level, there is uncertainty in terms of overshoots, posi-
tion and velocity errors, confidence interval of an object pose estimated by
a computer vision algorithm, degree of accuracy to which a planned path or
trajectory follows a given set of knot points, and other similar features, since
mathematical models never match exactly the actual controlled system. Imple-
mented by primitive algorithms (e.g. controllers, image processing), feedback
reduces the uncertainty about the above mentioned features thus reducing the

entropy of the system, as suggested by Zames[95].

e at the coordination level, there is uncertainty in terms of the success of each
of the primitive events composing a task. In an Intelligent Robotic System,
primitive events typical of this level are grasp strut, plan path, move manipu-
lator, locate object. A primitive event represents a problem whose solution is

implemented by a primitive algorithm.

e at the organization level, there is uncertainty in terms of the success of the

task planned.

Thus, an Intelligent Machine should use the environment feedback to reduce

along time the uncertainty about the success of its actions and the uncertainty about



which tasks and primitive algorithms to select. Globally, performance is related to
uncertainty. Reducing the uncertainty improves the performance. However, the cost
of reducing uncertainty must also be taken into account.

The boundary between the environment where an IM operates and the IM, is
frequently application-dependent. However, the general rule is that the IM includes
all algorithms necessary to cope with some goal. The environment is the system
controlled by the machine, including algorithms which inspect the environment state
and the success of actions of the machine, and hardware which physically belongs
to the wide-sense IM. As an example, consider an Intelligent Mobile Robot moving
inside a room. The room and its objects, and the motors, wheels, cameras and
sensors of the Mobile Robot are part of the environment. The planning, learning,
decision making and execution algorithms (e. g. motion controllers, vision and
sensor fusion algorithms, path planners) are part of the IM.

This thesis proposes a methodology for performance improvement of Hierarchi-
cal Goal-Directed Intelligent Machines (HGDIMs) based on Hierarchical Reinforce-
ment Learning. The translation interfaces of the 3-level architecture proposed by
Saridis and Valavanis[88] are modeled by a 2-stage Hierarchical Learning Stochastic
Automaton (HLSA), as sketched in Figure 1.1. The HLSA includes a Hierarchical
Reinforcement Learning Scheme which recursively updates the decision probabili-
ties at the two stages from success and failure signals received by the bottom level
whenever an action of the HGDIM is applied to the environment where the machine
operates. Under this learning scheme, the probability of selecting the best tasks and
primitive algorithms is proven to converge to 1 with probability 1 (w.p.1).

This work is an extension of the framework of the Analytic Theory of Intel-
ligent Machines developed by Saridis et al[71, 68, 54, 88, 93, 50, 37]. The main

contribution of this thesis to the Analytic Theory of Intelligent Machines is the use
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of feedback from the environment to update a specific cost function which evalu-
ates the performance of all three levels of the hierarchy. This evaluation guides
the update of the decision making structure. The cost function has two terms:
computational cost and reliability, which are defined coherently.

Other novel contributions of this work include an original hierarchical exten-
sion of Fu’s Generalized LSA, the corresponding Hierarchical Reinforcement Learn-
ing Scheme and the original modeling of a HGDIM by a HLSA.

Previous results, referenced in chapter 2, established a general architecture
for Saridis’ IM and detailed this architecture for the different levels. However, the
flow of feedback through the hierarchy with the purpose of improving the overall
performance by updating the decision making structure, has never been detailed for
the complete hierarchy. Furthermore, even though the general goal is to decrease
entropy at all levels, and reliability has been proposed as an equivalent measure of
entropy[50], neither has computational cost ever been included in the cost function,
nor has a recursive estimate of reliability been considered.

To include those features, a coherent measure of computational cost and re-
liability of an algorithm will be introduced before the deployment of the learning
and decision making methodology. The two measures are later combined in a cost
function which is estimated as part of the learning algorithm. However, it can be
used independently for off-line design too, extending the methodology proposed by
Mclnroy and Saridis[49], and Musto and Saridis[55].

This approach has the advantage of providing a guideline for the solution of
several different problems, since it is based on measures of reliability of an algorithm
(defined as the probability that the algorithm will meet some set of specifications
in a given state of the environment) and computational cost of an algorithm (i.e.
the number of resources used by the algorithm to solve a problem with the required

reliability). Computational cost includes general measures such as computation



time, memory used, number of processors used or mean square error with respect
to some desired set point. These are sufficiently general measures in the sense that
the success of any primitive algorithm (e.g. a controller, a vision system) or task
can be measured by determining how reliable the algorithm or the task are, while

simultaneously imposing cost constraint(s).

1.2 Problem Statement

The objective of the IM is to accomplish a goal dictated by an external com-
mand. However, the IM operates in a complex environment that disturbs the ex-
pected results of its actions. These disturbances result from incomplete environment
modeling and unexpected events.

By assumption, the environment is modeled as a discrete-state stochastic pro-
cess. At each instant in time, the environment can be in one of several states, drawn
from a finite set. Fvery action of the IM over the environment generates some effect
to which the environment responds. In most cases, the response denotes whether the
action succeeded or failed. This response of a state of the environment to a given
action is non-deterministic. The model assumes that some probability of success
corresponds to each pair (action of HLSA, state of environment). This probability
is also unknown to the IM. The environment is non-stationary if the probability of
success of any action changes with time, and stationary otherwise.

The problem addressed by this work may thus be stated as:

A goal is dictated to o HGDIM by an external source (command). The HGDIM
operates within a stochastic environment assumed to have the following characteris-

tics:

o it has a finite number of possible states. The transitions between states may
depend on the current and/or past states, and they may be deterministic or

stochastic;



o cach state responds to an action of the IM with a success (1) or failure (0)

signal;

e it has unknown probabilities of success for each pair (action of IM, state of the

environment),

The purpose is to design a reinforcement learning scheme which make the
process of Decision Making converge to the selection w.p.1 of the optimal actions at
the two translation interfaces (Organization-to-Coordination and Coordination-to-
FExecution) of a HGDIM operating in the environment, for each of its states. Optimal
actions are those which minimize a cost function at the corresponding interface:
tasks in the top interface, primitive algorithms in the bottom interface. Defining

this cost function is also part of the problem.

1.3 Overview of Proposed Solution

In general terms, the HLSA and its Hierarchical Reinforcement Learning Sche-

me model the translation interfaces of a HGDIM as follows:

Learning: at the bottom level of the hierarchy, a cost function combining reliability
and computational cost of the primitive algorithms is estimated from the suc-
cess and failure responses of the environment to the application of one of these
algorithms. This estimate is used by a Reinforcement Learning Algorithm to
update the subjective probabilities of selecting the primitive algorithms capa-
ble of translating a primitive event at the bottom stage of the HLSA. Then,
the cost function estimate is propagated to the top stage, where it is used by
another Reinforcement Learning Algorithm to update the subjective probabili-
ties of alternative tasks (sequences of primitive events) capable of translating

a command sent to the machine.



Decision Making: Given a command, a task is selected by random decision at
the top stage, based on the current task subjective probabilities for that com-
mand. At the bottom stage each of the primitive events composing the task
is translated by a primitive algorithm selected by random decision, based on

the current subjective probabilities of primitive algorithms.

Chapter 5 will show that the translation from commands to tasks is imple-
mented by a stochastic grammar. Hence, the probabilities of selecting alternative
productions of the grammar, not the probabilities of selecting tasks, are actually

updated.

1.4 Organization and Terminology of the Thesis

The thesis is organized as follows:

Chapter 2 reviews the current literature in the areas of Architectures for Intelli-
gent Machines, Learning Stochastic Automata and Stochastic Grammars, and

Theory of Complexity;

Chapter 3 covers the basics of the theoretical background on Learning Stochastic

Automata and defines relevant terminology;

Chapter 4 introduces the cost function based on reliability and computational cost

of an algorithm. Several examples of application of the formalism are shown;

Chapter 5 introduces the new formulation of an Hierarchical Goal-Directed Intel-
ligent Machine as a Hierarchical Learning Stochastic Automaton, with special

emphasis on the feedback hierarchy. This is the main chapter of the thesis;

Chapter 6 studies the convergence rate of stochastic approximation algorithms

and methods to accelerate it.
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Chapter 7 describes two case studies based on the proposed formalism: one is
concerned with Operations Management of a Glass Melting Furnace and the

other with an Intelligent Robotic System.
Chapter 8 concludes the thesis and leaves some clues for future work.

Along the thesis, several abbreviations will be used quite often, such as:

o LSA for Learning Stochastic Automaton

e HLSA for Hierarchical LSA

o IM for Intelligent Machine

e HGDIM for Hierarchical Goal-Directed IM

o w.p.1 for With Probability One

Vectors will be underlined, such as in . Matrices will be denoted by capital
letters. The context will distinguish them from some scalars also denoted by capital
letters. Keywords will be italicized when they appear in the text for the first time

and wherever else it is relevant.

1.5 Summary

In this chapter, the problem addressed by this thesis was stated and an

overview of the proposed solution was introduced.



CHAPTER 2

Literature Review

In this chapter current and pioneer literature in the areas of Architectures for In-
telligent Machines, Learning Stochastic Automata and Stochastic Grammars, and
Theory of Complexity will be reviewed. These are the 3 research fields with major

contributions to the theory developed in the following chapters.

2.1 Architectures for Intelligent Machines

The debate on Architectures for Intelligent Machines or Architectures for Intel-
ligent Control Systems (AICS) is essentially divided today among those who propose
a Behavior-Based, non-hierarchical solution [10] and a Goal-Oriented hierarchical
architecture[3, 67]. In the the former formulation different agents compete to ini-
tially satisfy the basic needs of the machine (search for food, avoid obstacles), and
after these are accomplished, to achieve more intelligent behavior, such as coordinat-
ing a few of those agents by assigning priorities. The latter distinguishes the levels
of the hierarchy by the level of abstraction of the executed tasks, and a formulation
close to the Theory of Control Systems is used to measure performance.

This distinction between goal-oriented, hierarchical architectures and behavior
based, layered architectures, is somewhat artificial. While in the latter it is claimed
that lower-level behaviors continue, even when momentarily subsumed by higher-
level behaviors, these eventually take command in a hierarchical fashion. Similarly,
there exist parallel distinct behaviors at each level of goal-oriented hierarchies [77].

The hierarchical architecture proposed by Saridis and Stephanou [72] for Intel-
ligent Control of a prosthetic arm, analytically formulated by Saridis[70] and Saridis
and Valavanis[73] is adopted in this work.

While these works put some emphasis on the Organization Level, Graham and

11
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Saridis [23] proposed linguistic decision structures, called Linguistic Decision Sche-
mata, used at all levels of the hierarchy, for the top-down translation of commands.

Wang and Saridis [93] refined this linguistic approach by proposing the im-
plementation of the Coordination Level by a Petri Net Transducer (PNT). A PNT
is composed of an Input Tape, a Petri Net Controller and an Output Tape. The
Coordination Level is actually composed of a 2-stage hierarchy of PNTs. The top
level implements the Dispatcher whose Output Tape is the input of several other
PNTs implementing the Coordinators. The decision to fire an enabled transition of
a PNT is based on the symbol currently read by the input head of the PNT. This
symbol determines also the translation of the transition into some output symbol.
The output symbols of the Coordinator PNTs represent low level algorithms which
translate primitive events represented by the input symbols.

In Wang’s work, there was a first attempt to address the feedback problem by
updating the frequencies of success of each of the algorithms, but neither concrete
measures such as reliability and complexity were mentioned nor a bottom-up prop-
agation of such measures was envisaged. Furthermore, the entropy-based approach
measures the uncertainty of translations at the Coordination Level, but does not
take into account the uncertainty due to the reliability of the low level algorithms.

A major criticism of PNTs is that, despite the ingenious solution and the
elegant formalism, the dispatcher seems difficult to design, even for problems of
moderate complexity, since implicitly the different possible tasks coming from the
Organization Level must be anticipated.

In recent work, Beard and Saridis [8] modified Wang’s proposal in order to
overcome this problem. A Petri Net Transducer or Translator (PNT) interprets its
Input Tape as a string of some pre-defined language and translates it into a Hierar-

chical Petri Net. The macro-transitions of the top level Petri Net are translated into
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sub-Petri Nets representing the coordinators, whose transitions are in turn trans-
lated into low-level algorithms. A measure of structural cost for the alternative Petri
Nets representing a task is also introduced.

Moed and Saridis [54] proposed a Boltzmann Machine to handle the combi-
natorial explosion associated to the Planning and Decision Making processes when
different events are sequenced to form a task at the Organization Level. The conver-
gence of the search for a task given a command is achieved using a Modified Genetic
Algorithm. However, task translation is learned off-line and no update occurs after
execution of a given task. Another potential drawback is that the design of the
Boltzmann Machine, namely the required number of hidden units, is accomplished
by heuristics.

Mclnroy and Saridis [50], and Musto and Saridis [56] introduced reliability and
entropy-based criteria to choose the best algorithm among those capable of solving
some problem, given a set of specifications for the problem, under some environment
conditions. The environment conditions are implicitly assumed as stationary in both
works, even though the latter relaxes the gaussian assumption for the noise in the
former. Also, no learning of model parameters is involved. Actually, no learning at
all is considered, since the main goal is to obtain a model for off-line selection of
plans based on reliability and entropy.

The Execution Level has been implemented in CIRSSE, by utilizing a Space

Truss Construction paradigm[14].

2.2 Learning Stochastic Automata and Grammars

The literature about learning automata models is vast and not limited to
control applications. The first learning models were developed in mathematical
psychology in the 1950s. However, this section will focus only on the most relevant

works for control applications.
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Tsetlin[83] introduced the use of deterministic automata operating in random
environments to model learning. Later, Varshavskii and Vorontsova [89] introduced
the concept of Stochastic Automata with Variable Structure, so called due to the
update of the automata state probabilities along time.

Fu and his associates in the United States[20], Tsypkin and Pozniak in the
Soviet Union[85], were among the first to propose Stochastic Automata models for
Learning Control[17, 86].

The application of linear reinforcement learning to control systems was intro-
duced by Waltz and Fu[91]. A seminal paper by Nikoli¢ and Fu[60] introduced the
use of a performance function which is iteratively updated by a stochastic approxi-
mation algorithm and used by another stochastic approximation algorithm to learn
the action probabilities of a controller. This approach is not based on Stochastic
Automata, in a strict sense. McLaren[52] suggested the concept of “growing” au-
tomaton. An overview of the work of this group of researchers can be found in
[66].

Fu and Booth[18] survey methods of Stochastic Grammar inference from a
sample set of strings. The methods are generally valid for Context Free Grammars.
Special emphasis is put on learning the productions probabilities when the following
information is available: all the other grammar parameters, a sample set of strings,
and the frequency of occurrence of a string in the sample set. A Maximum Likeli-
hood Method which accomplishes this is described. The generation of alternative
grammars is also referenced. Even though this is a time consuming process, one of
the solutions described takes into account the complexity of the language generated
to decide among grammars which fit equally well the sample set. This suggests a
way of minimizing the structural cost referred in section 2.1.

Another school of research on the topic of Stochastic Automata is constituted

by Narendra, Thathachar and their associates. Surveys of their work can be found in
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[58, 59]. The latter is the most recent book on the subject, including more in-depth
approaches to nonlinear reinforcement schemes and operation in non-stationary en-
vironments.

Lakshmivarahan and Thathachar[34] proved a necessary and sufficient condi-
tion for learning automata using a general nonlinear learning scheme to be abso-
lutely expedient. The same authors[33] proposed a Bayesian technique to update
the penalty probabilities of the environment, simultaneously leading to a smaller
convergence time to the best action and providing a confidence level on the estimate
of that action.

Recent work of these authors focus on Hierarchical Learning Stochastic Au-
tomata, where the actions of an automaton at one level represent automata at the
level immediately below. The reward/penalty of the environment comes from either
a single-teacher[78, 79] or multi-teacher[5].

The relation between stochastic approximation and stochastic automata is a

subject of continuous debate. Narendra and Thathachar claim:
“It is well known that stochastic approximation methods are applicable to parame-
ter optimization problems, while the methods” (of Narendra and associates) “(...)
are concerned with cases where probability distributions over finite action sets are
updated’[59].

However, Fu and Nikoli¢ introduced a general expression which encompasses
linear reinforcement methods as a particular case of the stochastic approxima-
tion[21, 22]. These authors sought to conform original stochastic automata methods
with stochastic approximation methods with the objective of proving convergence
with probability 1 (w.p.1) of action probabilities. This convergence is not achieved
by either linear or nonlinear reinforcement schemes not based on the stochastic
approximation.

In the last few years, Barto, Sutton and their associates explored reinforcement
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learning solutions which associate these two schools [7, 74, 75, 76]. Some current
work on reactive agents[41, 47] and behavior-based agents was triggered by [7], where
the authors explore and compare the formulation of learning stochastic automata
and supervised learning pattern classification to overcome the need to store a prob-
ability vector for each state of a non-stationary (multi-state stochastic) environment
in a lookup-table. The use of this lookup-table is a memory-consuming procedure
and slows the learning rate. In their formulation, the action probability vector is
parameterized and a mapping from vectors of input features representing environ-
mental states to the parameter is constructed. However, the algorithm proposed is

limited to 2 actions, and this is the main drawback of the approach.

2.3 Theory of Complexity

The field of research on computational complexity has several branches. Most
of the work focus on Combinatorial Complexity. The early work of Kolmogorov[30]
introducing notions such as e-entropy, Complexity and combinatorial foundations of
Information Theory, has recent followers[39, 1] among Computer Science researchers.
Zames[95] introduced Kolmogorov’s e-entropy in Control Theory. Most recently
Tsitsiklis has developed work on Theory of Complexity in the context of Control
Theory[84].

The so called Information-Based Complexity Theory was introduced in the
early 1980s by Traub, Wasilkowsky and Wozniakowsky[81]. Information-Based
Complexity differs from Combinatorial Complexity since in the former informa-
tion is partial, noisy and costly, as opposed to complete, exact and free information
in the latter. The information considered here is the information contained in the
answers to questions about the problem element (see Chapter 4), not the informa-

tion content of those answers, that is, the uncertainty about their correctness. This
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distinguishes the concept of information in Information-Based Theory of Complex-
ity and the concepts of information and entropy in Shannon’s Information Theory
[80]. However, there is a link between how much information is needed to limit the

uncertainty to a specified level and Kolmogorov’s € — entropy.

2.4 Summary

This chapter reviewed the literature in the areas of Architectures for Intelligent
Machines, Learning Stochastic Automata and Stochastic Grammars, and Theory of
Complexity. The theory introduced in this thesis stands in the intersection of these

three areas.



CHAPTER 3

Theoretical Background on Learning Stochastic Automata

This chapter provides the background needed to understand the theory of Learning
Stochastic Automata used in the following chapters. Section 3.1 covers the basics of
Learning Stochastic Automata with special emphasis on their generalized version,
proposed by Fu and his associates, which uses a performance function and updates
the decision probabilities by a stochastic approximation algorithm. Section 3.2
summarizes some concepts related to stochastic grammars which will be referenced
in the sequel. Section 3.3 defines linguistically the task generation process in a
HGDIM. Even though the previous work of Valavanis and Saridis[88] is partially
followed here, the formulation has its own novelty and coherence, paving the way

for the ideas presented in chapters 4 and 5.

3.1 Learning Stochastic Automata and Stochastic Approximation

Learning Stochastic Automata(LSA) [20, 59] have been suggested as appropri-
ate solutions for the control of systems whose dynamics are completely or partially
unknown and environments with unknown stochastic descriptions[17, 66] . Their
application is particularly suited to levels where decision making is required, such
as the Coordination and Organization Levels of Saridis’ Intelligent Machine.

Some applications of LSAs are also usually associated to performance-adaptive
methods, that is methods where the controller is modified structurally or parame-
trically along time, according to the evolution of the estimate of some performance

function. This makes them even more relevant in this context.

Definition 3.1.1 A LSA is defined by the quintuple {Y,Q,U, F,G}, where Y =

{0,1} is the finite inputl set, with 1 representing a reward and 0 a penalty, () =

18
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Figure 3.1: Closed loop between LSA and environment.

{q1,--.,qs} is a finite set of internal states and U = {uy,...,us} is the output set
or action set. F'(P(n),y(n)) is called the updating or reinforcement scheme which
generates P(n + 1) from P(n) and y(n) € Y, where P = {p1,...,ps} is the set of
probabilities governing the (random) choice of state at each time instant, that is,
P = P(n). Finally, G is the output function G : @ — U. G is stochastic in the
general case, but with no loss of generality[59] it will be assumed to be represented
by an identity matriz, i.e. each action is univocally and deterministically associated

to a state.

Any LSA interacts with the external world, usually denoted as the environment
(see Figure 3.1). Every action of the LSA generates a response from the environment.
In most cases, the response denotes whether the effect produced by the action was
a success or a failure. In turn, the failure or success signal is used by the LSA to
update its internal action probabilities according to the reinforcement scheme. An
action probability is rewarded when applying the action over the environment results
in a success or penalized when a failure occurs. This method is called reinforcement
learning. These probabilities weight the random choice of the next state for the

LSA, thus determining the next action.
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In general, the response of the environment to a given action is non-determi-
nistic. The interaction model assumes that some probability of success corresponds

to each action. This probability is unknown to the LSA.

Definition 3.1.2 A stochastic environment is defined by the quintuple {U, X, Y,
H, R}, where U = {uq,...,us} is the finite input set, X = {xq,..., 24} is a finite
set of internal states and Y = {0,1} is the output set, where 1 represents a success
and 0 a failure. R s a matriz whose general element R;; is the probabilily of a

success due to the application of input j over state i:
R,’j 2 PI’{Y = 1|$,’ - X, uj € U}

R determines the rate of failures and successes for each pair (input,state). If any
of these rates change with time, the environment is non-stationary. Otherwise, the
environment is stationary. Finally, H : X" — X is the state transition function

which generates x(n+1) € X from x(n),x(n—1),...,2(n—(r—1)) € X.

The above definition of environment as a multi-state stochastic process or chain
implies a non-stationary environment in the general case, because the probability
of success depends on the current state. Only a single-state environment can be
stationary. However, such an environment may be non-stationary if the probability
of success of any of its actions continuously changes with time.

The non-stationarity of a multi-state environment may be overcome by gen-
eralizing the notion of LSA to a set of d sub-LSAs, where each sub-LSA is assigned
to a different state z; € X of the environment. This approach has two draw-
backs: it may not be feasible if the actual number of states d of the environment
is too large and it requires that the LSA is aware of the environment in which it
operates[59]. Hence, methods capable of coping with non-stationary environments
are worth studying. Analytic studies are known for specific models of non-stationary

environments, such as a Markovian Switching Environment, where H depends only
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Figure 3.2: Closed loop between generalized LSA and environment.

on the current state (r = 1 in the above definition of environment). In this particu-
lar model of a stochastic environment, the overall system automaton + environment
is equivalent to a homogeneous Markov chain, as shown in [59]. The case studies in
this thesis propose an alternative strategy to deal with non-stationary environments.

Another extension of the basic concept of LSA was proposed by Fu[20], where
the state probabilities are not rewarded or penalized directly. Instead, success and
failure signals are used to update a performance function which is later used to
update the probabilities (see Figure 3.2). There is a performance function for each
pair (action, state of the environment).

When the LSA models a Hierarchical Controller, a Hierarchical Learning Sto-
chastic Automaton (HLSA) must be used. At the bottom level of the hierarchy
several LSAs interact directly with the environment. At the levels above, the action
chosen by one of the LSAs corresponds to another LSA at the level immediately
below. This is actually an advantage in terms of learning efficiency, since the high
dimensionality of the decision space is overcome[78]. Some HLSAs were proposed

which rely on this architecture. In some examples the reinforcement signal goes
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directly to all levels (single-teacher) [78], while in others there are different rein-
forcement signals for each level (multi-teacher)[5]. Chapter 5 introduces a different
approach where reinforcement signals are propagated bottom-up.

The adaptation of the LSA to the state changes - with the consequent changes
of the penalty probabilities - depends usually on the learning scheme used. Some
schemes are capable of adaptive behavior in particular instances, such as the LRP
scheme described by Narendra and Thathachar[59] or the Linear Reinforcement
scheme of Waltz and Fu[91]. However, both schemes are not guaranteed to converge
w.p.l to the best action even if the environment is single-state.

An alternative consists of dealing with the large number of states of the en-
vironment in a hierarchical fashion. If a HLSA is considered, higher level states
of the environment can be obtained as a composition of lower level states of the
environment, thus reducing the actual number of options to explore. This subject
will be further explored in section 5.5.

The behavior of an automaton can be measured to determine if its learning
scheme leads to correct decisions after some interactions with the environment. Res-
tricting the analysis to a single-state environment, one such measure is the average

reward received by the automaton at instant n:

M(n) = ilpxn)z%j (3.1)

When all actions are chosen with equal probability, the average reward is
denoted by M, and given by:
1 5
MO - — Z R]
Clous
Only a stochastic automaton with a learning scheme such that its average

reward is greater than My can be fairly called a Learning Stochastic Automaton as

it 1s implicitly assumed in the above definition of LSA.
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A LSA is called expedient if

lim E[M(n)] > M, (3.2)
and optimal if
lim E[M(n)] = max {R;} (3.3)
n—oo 1=1,....s

Optimality implies that asymptotically the action associated with the mazimum

reward probability is chosen with probability one, that is, if R,, = max;=1, {R;},
Pr{lim p,(n)=1} =1 (3.4)

For some learning schemes it can only be proved that in all stationary single-
state random environments when n — oo, the LSA chooses with probability one
an action whose reward probability belongs to a neighborhood € of the maximum
reward probability (e-optimal LSA[58]). That is the case of the LRI (Linear Reward
Inaction) scheme described by Narendra and his associates, which always converges
to some action whose probability is one, but this action is not necessarily the opti-
mal action. Optimality can only be obtained by suitable initial conditions for the
probabilities and values of parameters of the learning scheme. Another learning
scheme they describe, the LRP (Linear Reward Penalty) scheme, is only expedient,
and its sequence of action probabilities distribution function converges to a distri-
bution function at all points of continuity of the latter[58]. In these schemes, action
probabilities are updated by a reinforcement scheme which uses the reinforcement
signal from the environment directly.

Fu and his associates describe a different learning scheme that they apply to
Learning Control Systems[17]. Fu’s LSA updates first an estimate of performance
for the current (LSA action, state of the environment) pair. This estimate is subse-
quently used to update action probabilities.

The general performance function Z;; is defined as the mean value of the

instantaneous performance function y € Y when the LSA action u; is applied to the
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state of the environment z;:

Zi; = Elylq, uy]

y evaluates the response of the environment to a particular action (success or
failure in the above definition of LSA).
The general performance function is estimated iteratively using a stochastic

approximation method]20, 66]:

Zij(nij +1) = Zij(nij) + v(ni; + Dly(ni; + 1) = Zij(ni;)] (3.5)
where n;; = 0,...,00 is the number of simultaneous occurrences of environmental
state ; € X and LSA action u; € U. Z,](n,]) denotes the n;;th estimate of the
mean value of the instantaneous performance function y € Y. There are separate

estimates for each pair (state of the environment, LSA action).

If
Zij < oo, E[y2|$,',u]‘] < 0 21;(0) < 0
hold and
L —5(ni; +1) >0, Z yz(nlj +1) <
;=1
II (1=~ +1)=0, i=1,....d j=1,....s
;=1

Dvoretzky’s conditions[15] are satisfied and the estimate converges w.p.1 to the

actual value of the performance function, 1. e.,

Pr{ lim 2,](n,]) = Zij, Vi, =1

nj;—00

Action probabilities are updated by a reinforcement scheme also based on

stochastic approximation:

pij(ni + 1) = pij(n:) + a(ng + 1)(Aij(ni) — pij(ni) (3.6)
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where n; = 37, n;; is the number of times any action has been applied to environ-

mental state z; € X so far, 0 < Ajj(n;) <1, 325 Aij(ny) = 1,1 = 1,...,d denotes

states of the environment, and j = 1,...,s denotes LSA actions. Also,
l—a(ni+1) >0, > o*(ni+1)<oo, [[(1—a(ni+1))=0, i=1,....d (3.7)
n;=1 n; =1
and
pis(0) >0, > pi(0) =1 (3.8)
7=1

Given the estimates of the performance (or cost) function at each time instant,

Aij is defined by

Defining also the optimal action as the action u,, € U such that
Z,'m :H}CIH{Z,]C} = 1,...,d
the following Theorem is proved in [21]:

Theorem 3.1.1 The necessary and sufficient condition for (5.6), (3.7), (3.8) and
(3.9) to yield
Pr{ lim pjn(n;)=1}=1 1=1,...,d

is that for every sub-optimal action u;z,, € U

> aln)EN(ni)ly(1),...,y(ny)] <oo, i=1,....d j=1,...,5 j#m (3.10)
n; =1
Hence, Fu’s generalized stochastic automaton can be made optimalin the sense
of (3.3).
Essentially, the necessary and sufficient condition for optimality says that the

estimates of the performance (or cost) function must converge faster than the action

probabilities.



26

The convergence speed of stochastic approximation can be improved by the
use of acceleration methods [22, 66, 27] and model-based initial estimates of relia-

bility[20]. This will be discussed in chapter 6.

3.2 Stochastic Grammars

Grammars are usually employed to describe the syntax of languages or struc-
tural relations defining a pattern. They are useful in the context of HGDIMs to
describe the constraints imposed to the ordering of events composing a task, as
explained in section 3.3. In particular, Stochastic Grammars allow the assignment
of probabilities to conflicting productions or rewrite rules. This turns out to be
equivalent to the assignment of probabilities to the different strings of the generated
language. The probabilities of the productions in each conflicting set can be learned
by a LSA. Hence, stochastic grammars provide the means to learn the ordering of

events composing a task, as will be shown in section 3.3 and Chapter 5.

Definition 3.2.1 [/8] A stochastic grammar is defined by the quintuple G = (Vr,
Vv, R, P, S), where

o Vr is a finite set of terminal symbols;

VN is a finite set of nonterminal symbols;

o R is a finite set of productions or rewrite rules;

P is a finite set of probabilities that are assigned by a one to one mapping to

the elements of R;

S is the start symbol.

Only stochastic reqular grammars will be considered here, that is stochastic

grammars whose productions have the general syntax

A—a or A—=aB, ae V], A,BeVy
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where the symbol to the left of the arrow is called premise while the term to the
right of the arrow is the consequent. Vi denotes the set of all the possible strings
composed by elements of V7, including the null string.

The set of productions R can be partitioned into m disjoint subsets R =
{R1,..., R}, where m is the number of nonterminal symbols, m = |Vy|. In
particular, R; is the subset of productions with the same premise A;, corresponding
to the ¢th nonterminal symbol.

Correspondingly, the set of probabilities P can be partitioned into m disjoint
subsets, where subset P; contains the probabilities of the productions of R;.

A stochastic grammar is proper if
Zpik =1, pu €Pi, |Pil=mi, i=1,....m
k=1

To each string x of the language L((G) generated by G corresponds a word
function f(x). If the grammar is unambiguous, that is, if there is only one leftmost

derivation for each w,
K(w)
flz) = H p(k,x), Yo € L(G)
k=1

where K (x) represents the number of steps in the derivation of x, and p(k, x) is the
probability of the production used in the kth step of the derivation of x.

A language L C Vi, where V' represents all strings of finite length composed
by elements of V7, including the null string e, is called a stochastic language if there is
a function 0 < f(x) <1, Va € L, called probabilistic word function, f(x): L — %,
such that 3, c; f(z) = 1.

Not all stochastic grammars generate stochastic languages. Some restrictions
must be imposed to the stochastic grammar.

A stochastic grammar G is a consistent grammar iff the word function defined
over L((7) is a probabilistic word function, that is, iff L(G) is a stochastic language.

If the grammar is proper, then it will be consistent.
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3.3 Linguistic Formulation of Task Generation in HGDIMs

A command sent to the Intelligent Machine may be translated by more than
one task, defined as an ordered sequence of events.

T, ={t,... ,tfi} is the set of tasks capable of implementing command ¢;, © =
1.0, ne.

E is the set of all primitive events. |E| = n..

E; = {el,... em'} C E is the set of primitive events compatible with com-
mand ¢;. This definition reduces the search space when looking for events to compose
a task. Notice that £ = U<, E;, but in general the sets F; are not disjoint. That
is, a primitive event may be compatible with two different commands.

We turther associate to command ¢ a language L; whose set of terminal symbols

is F;. Task t; is a string of L;. Moreover,
T, C L;, = E,'+, |T,| =/

that is, task t;, J =1,...,1; is one of the possible strings composed by elements of
E;, excluding the null string. The size of T; depends on the constraints imposed by a
given command to its compatible primitive events. These constraints are expressed
by a grammar G; which generates T; and whose start symbol represents command
Ci.

An event is a symbol representing a non-null string of primitive events. Events
can be represented by non-terminal symbols of the grammar G; which generates T;.

A primitive event is an event which is no further decomposable. It represents
a problem which can be solved by some algorithm. For each event there is at least
one algorithm which translates the event, e. g., one algorithm which can solve the
problem represented by the event. Primitive events are terminal symbols of the
grammar (; which generates T;.

A = {d¥, ... a,*} is the set of alternative algorithms which may translate
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primitive event e, k =1,... ne.

3.4 Summary

This chapter presented the concepts and terminology considered relevant for
the understanding of the following sections. Basic notions of Learning Stochastic
Automata and Stochastic Grammars were summarized, and a linguistic formulation
of an Intelligent Machine was introduced. The following chapters will put together
all this theoretical background to introduce a new model of an IM with feedback

from the environment.



CHAPTER 4

A Performance Measure Based on Computational Cost and Reliability

There are different options to reach a goal or a subgoal at the two highest levels
of the IM: the Organization Level has to decide among different tasks capable
of executing a given goal (command) sent to the machine; given the chosen task,
composed by subgoals (events), the Coordination Level has to determine, for each
event, the best among the set of primitive algorithms capable of solving each subgoal
at the Execution Level. To compare the different alternatives at each level a cost
function is necessary.

The different algorithms used at the Execution Level of an Intelligent Machine
are frequently designed in order to meet a set of specifications or, without loss of
generality, in order to keep the error between the actual and desired values of a set
of variables below some desired accuracy e.

The uncertainty involved in the design of these algorithms is mostly due to
approximate or incomplete modeling and statistical fluctuations around nominal
parameters. Previous work in this area [49, 56] models the uncertainty associated
to the different algorithms using the concepts of reliability and entropy. It describes
algorithm selection techniques, based on entropy, which will choose the most reliable
from a set of different algorithms capable of solving some specific problem. However,
the most reliable algorithm may have a non feasible computational cost, in terms
of the time it takes to complete, the amount of memory it uses, or the number of
resources (e.g. processors) required. No attempt is made in this work to deal with
this problem, with the exception of plan execution time, modeled as a specification
by Mclnroy and Saridis[50].

Thus, 1t makes sense to think of a selection technique which includes both

reliability and computational cost, but first the two measures must be coherently

30
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defined. Information-Based Theory of Complexity provides some assistance to solve
this problem.

The computational complexity of a problem is defined by Traub et al as
“its intrinsic difficulty as measured by the time, space or other quantity required for
its solution”[80].

More formally this is equivalent to the cost of the optimal algorithm (in the
sense of computational cost) for the solution of the problem.

Two main kinds of computational complexity may be categorized into:

¢ information-based complexity, when information about the problem is
partial (e.g. aliasing - more than one signal has the same values at the
sampling instants), noisy (e.g. the samples are corrupted by noise) and costly

(e.g. the smaller the sampling time the more costly is the sampling operation );

e combinatorial complexity, when information about the problem is com-
plete (e.g.: all distances in a robot-in-a-maze problem are given), exact (the
distances are assumed to be error-free) and free (there is no charge to know

the distances).

In the sequel, the focus will be on Information-Based Complexity. Problems
associated to Intelligent Machines, whether they consist of position or force con-
trollers, path or trajectory planners, robotic vision algorithms or others, deal with
information of all kinds, and this information is often partial, noisy and costly. More-
over, this work deals with strongly uncertain environments, and it has been pointed
out before that reducing the degree of uncertainty in controlling those environments
is the goal.

This chapter introduces a cost function combining reliability and computa-
tional cost (cost for short, in the sequel) of an algorithm, based on a coherent

definition of the two. The link between reliability and cost is the assumption that
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all algorithms are designed to meet an error specification for the problem they can
solve. Given some desired reliability for the problem, the cost of obtaining that reli-
ability can be determined for each of the algorithms, according to the cost measure
defined (number of operations, elapsed CPU-time, memory used) for the problem.
Conversely, if the cost measure is fixed at different values for the different algorithms,
this will correspond to different reliabilities for each of them.

This formulation has been introduced by Lima and Saridis in [42, 46] and it
is based on the Theory of Information-Based Complexity[81].

The next section summarizes the general formulation of information-based
complexity. The original theory is adapted to this formulation when needed. The
second section coherently defines cost and reliability. In the third section the cost
function and the equations to propagate its value bottom-up through the hierarchy
are introduced. Finally, several examples of application of the formalism to Robotic

Systems are described in detail in the last section.

4.1 Information-Based Computational Cost of a Problem
4.1.1 Problem Formulation

For each f € F, where F'is a set of problem elements, it is desired to compute
an approximation U(f) of S(f), where S : F' — (is called a problem solution and GG
is a normed linear space over the scalar field of real or complex numbers. To measure
the distance between S(f) and U(f) an absolute error criterion, ||S(f) — U(f)]] is
used.

U(f) is an e-approxzimation of S(f) iff ||S(f) — U(f)|| < € > 0. The original
theory establishes three different settings for the error of the approximation U( f) of
S(f): worst-case, average and probabilistic[81]. In the first two settings, U(f) must
be an e-approximation of S(f) in the worst-case specification error (||S(f)— U(f)|)

or for the average specification error, respectively. In the probabilistic setting, which
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will be used in the sequel, the specification error is required to be below ¢ except in

a subset of G with a small measure.

4.1.2 Information

It is assumed that the only initial existing knowledge about f is that it be-
longs to the set F', and also that more knowledge about f may be gathered using
computations of the form

L(f),L : F—H

for some set H.

L must belong to the class A of permissible information operations (oracles),
that is L € A iff L can be computed for each [ € F.

H may assume several different forms. For example, it may either be the set
{0,1} of answers to a question like “what is the intensity value of pixel (i,j) in some
black-and-white image?” or the set of real numbers when A is a collection of a
function and its derivative values at some point x, L;(f) = fO(z), 0 <i <r.

The information Z(f) is then defined as

I(f) = (L), La(f)s - Ll f))', VI E L

Finally, U(f,¢) = ¢(Z([f)) where ¢(Z(f)) € G is an algorithm that computes

an approximation of S(f) given the information Z(f).

4.1.3 Model of Computation

The initial assumptions are:
e cither a sequential or parallel model of computation is assumed;

o there is a charge for each information operation;
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e all information and combinatorial operations are performed with infinite pre-

cision and finite cost.

The model postulates a constant cost ¢ for each information operation L(f) €
A and unit cost for each combinatorial operation performed by ¢ over Z(f).

The cost of an algorithm ¢ has two components:

cost(g, f) = ci(Z(f), f) + (6, Z([)) (4.1)

where ¢; is the cost of getting information about f needed by algorithm ¢, and ¢,
is the combinatorial cost of processing that information by algorithm ¢. Given the
above, ¢;,(Z(f), f) > ¢|Z(f)|, where |Z(f)| denotes the cardinality of Z(f), that is,
the number of information operations. The term ¢; is inherent to information-based
complexity. Information is gathered to reduce uncertainty. ¢, would be the only
term in the absence of uncertainty.

Under the probabilistic setting we control the error of estimating S(f) by
U(f, ) (the result of algorithm ¢), keeping it below €, except in a subset of (¢ with
measure ¢ € [0,1]

Given € and 0, the cost of an algorithm is obtained for the most unfavorable
problem element f whose approximated solution U(f) still belongs to the subset of

(G with measure 1 — §:

§ = an it (PR{IS() ~ U(56)] < ) 3 PeIS() -~ U0 < 2 1-8)
cost(¢) = cost(e, f) (4.2)

For example, N image frames or more need to be averaged to increase to a
certain value the probability that the error of locating an object in a noisy image
is below e. Every image resulting from the average of a different number frames is
a problem element. If the cost of processing that information is not considered, the

overall cost will be equal to ¢; and proportional to the number of averaged frames.
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Among the number of image frames which have to be averaged, N corresponds to
the worst-case specification error. A greater number of averages will decrease the
error probability, while a smaller number will push the corresponding approximated
problem solution to the subset of G with measure 6, for which Pr{||S(f)=U(f, ¢)|| <
e} <1-246.

4.2 Coherent Definition of Reliability and Complexity

In order to coherently define cost and reliability for a given problem, the desired
accuracy ¢ of the problem specification must be the same in both definitions.

Given some problem, an algorithm capable of solving it with the required accu-
racy may not exist, due to the inherent uncertainty of the problem. This uncertainty
is measured in Information-Based Theory of Complexity by the problem radius of
information, which resembles the selection of feasible plans proposed by Mclnroy
and Saridis[49], based on the comparison of plan and specification entropies.

Assuming that the desired accuracy is greater than the radius of information,
e-cost (cost for short) of a problem is defined here as the minimal cost among the
set @ eqs of all available and feasible algorithms which solve the problem with error

defined in the probabilistic sense:

ecost = inf {cost(¢)} (4.3)

€D feas
Suppose now that in (4.2) S(f) is a vector of specifications for a given problem.
The problem solution S(f) is for example the desired overshoot of a control algo-
rithm implementing a move robot event, and the problem element f is the output

signal used to compute U(f, ), the problem approximation.

Definition 4.2.1 Given some desired specification accuracy ¢, and a problem ele-

ment f € I, reliability of an algorithm ¢ is defined as:

R(¢, f) = Pr{specifications met}
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= Pr{specification error < ¢}

= Pr{lIS(f) - U 0)ll < ¢} (4.4)

Now, making Ry = 1 — 6 when determining the cost of ¢ by equation (4.2),

the definition of cost is obtained.

Definition 4.2.2 Given some desired lower bound for the reliability Ry, cost of an
algorithm ¢ is defined as

F©o= arg infiR(¢, f) 5 B¢, f) = Ra} (4.5)

C(¢) = cost(e, [7) (4.6)

that is, among all f € F' capable of keeping the specification error for algorithm
¢ below e with reliability at least Ry, the one leading to the worst-case, i.e. the
f leading to the larger probability of error, is picked. Here and henceforth, the
reliability will be denoted as R(¢) = R(¢, f*).

Notice that U(f, ¢) is a random variable due to the noisy measures of f and
incompleteness of the model. Ry is a variable which may be used to help the design
of an algorithm such that some reliability is achieved. However, the algorithm is
usually designed to satisfy the requirements on accuracy € and then tested to check
its reliability. Ry could also be improved by increasing e (relaxing constraint on
specification error), but that is not what is assumed here. Once ¢ is fixed, there are

two possibilities:

o The different algorithms for the problem are designed to meet the accuracy
specification assuming no uncertainty. Their cost is determined by the number
|Z(f)| of information operations plus the combinatorial complexity of process-
ing such information. In this case, reliability is determined by (4.4) and Ry is

the reliability lower bound;



37

o The different algorithms for the problem are designed given the accuracy e
and reliability Ry specifications. In this case, the alternative algorithms for a
problem typically differ by the number of information operations they need.

Hence, the cost is determined from (4.2), given € and Rjy.

The main differences between the definition of cost of an algorithm proposed
here and the definition of Information Based Complexity in the probabilistic case
will now be explained. The analysis provides a better understanding of the coherent
definition of reliability and cost.

Let 6 € [0,1]. The probabilistic error associated to algorithm ¢ is defined in

the context of Information Based Complexity by

e(9) = igf{fgggAHS(f) —U(f, )l : p(A) <6}

In other words: given a set A of measure less than or equal to ¢, the supremum
of the approximation error among all f € F' — A is sought. Then the error is
minimized by seeking the set A (among all sets with p(A) < §) leading to the
infimum of the suprema of the errors.

The probabilistic cost of algorithm ¢, under the worst case setting for the cost,
is given by

cost(¢) = sup cost(o, f)

feF

that is, the cost of the algorithm does not depend on the specification e.
The complexity of the problem depends on ¢ and it is defined as the minimal

cost among all ¢ with probabilistic error at most e:

e-comp = igf{cost(qﬁ) :e(g) <€}

The algorithm ¢* that achieves the minimal cost is called an optimal algorithm.
This assures that the largest error among all realizations f € F — A will

not exceed e. The cost is determined for the worst case among these realizations.
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However, with probability less than or equal to 6, there exists a set A which is
not checked, where some realization may lead to a larger error. If the algorithm of
minimum cost for f € F' — A happens to have an actual error greater than ¢ when
all f € F' are considered, the increase in the actual error leads to an increase of
complexity, because some other algorithm ¢’ of larger cost will replace the previous
optimal algorithm.

Equation (4.2) states that the cost is obtained for the worst-case f such that
the reliability is greater than or equal to 1 — é. The algorithm may fail to meet
its specifications with probability 6. By Definition 4.2.2, among the f € F' which
achieve this reliability, the one of largest probability of error which still satisfies
R(¢) > Raleads to the cost ¢. That is, the probability distribution depends in this
case on a function of f, and not on f itself. As a consequence of this, the cost of an
algorithm depends on the accuracy € and the reliability, and so does the complexity
of the problem.

In summary, the probabilistic setting of Information Based Complexity as-
sumes uncertainty in the investigation of all possible situations an algorithm is
applied to, while the probabilistic setting used in this thesis assumes uncertainty in
the success of an algorithm, in the worst case for the error probability, among all

possible situations.

4.3 A Cost Function for Intelligent Machines

The coherent definition of reliability and complexity introduced in the previous
section allows the definition of a cost function combining the two, assuming that

each algorithm is designed to meet a set of specifications.

Definition 4.3.1 A Cost Function valid at all levels of a Hierarchical Intelligent
Machine is defined by:
J=1—-—R+pC (4.7)
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where R is the reliability, C' the cost and p a normalizing factor such that pC € [0, 1].

In general p will be such that the cost does not overwhelm the reliability when

searching for the optimal action. Examples of p are p = m or p = 3 L @)
a a€EA a

where A is the set of algorithms capable of solving a problem.

Definition 4.3.2 The optimization problem described in this thesis consists of find-
ing the task and primitive algorithms which minimize (4.7) for a given command

issued to the machine and a given state of the environment.

Equation (4.7) applies to all levels of the HGDIM, i.e., the performance of an
algorithm, primitive event or task can evaluated by (4.7) if the cost and reliability
are appropriately propagated bottom-up through the hierarchy.

Recall from the previous chapter that a task ¢ is composed by several events
er € E. occurring either sequentially or in parallel. For each event e, there exist a
set of alternative primitive algorithms Ay capable of solving the problem represented
by the event, for k = 1,...,n., where n. is the total number of primitive events.

The propagation equations are:

Definition 4.3.3 The Cost of event ¢, € E is the minimum cost among all

algorithms translating the event:

C(ex) £ min{C(a)} k=1,... n (4.8)

aEAk
The Action probability p, of algorithm a € Ay, is the current probability of
a being applied. A probability density function is defined over the discrete algorithm
space Ag. Its purpose, discussed later in this thesis, is to help a learning algorithm

converging to the algorithm which minimizes the cost function J.

Definition 4.3.4 The Reliability of event e is the average reliability among all

algorithms translating the event:

Rlex) 2 Y paR(a) k=1,....n, (4.9)

aEAk
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If the cost function is to be used for designing purposes only and no learning

is involved, an alternative definition which does not use action probabilities is:

Definition 4.3.5 The Reliability of event e is the maximum reliability among

all algorithms translating the event:

R(eg) 2 max R(a) k=1,...,n. (4.10)

aEAk

Definition 4.3.6 The cost of parallel execution of events e, ¢, is

Cler//ez) & max {C(ey), Cle)} (4.11)

e1,e2€l

while the cost of n events executed 1n series is
1 n
Cler] .. Jen) 2 =3"Cle), e1y.ien € E (4.12)
n “

The mean in equation (4.12) intends to keep the cost in the interval [0, 1].

The successive application of these rules leads to the cost of a task, C(#).
An additional structural cost may be added, for example as suggested by Beard and
Saridis (1993)[8].

The parallel execution of events is not logically parallel from the reliability

point of view. In fact, all events must be successtul to complete a task. Hence,

Definition 4.3.7 The reliability of task ¢ is
R(t) 2 T[ R(er) (4.13)
ex €&
where & C FE is the set of events composing the task.

In chapter 5 the propagation equations will be rewritten to include reliabilities
conditioned by the state of the environment, and command cost and reliability. The
above definitions apply to the particular case of a single-state environment and were
included here to help understanding how the cost function can be used at all levels

of an Intelligent Machine.
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4.4 Applications to Robotic Systems

Tasks implemented by Intelligent Robotic Systems may generally be decom-
posed on primitive events. Among these the most typical are perhaps Move Robot,
Locate Object, Plan Path, Plan Trajectory, Grasp Object. Algorithms capable of solv-
ing these problems belong to the areas of Motion Control, Computer Vision, and
Path or Trajectory Planning. In this section it will be shown how the performance
of some of these algorithms may be computed under the paradigm just formulated.
The following three subsections cover examples of optimal pose (position + orienta-
tion) control of manipulators, compliance control using a position accommodation
technique and image processing. FEmphasis was put on cost measures other than

execution or computation time, to enhance the flexibility of the definition.

4.4.1 Pose Control

The dynamics of a n-degree of freedom robot manipulator can be expressed

by the following compact form of Euler-Lagrange’s equations of motion:

D(0))+ NL(9,0) =u (4.14)

where § € R" is the joint angles vector, u € R" is the control torques vector,
D(8) : R™ — R™*" is the inertia matrix, and NL(, Q) : R'xR™ — K" is the vector
representing nonlinear coupling of Coriolis, centrifugal, gravity and friction torques.
Luo and Saridis (1985)[48] formulated the optimal control solution for the problem
of making the manipulator track a desired trajectory. They identified the system

state with z(?) = (6(¢) Q(t))T and suggested the performance index

1 1 gt
Jw) = L) Gelty) + 5 [T WQel) + WSOl (115)
to
where S = , G 1s a 2nx2n and Sy a nxn real symmetric, positive definite

0 S

matrix, Q is a real non-negative 2nx2n matrix, e(t) = x4(f) — z(t) and z4(f) =
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(Qd(t)Qd(t))T is the desired state vector. When ¢y — oo, the control law reduces to

w* = DODa(t) + Ky [04() — 0(0)] + K [Ba(t) — O]} + NL@. D) (4.16)

which has the same form of the Computed Torque Method, with K, = Sy' Py and
Py Pry

[(v - SO_IPQQ. P -
P12 P22

) is the solution of a continuous algebraic Riccati

equation.

Given the optimal control law, the closed loop state space model is

£(1) = Aa(t) + Bauy(?) (1.17)

9,
0 1 0 0 0 )
where A, = , Ba = ;and ug = 04
-K, —K, K, K, I

I and 0 denote nxn identity and zeros matrices, respectively. The model can

@:

further be discretized by some suitable method, and a discrete time state space

model will be obtained
i((k —I_ 1)T5) = AdCli(kTs) —I_ Bdclﬂd(kTs) (418)

if the sampling period is 7.

In this development it has been assumed:
1. Perfect cancellation of the non-linear terms;
2. Non-noisy measurements;
3. Complete information about the state.

However, assumption 3 can be kept but 1 and 2 may be relaxed by modeling
the resultant perturbations as zero mean gaussian noise. Then a new discrete state

model is obtained:

z((k+ 1)Ty) = Agaz(kTs) + Baaug(kTy) + Do (kTy) (4.19)
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where v is a gaussian noise vector with E[v(kT,)] =0, El(kT,)v(kT,)T] = C,.
The performance index has to be modified when the noise is actually added
to the open loop system, and it becomes [(u) = E[J(u)].
For this pose control problem (event move robot) the cost of an algorithm ¢
solving the problem will be the optimal value of [:
N
C(6) = () = e(0) Pe(0) + Y- t:(PDC, DY) (1.20)
k=1
where P is the solution of a discrete algebraic Riccati equation (Lewis, 1986 [38]),
and N the number of samples in the trajectory.
A lower bound for the Reliability can be obtained based on a method described
by Mclnroy and Saridis (1994) [49], when the specifications are quadratic in the

tracking error e(kT}):

Q(kTs)TQSQ(kTs) <, k= 3. '7N7 Qs >0 (421)
If
CUKT) — Qu(kTy) > 0,Yk=1,....N (4.22)
then
R(¢) > [xa(e)Y (4.23)

where Y2 is a chi-square distribution with d degrees of freedom, C(kT5) is the covari-
ance of the tracking error, NV the number of points the specifications are concerned
with, and d the dimension of the state vector (d = 2n for a n-degree of freedom

manipulator). Ce(kTs) can be determined by solving the difference equation
Ce((k + 1)Ty) = AqaCe(kT,) AL, + DC,(KT,) DT (4.24)

Given )5 and ¢, the reliability lower bound is given by (4.23) for all different
C. which satisfy (4.22). The value of C, depends on Agy which in turn is a function

of the weighting matrices (), 5, G in the performance index. Hence, for different
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lower bound reliabilities, different Costs (' will be obtained, and the performance
function J = 1— R+ pC helps deciding among different optimal algorithms resulting
from different choices of @), 5, G.

When a Computed Torque algorithm is used, K, and K, are usually made
diagonal (K, = k,I and K, = k,I) and k,, k, are dimensioned to obtain desired
specifications for each of n decoupled control loops. For each loop, and assuming

perfect cancellation of the non-linear terms,

w, = [k (4.25)

¢ = (4.26)

where w,, is the natural frequency and € is the damping factor. Notice that k, and
k, are scalars.

A natural approach to the translation of a Move Manipulator event will be to
select a set of Computed Torque algorithms with different &, and &, (thus different
wy, and ), and determine their costs and reliability. An expression to compute the
cost will be derived next.

Equation (4.20) is a truncated version of the actual expression for the cost of

the discretized system under the assumptions of measurement noise and ¢; — oo:

C = I(u") = e(0)" Pe(0) + lim % S (PDC,DT) (4.27)

N—co

where N = t;/T;, from (4.20). The cost is obtained for the number of steps taken
by the actual displacement of the manipulator from the start to the end point only,

but P is the steady-state solution of the Riccati Equation (when N — o).
2
ol 0

where O'z is the

Now, making ¢(0) = 0, D = [ and C, =
0 o2l

variance of position noise and &2 the variance of velocity (or encoders) noise, the

cost simplifies to

O = tr(PC,)N (4.28)
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In this expression, the sub-matrices of P are not known. However, the expres-

sions for Pj; and P,; may be simplified because K, and K, are diagonal matrices:
Py = Sok,I (4.29)
Py, = SokyI (4.30)

The steady-state Riccati Equation is

Q— PSP+ PF+F'P=0 (4.31)

here 0 = ( Qu Qu )

Q12 @2
Assuming different Sy and @ will lead to different solutions for P. Solving

(4.31) for Py given (4.29) and (4.30), one obtains
Py = —Q12 + Sokykyl (4.32)
One possible solution used here consists of making

So = 1

Q12 — (kpkv - 1)]

From these assignments one obtains

Py =1

Py = kI

Py = kyl

Qu = k'l

Qu = (k2 —2k,)I

Qiz = (kpky — 1)1 (4.33)

and the cost comes, for a n degree-of-freedom manipulator

C = n(az + kvaz)N (4.34)
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2
v

It encoder noise can be ignored, o = 0 and the cost is proportional to the

time taken by the movement.

Another alternative is to make
So = 1
Qiz = 0

In this case, the cost is
C = n(kpkvaz + ko2 )N (4.35)

and it depends on k, and k, also.
Other combinations of () and Sy might have been used.
The following instantiations of the definitions above for this particular example

summarize and clarify the application of the formalism:
e problem element f = (z 24)
e problem solution S(f) = z,4

e solution approximation U(f,¢) = z, as obtained by algorithm ¢ (includes

noise Dv).
e algorithm ¢ = ¢(Q, S, G) = u*(Q, S, G)

The performance function associated to the algorithms balances the penalty of
error and cost of control (by penalizing joint accelerations) to track a given trajectory
(joint positions, velocities and accelerations) and the reduction of uncertainty due

to measurement noise.

4.4.2 Compliance Control

The robot comes in contact with the environment while performing many use-

ful tasks. During the execution of these tasks the robot controller should control
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the forces exerted by the robot in relation with the motion of the end-effector. Thus
the robot may be required to exhibit a particular functional relation between the
force it exerts and the displacement that results. For contact tasks the desired rela-
tionship is an impedance. Impedance control involves issuing a position command
and assigning a relationship between the interaction forces and deviations from the
desired position command. Thus, impedance control consists of a position control
loop with the assigned impedance determining the stiffness of the manipulator[24].
This type of compliance control is called Position Accommodation Control[65)].
Suppose the tip of a 6 degree-of-freedom manipulator is required to behave
as a Mass, Spring and Damper system. Let the [6x1] vectors zq be the nominal
end-effector trajectory and x be the actual end-effector pose (cartesian position +
orientation). Let f be the forces and torques on the manipulator due to contact

with the environment.

[ =Kz —x20)+ B(i —2o) + J(& — Zy) (4.36)

Equation (4.36) represents a relationship between the force at the end-effector and
motion about a nominal trajectory. If z = z, the force f is zero. Thus z4 can be
considered the non-contact trajectory. The choice of the [6x6] matrices K, B, and J
depend upon the response desired from the system. Their values will also determine
the cost and reliability of compliance control algorithms.

Suppose a manipulator has to grasp some object using impedance control.
After getting to a position above the object with the required tool pose and zy posi-
tion, the manipulator tip (tool) must approach the object with a vertical downward
movement along the z axis. Once the object is reached, the manipulator will try
to grasp it after some desired force in the positive z direction is obtained or the
pre-established duration time for the movement expires, whichever occurs first. In
this study, compliance is assumed to work for all other components of z, and K, B

and J are scalars.
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Figure 4.1: Continuous Mass, Spring and Damper block diagram.

If the downward movement is exclusively due to a desired force fy, the closed
loop manipulator-environment can be roughly modeled as in Figure 4.1. The en-
vironment is modeled as a spring of constant K. and errors from the manipulator
position controller are ignored. K. = 0 before contact, and K. > K after contact
(very stiff object). The initial position of the manipulator is the nominal position.
Measurement noise f,, is added to the force sensor. This is a reasonable model for
all situations except immediately after contact, where a non-linear system behavior
has been experimentally observed[65].

Possible measures for the cost are the delay-time or rise-time of the deviation
from the nominal position, if the concern is about the time taken by the movement
before contact. From Figure 4.1, and ignoring the force sensor noise, the closed loop
transfer function is

AZ(s) :

_ 4.37
Fa(s) 2+ 8s+ L7 130

where K’ = K + K. and AZ(s), Fy(s) are the Laplace Transforms of the displace-

ment from the nominal trajectory along z and the desired force fy respectively.

Hence the following expressions are obtained for the natural frequency w,, and
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the damping ¢:
w, =/ K'[J, £E=B/2VK'J]) (4.38)
A reasonable approximation for the delay-time (time elapsed while the system

response raises from its initial value to 50% of the final value) when 0 < ¢ < 1.2 is

given by[31]

14 0.66 + 0.15¢2 J 03B  0.03755
ty ~ = 4.39
! w, A RN o (4.39)

The delay-time depends on the 3 parameters J, K’, B. Assuming a fixed J,
14 increases with B for a fixed K’ and decreases with K’ for a fixed B.

After contact, the main concern is about the time taken by the force sensed at
the manipulator tip to settle down to the desired force fy. If specifications require
the force error in the z direction, |f. — f.4] to be less than some accuracy by the
time the object should be grasped, the system settling-time together with the force
sensor noise will affect the reliability.

One definition of settling-time as the time the response takes to go from its

initial value to within 5% of the final value leads to the following approximation:

* T tw, B

(4.40)

Hence the settling-time and consequently the reliability do not depend on K.
Again there is a tradeoff between cost and reliability: for some fixed K and J, if B
is increased, the cost (identified here with the delay-time) will increase, but settling-
time will decrease and the system will have more chances to attain the desired force
before timeout, thus increasing its reliability.

The following instantiations of the definitions above for this particular example

summarize and clarify the application of the formalism:
e problem element f = (f. f.4)

e problem solution S(i) = f.4
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e solution approximation U(f, #) = f. 4 fn, as obtained by algorithm ¢

e algorithm ¢ = Az, from the position accommodation controller.

4.4.3 Image Processing

The use of stereo vision algorithms to determine the pose (3D position +

orientation) of an object in a workspace is usually prone to errors due to
e camera calibration process
e spot noise superimposed on pixel brightness
e pixel resolution

Assuming that camera calibration is reliable enough, the pose estimate de-
grades with the distance of the object from the cameras due to pixel truncation[6].
From the point of view of a passive vision algorithm, this uncertainty is irreducible.
An alternative approach is to use an active vision algorithm to translate a locate ob-
Ject event. An algorithm of this type is described by McInroy and Saridis(1994)[49].
They use N, different viewpoints to estimate the pose of an object by stereo vi-
sion, and reduce the reliability of pose computation by averaging the N, estimates.
One natural measure of cost here would be the number N, of estimates necessary
to increase the reliability beyond some desired level. Notice that an active vision

algorithm has additional sources of uncertainty:
e incomplete modeling of manipulator dynamics
e joint position and velocity measurement noise

Still assuming that camera calibration is reliable enough and if pixel noise is
uncorrelated from frame to frame, spot noise may be filtered by averaging the pixel

brightness from several pictures of the same static scene, taken at different time
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instants. Suppose now an object is to be located in the image, and a lower bound
for the reliability of determining its pose with a given accuracy (with respect to
the actual pose) is given. If the computational cost of processing the image is not
considered, one possible cost measure would be the number of frames one has to
average to obtain the desired reliability.

In the sequel, the cost/reliability analysis of a 2D object location problem
using two alternative algorithms is detailed. The images brightness is corrupted by
superimposed spot noise only.

Given a rectangle inside a M x M pixels image, the problem is to estimate
the position of the rectangle in the image (see Figure 4.2), that is, its central pixel
of coordinates (x.,y.). The pixels inside the rectangle were initially set to 1, while
the outside pixels were set to 0. To simulate spot noise, zero mean gaussian noise
was added to the initial value of each pixel in the whole image.

Several assumptions were made with the goal of simplifying the mathematical

analysis and the simulation:

e The area of the rectangle is known and equal to A = (y. — yp)(xe — 23);
e The whole rectangle is inside the boundaries of the image:;
e No other objects are present in the image;

e Errors resulting from pixel truncation or computational roundoff were not

considered.
To solve the problem two algorithms are proposed:

e The open loop algorithm determines the center of gravity of the total image,

using the equations

A _ Zf\il Z]Ni1 7b(4,5)

e A

7 — Zf\i1 Z]Ni1 ib(4,7) (441)
Yo = = 4

where b(1, j) is the brightness of pixel (2, j).
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Figure 4.2: Image processed by the two algorithms

e The closed loop algorithm correlates the image (feedback) with a pattern rect-
angle (reference) equal in size to the original noise-free rectangle of the image
and with the same orientation. The rectangle is assumed to be centered inside
the P x P pixels pattern image. The coordinates (Z., ¢.) of the pixel with the
greatest correlation coefficient are the estimates of the rectangle position in
the image. Were this a stereo vision problem, and the rectangle in one of the

images might be used as the pattern to correlate with the other image.

Both algorithms manipulate images resulting from the average of several image
frames to reduce noise.

4.4.3.1 Problem formulation

F'is the set of M x M images containing rectangles with size (z. — @) by
(ye — y»). This includes images resulting of averaging several image frames.
The goal is to compute an c-approximation for S : F' — RZ%, that is to deter-

mine an estimate U(f, ¢) of S(f), obtained by an algorithm ¢, such that

I1S() = U9l < e

where S(f) = (2. y.)T and U(f,é) = (2. 9.)T, and ||.|| some norm defined on R2.
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To simplify the analysis, and since what happens in one of the directions is

similar to what happens in the other, the error estimate of x. will be the only one
checked

|#. — x| < €

where € is the accuracy. Z., x. and € may be expressed in pixels or regular length

units.

4.4.3.2 Information

The information operations L;;(f), L;j : F' — R give the results
L+ ny; if pixel(e,g) € f
nij if pixel(e,7) & f

and so T = [Li1(f),- s Lkis(f), -+, Lna(f)] where k denotes the kth

Li;(f) =

frame, N is the total number of averaged frames, M the number of pixels on

each side of the image and n;; is a random variable representing the noise at pixel

(ivj)v Nij ~ N(Ovabz)v i.i.d.

4.4.3.3 Model of computation

In this simple approach, the set of algorithms is restricted to those that can
solve the problem in polynomial time. This means that the cost of getting informa-
tion is the main concern. For example, if a mobile robot has to stop and get several
frames of a scene in order to speedup posterior computations of its locations, a slower
algorithm that requires less stopping time for the robot will be preferred. The algo-
rithm may run while the robot is performing other tasks. Sequential computation
is also assumed.

Hence, cost(¢) = cost(Z, f) = eN¢

o, that is, cost is proportional to the
minimum number of averages needed by algorithm ¢ to get the error below e. Notice

that here f represents an image resulting from the average of N,,;, image frames.
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4.4.3.4 Study of the algorithms

The open loop algorithm estimates the center coordinates of the rectangle using
equations (4.41). Since the brightness of each pixel is a gaussian distributed random

variable

N (L op) pixel(i,j) € f
N(0,03) pixel(z,j) & f

and the B;;’s are uncorrelated from pixel to pixel (given that they are independent),

pB;, (bij) ~

it can be deduced that, after N averages of distinct frames of the same image and
if independent noise from frame to frame is assumed, py (2.) ~ N(:“Xcv 0'32 ) with

g, = . and
M*(M +1)(2M + 1)o}
a}c = CAZN (4.42)

Now, given an accuracy € and a desired reliability Ry, a N will be determined

such that Pr{

i’c_xc| SG}ZRd
n(Rq) in Pr{@ < n} = Ry can be obtained from the table of standard
Xe
normal

Equating 7(Rq) = ¢/og_and using (4.42):

2(R)M(M +1)(2M + 1)o?
N> Ny = T (6;62)( o, (4.43)

The inequality in (4.43) comes from the fact that the reliability must be lower
bounded by Rg.

The closed loop algorithm looks for the pixel where the noisy output of the
correlator achieves a maximum when the pattern is displaced around the image.
Due to noise, there is some probability that the wrong pixel is chosen. In order to
make the problem tractable, some assumptions have to be made, such as working
in 1D again, and considering errors of 1 pixel displacement at most.

If the correlator input weor, () = r(x) + n(x), where r(z) is a rectangle of

length z, — @, and n(z) is gaussian noise of zero mean and variance of/N, and the
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impulse response of the correlator is r(x. — «), then yeorr(2) = yo(x) + yn(x) is the
correlator output, where y,(x) is an isosceles triangle of length 2(x. — ), centered
at x. and of height . — xp, and y,(x) is gaussian noise with mean = and variance
o2 = of(ve — xp)/N.

Now, if errors of 1 pixel at most are assumed (that is, € equals the pixel width

or 1 pixel, depending on the units used), the desired reliability comes

Ry = Pr{|i.— x| < ¢}

= Pr{(yeorr(2c + €) = Yeorr(zc) <O) A (Yeorr(Te — €) = Yeorr(2c) < 0)}

Let one assume that the output noise of the correlator is independent from
pixel to pixel. This is not actually true, but it allows us to proceed. Since the two
random variables are correlated, under this assumption a smaller probability will be

obtained, hence resulting in an upper bound for N,,;,. Then

Rd — Pr{ycorr(xc —I' 6) - ycorr(xc) < 0} Pr{ycorr(xc - 6) - ycorr(xc) < 0}

Noticing that the sum of two random variables jointly and marginally gaussian

is another gaussian distributed random variable[61]:
2
Rq=Pr{z <0}, 2z ~ N(—¢,20?)

or

z+e€
\/Rd:Pr{ﬂU < 77}

where 1(Ry) can be read from a table of standard normal and is made equal to —=

\/50'77,7

hence the upper bound for the minimum necessary number of averaged frames is

20*(Ra)oj(xe — x)
2

Nitin < Noninp = (4.44)

€

Comparing Npine and N2, for the open loop algorithm (4.43), it may be

noticed that the closed loop upper bound on the number of averages does not depend
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on the size of the image M, while the minimum number of averages for the open loop
algorithm increases with M, thus it is possible, with a reasonable ratio of image size
to pattern size, to show that the closed loop algorithm upper bound Ny,in, will be

below the actual value of N°. for the open loop case. Simulations show that (4.44)
is a loose upper-bound and that in practice the cost of the closed loop algorithm is
much smaller, for the same reliability. If the cost of processing information was also
considered, other intermediate solutions between the two algorithms would have less

cost, since the open loop algorithm is computationally faster.

4.4.3.5 Simulation results

The open loop algorithm was tested with different sets of parameters as follows:
set 1: Rgy = 90%, and ¢ = 0.1 pixel and 0.2.
set 2: ¢ = 0.3 pixel, and Ry = 90% and 95%.

Each of the setups was tested with standard deviation of pixel noise o, = 0.1
and o, = 0.3. Each side of the image had 32 pixels and the rectangle had 13 pixels

in the = direction, 9 in the y direction.

Op 0.1 0.3

e |C=NT T R |C=NT 1 R
0.1 73 0.8733 655 0.8933
0.2 18 0.8333 164 0.8533

Table 4.1: Actual reliability and cost of open loop algorithm for a
desired reliability of 90 %.

The simulations were made in PRO-MATLAB Version 3.51, running on a Sun
SparkStation. The results are presented in tables 4.1 and 4.2 for parameter sets 1

and 2, respectively. For each setup the reliability obtained from an average of 150
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Op 0.1 0.3

Rg |C=NT T R |C=NLT R
90 % 8 0.9267 73 0.8733
95 % 11 0.9400 103 0.9467

Table 4.2: Actual reliability and cost of open loop algorithm for an
accuracy ¢ = 0.3 pixel.

runs is shown. The actual number of frames used in each run was slightly greater
than the cost, i.e. the minimum number of frames theoretically required. Notice

that any N above N¢. improves the reliability, for the same e. However, because

n

the worst case was sought, the simulation was confined to values of N immediately

above N2 .

In general, the outcomes agree quite well with the expected results. In some
cases, reliability is slightly lower than expected. This may be explained by the fact
that MATLAB’s random number generator does not assure complete independence
of the output values, hence additional terms would be present in equation (4.43),
raising the lower bound on the number of averages.

The closed loop algorithm was simulated under the same setup. By trial and
error, one determines the standard deviation of the superimposed noise needed to
obtain reliabilities close to those of the open loop case with the same number of
averages. Table 4.3 shows these results. € was made equal to 1 pixel, because the
closed loop algorithm can not achieve sub-pixel resolution.

For the same accuracy € and number of frames N;l;»fll, the open loop algorithm
has the same reliability of the closed loop algorithm only for noise standard deviations
one order of magnitude smaller.

Both results show that, given a desired accuracy € and different environmental

conditions (symbolized by different pixel noise variances), the cost of the object

location algorithms increases with increasing demand on the reliability.
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N;l;'fll Roi/ob Ra/op
98%/0.2 [ 99% /2.0
9 [ 97%/0.3 | 98%/3.0

e

Table 4.3: Compared reliability and cost for the open loop (ol) and
closed loop(cl) algorithms.

If the number of averages is constrained to some value, the open loop algorithm
can only attain the reliability of the closed loop algorithm under a much more
favorable environment. Hence, for the same cost and under the same environment,
reliability would distinguish the two.

Also, it different algorithms of both types, distinguished by the choice of dif-
ferent N at design time, were available, a combination of the cost and reliability
associated to each of them would help in the selection of the most reliable algorithm

among those constrained by some cost.

4.5 Summary

In this chapter, the formalism of Information-Based Theory of Complexity
helped in obtaining a joint definition of Cost and Reliability for the different algo-
rithms composing a feasible set for a problem. The feasibility is determined by the
accuracy desired for the solution of the problem and the radius of information of
the problem.

A problem must not be confused with the algorithms capable of its solution.
¢ — complexity was defined for a problem whose specified accuracy is ¢, but the focus
of this work is on the reliability and cost of the feasible algorithms.

It the problem under consideration requires some level of accuracy, given a
desired reliability, the formalism may be used to measure the cost of the alternative

algorithms. On the other hand, given some number of operations performed by an
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algorithm, or the amount of resources it uses, the maximum possible reliability of the
algorithm can be determined. Hence, given a specified accuracy for a problem, the
reliability and the cost of the algorithms which solve the problem with that accuracy
can be determined and combined in a cost function which was also introduced.

The concepts of information used here and structured information in the sense
of Shannon are different. Shannon’s information refers to the information content
or the information conveyed by a message, while this work deals with the amount
of information contained in the message. However, when one seeks the amount of
information needed to limit uncertainty to a specified level, as it is the case here,
information-based complexity is related to Kolmogorov’s notion of ¢-entropy[82]. ¢-
entropy is in turn related to Shannon’s entropy, which measures uncertainty as the
information content of a message.

The combined measure of reliability and cost presented in this chapter may be
used for the off-line design of [Ms, if viewed as an extension of the work by Meclnroy
and Saridis[49], and Musto and Saridis[55]. In the sequel, it will be used to build a
cost function which is updated recursively on-line and used to learn the action that

minimizes the cost function.



CHAPTER 5

The Intelligent Machine as a Hierarchical Stochastic Automaton

The use of feedback to reduce uncertainty and improve performance is a feature of
most existing controllers. Uncertainty increases when higher levels of decision are
introduced, as it is the case with a Hierarchical Goal-Oriented Intelligent Machine.
In a HGDIM, the uncertainty about which decisions to take is added to the un-
certainty about the environment where the machine operates. Furthermore, in a
HGDIM performance is related to uncertainty. Reducing the uncertainty improves
the performance. Thus, a strategy designed to improve the performance of an IM
must use feedback from the environment to reduce uncertainty. However, the feed-
back related to decision making is different from that related to uncertainty about
the environment. An algorithm implementing an action selected by the decision
making mechanism interacts with the environment in a precise way, but the deci-
sion making structure will only receive an abstract report of success or failure, after
the algorithm finishes its job. This characteristic of the response of the environ-
ment to more abstract actions, and the need to avoid local minima in the search
for optimal decisions, makes LSAs the appropriate solution to model the translation
interfaces of a HGDIM, where decisions are taken.

This chapter introduces the modeling by a Hierarchical Learning Stochastic
Automaton of the feedback structure and the use of feedback in Hierarchical Goal-
Directed Intelligent Machines. This formulation has been proposed in several papers
by Lima and Saridis[43, 45, 44]. Section 5.1 states the general assumptions made.
In section 5.2 the general definitions of HLSA and environment are instantiated
with elements of the closed loop HGDIM-environment. The cost function intro-
duced in chapter 4 and its propagation equations are rewritten under this more

general formulation in section 5.3, including entropy propagation equations. There

60
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are different types of feedback involved in the HLSA. The hierarchical reinforcement
learning scheme, recursively updated by feedback, is explained in section 5.4. The
feedback hierarchy is detailed in section 5.5. From an engineering point of view,
there is a need for a HGDIM design methodology and the general description of
its operation by an execution algorithm. The design methodology and execution
algorithm for HGDIMs are presented in section 5.6 and 5.7, respectively. Finally,

section 5.8 illustrates the relation between this and past work in the same area.

5.1 Assumptions

Some general assumptions must be made before formalizing the relation be-
tween the Hierarchical Learning Stochastic Automaton and the HGDIM, for both

practical and theoretical reasons:

e The HGDIM moves inside an environment which can be modeled as a multi-

state stochastic process (see Definition 3.1.2).
o The HGDIM can recognize the different states of the model of the environment.

e The environment includes the controlled system and a set of monitoring al-
gorithms. FEach time an action of the HGDIM is applied to the controlled
system, one or more of these algorithms check a set of environment features
to determine if the action was successful or not. Notice that, even though
monitoring algorithms are conceptually distinct from the HGDIM execution
level algorithms, in the actual implementation the former may be embedded

in the latter.

e There is a mechanism of error detection and recovery to detect situations
which could compromise the integrity of the HGDIM and/or the environment,

and recover from them to resume the learning process. This is an important
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assumption, since the learning process is based on task repetition, and most

learning comes from failures, even though they are not damaging in most cases.

5.2 The Closed-Loop Intelligent Machine and the Environment

The poor knowledge assumed about the environment discourages the use of
off-line task selection. The model-based reliability and cost help choosing the best
algorithms and tasks to implement the HGDIM, only when the environment condi-
tions are well known. Thus, the strategy chosen for this work consists of assigning a
cost and estimating reliability. Furthermore, because the environment responds to
actions with failures and successes only, reinforcement learning algorithms must be
used to estimate reliability and learn the decision making structure. Finally, since
reliability has to be estimated on-line, random decision methods for primitive algo-
rithms and tasks selection are necessary, to explore the different alternatives some
time before the reliability estimates converge.

The above suggests modeling the translation interfaces of a HGDIM as a

HLSA. There are two translation interfaces in a 3-level HGDIM:

e The task translating a command is selected by the Organization-to-Coor-

dination Translation Interface;

e The primitive algorithm translating a primitive event is selected by the Coor-

dination-to-Execution Translation Interface.

It is thus natural to use a 2-stage HLSA, with one LSA per translation inter-
face. The term stage will be used for the HLSA, while level refers to the HGDIM.

Given the Definition 3.1.1 of a LSA, the linguistic formulation of task gener-
ation in HGDIMs in section 3.3, and the cost function introduced in the previous
chapter, the translation interfaces of a Hierarchical Goal-Directed Intelligent Ma-

chine are modeled by a Hierarchical Learning Stochastic Automaton as follows:
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Definition 5.2.1 For each member ¢; of a set of commands {¢;, 1 = 1,...,nc}, an
HGDIM s defined by a 2-stage generalized HLSA, denoted by the sextuple TM; =
(U, Y;, Gy, 0C;, CE;, Cy), where

o U, = UpZ Ay is the set of primitive algorithms capable of translating all primi-
tive events e, € F;. E; is the set of primitive events compatible with command

¢i. ne; = | Fyl;
o Y, ={0,1} is the finite input set, with 1 representing a reward and 0 a penalty;
e (i; is a stochastic grammar defined by the quintuple (Vr,, Vn,, Ri, Pi, S;), where
— Vi = B

— Vi, is the set of symbols representing events (non-null strings of primitive

events ¢; € E;). |V,

—_= mi}.

— R; is a finite set of productions or rewrite rules in the form

A—-a or A= aB, acV;, A,BeVy

— P; is a finite set of production probabilities assigned by a one to one

mapping to the elements of R;;
— S; = ¢; is the start symbol;

o OC; = {Af{, ... A%} is a sel of Learning Stochastic Automata (one LSA per
each subset R, k = 1,...,m; of the set of productions R; of grammar G;)
corresponding to the top stage or Organization-to-Coordination Trans-
lation Interface. LSA Ay° € OC;, k= 1,...,n¢ is defined by the J-tuple
{Q9e, UL, Fe, G}, where

oc

— Uge = Ry, is the set of productions with the same premise Bj, correspond-
ing to the kth non-terminal symbol of G;, or the kth event of the IM for

command ¢;;
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— Q% = U is the finite set of internal states, coincident with the finite
set of productions with the same premise Bi. This further implies that

¢ =1, the identity matrix;

— F¢° is a reinforcement scheme such that P°(n+1) = Fg(P(n), yi¢(n)),
where Pé(n) = Py, = {ptF, ... ,pisik} is the finite set of production prob-
abilities governing the (random) selection of the production to apply at

each step, among the productions in R, and yi(n) € Y;.

Notice that, for reasons related to the propagation of the cost function and its
use to reinforce the productions probabilities, the top stage LSA does not have

an nput set;

o CE; = {Af, ..., A5} is a sel of Learning Stochastic Automata (one LSA
per each event e; compatible with command ¢;) corresponding to the bottom

stage or Coordination-to-Execution Translation Interface. LSA Aj° €

CE;, k=1,... n¢ is defined by the quintuple {Y,¢, Q55, U, Fee, GSE}, where

_ i/kce:}/l,.

Y

— Ug® = Ay is the set of primitive algorithms capable of translating primitive
event e € I;;

— QF = Uge is the finite set of internal states, coincident with the finite set
of primitive algorithms capable of translating all primitive events e}, € K.
This further implies that G5¢ = I, the identity matriz;

— F¢° is a reinforcement scheme such that PE*(n+1) = FE(P(n), yif(n)),
where Pe(n) = {ph, ... ,pflk} is the set of primitive algorithms probabili-
ties governing the (random) selection of the primitive algorithm to apply

at each step;

o (; is a cost vector, whose entries represent the costs of the set of primitive

algorithms UL, Ar capable of translating all primitive events e € F;;
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In other words: each command is the starting symbol of a stochastic grammar
expressing the constraints imposed by the command to its compatible primitive
events. The grammar (; generates a language T;, the set of alternative tasks capable
of implementing command ¢;, ¢+ = 1,...,n.. The non-terminal symbols of the
grammar correspond to events, which may be viewed as macros of primitive events,
to structure the task description. Fach subset of grammar productions with the same
premise represents one (or more) alternatives on the derivation of the translating
task. There is a LSA associated to each of these subsets. The productions in each
subset are the actions of the LSA, and their probabilities are learned according to
the LSA reinforcement scheme (see section 5.4 below). The set of all these LSAs
represents the top stage of the hierarchy. The best task is indirectly learned along
time, as a result of learning the best production of each production subset.

At every step, a (sub)optimal task is selected by random decision, based on
the current subset of production probabilities. Fach task is a string of primitive
events, and each of the primitive events may be translated in general by more than
one primitive algorithm. To learn the best translations, a LSA is associated to each
primitive event. The primitive algorithms for the event are the actions of the event
LSA. The set of all these LSAs represents the bottom stage of the hierarchy.

The HLSA modeling the translation interfaces of the HGDIM is depicted in
Figure 5.1. To help understanding the conceptual function of the top stage, a com-
mand is associated to a LSA whose actions are tasks. This formulation is equivalent
to the actual definition of top stage LSA.

Since tasks are possible actions associated with a LSA representing a com-
mand, T; must be a stochastic language, hence GG; must be a proper grammar.

The following definition of environment controlled by a HGDIM links the

HLSA and the cost function defined in the previous chapter.
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Organization-to-Coordination
Interface LSA

Coordination-to-Execution
Interface LSA

Primitive Algorithms

Figure 5.1: HGDIM and Hierarchical Learning Stochastic Automaton.

Definition 5.2.2 The environment controlled by a HGDIM is defined by the quin-
tuple {U, X, Y, H, R}, where U = {uq,...,us} = U2 Ay is the finite input set,
or the set of all primitive algorithms (in a total of s) applied by the HGDIM to the
environment. X = {x1,..., 24} is a finite set of internal states and Y = {0,1} is
the output set, where 1 represents a success and 0 a failure. R is a matriz with
general elements R;;, representing the reliability of algorithm u; € U, when applied

to state x; of the environment, according to Definition 4.2.1:
Ri; 2 Pr{u; € U meets specifications|z; € X} = Pr{y =1, y € Y|u,, x;}

R determines the rate of failures and successes for each pair (algorithm,state). Fi-
nally, H : X" — X is the state transition function which generates x(n+1) € X
from z(n),z(n—1),...,2(n—(r—1)) € X.

To simplify notation, the above definition of HGDIM implicitly assumes a
single-state stationary environment. Given the general definition of a multi-state
environment, the HLSA modeling the feedback activity of the HGDIM must be

replicated as many times as the number of states d of the environment. Before a
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primitive algorithm or a task is reinforced, the state of the environment must be de-
termined to select the appropriate HLSA. More details on the feedback architecture

for state determination are given in 5.5.

5.3 Propagation of the Cost Function

In this section, the propagation equations for the cost function originally pre-
sented in section 4.3 are rewritten, taking now in consideration the dependence on
the state of the environment. Also, the original equations propagated the cost func-
tion of tasks. However, the actions of the top stage LSA in Definition 5.2.1 are
productions, not tasks. The equations presented in this section propagate the cost
of both productions and tasks.

The propagation equations are presented in parallel for the components of the
cost function: reliability and cost. At each level of the HGDIM, equation (4.7)
applies. All costs are considered normalized to the interval [0, 1].

The conditional reliability of primitive algorithm « € Ay, £k =1,... n,
is defined similarly to the Definition 4.2.1, but it is conditioned by the state = of
the environment, and denoted by R(a|x).

The conditional cost of primitive algorithm « € Ay, £ = 1,...,n, is
defined similarly to the Definition 4.2.2, but it is conditioned by the state x of the
environment, and denoted by C(a|x).

These notions can be extended to events, tasks, commands and the overall

machine.

Definition 5.3.1 Conditional cost of event ¢, € F, k =1,...,n. is the min-
imum cost among all algorithms translating the event when x is the state of the

environment.

C(exlr) £ min{C(a|z)} (5.1)

aEAk
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Notice the similarity of (5.1) with the definition (4.3) of cost of a problem.

Definition 5.3.2 Conditional reliability of primitive event ¢, € F is the
average reliability among all algorithms translating the event, when x is the state of

the environment:
R(eg|x) ZPr{ak|x}R( k| ) (5.2)

where Pr{aﬂx} is the probability of selecting algorithm aj as the action of event ¢y,

LSA when x is the state of the environment.

Notice that this definition of primitive event reliability coincides naturally with
the definition of average reward of a LSA, given by equation (3.1). This is coherent

with the assignment of a LSA to each primitive event.

Definition 5.3.3 Conditional cost of parallel execution of events ¢,¢; € E

18

Cler//ea]z) £ Jmax {C(e]z), Cleafe)} (5-3)
while the Conditional cost of n events ¢,,...,¢, € I executed in series is
Al
C(el|...|en|:1:):EZC(e,'|x) (5.4)

i=1

The sample mean is used in equation (5.4) to keep the cost normalized.

The successive application of these rules to all primitive events (terminals of
the stochastic grammar) composing the consequent of a production (whether they
work in parallel or in series) leads to the conditional cost of a production r,
C(r|x). If there are no primitive events in the consequent, the production cost is
zZero.

The parallel execution of events is not logically parallel from the reliability
point of view. In fact, all events must be successful to complete a task, whether

they work in parallel or series.
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Definition 5.3.4 Conditional reliability of production r is
A
R(r|lz) 2 ] Rlexlz) (5.5)
ekegr
The product is defined over the set &, of primitive events or terminal symbols
in the consequent of production r. If € = 0, the production reliability is assigned

the value 0.5, according to Jaynes’ Principle of Mazimum Entropy[26].

The task cost function is obtained from the composition of cost and reliability
for all the productions used in the task derivation.

The above definitions of production and task reliability assume that events
do not interact, which is hardly true in practice. In fact, failure of one event may
imply the failure of another event, or even the success of an event which would be
unsuccessful otherwise. For example, if the motion system of a robotic system fails
to approach an object with the adequate pose, compliance control will not help the
manipulator grasping the object. However, even if the vision system may determine
the location of an object with an accuracy out of the error specifications (a failure),
the motion system may compensate that error with a positioning error.

This suggests that estimating the task (or productions) reliability should al-
ternatively proceed in parallel with the estimation of reliability of events, instead
of using the equations to propagate the cost function. The link between the two is
implicitly made by the environment. Case study 2 shows an example of separate
estimation of productions and events reliability.

The following definitions are not used by the reinforcement scheme, but are

presented here for completeness.

Definition 5.3.5 Conditional cost of command ¢;, ¢ = 1,...,n. is the mini-

mum cost among all tasks translating the command:

Cleile) 2 minfC(t]e)) (5.6)
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Definition 5.3.6 If the stochastic grammar is unambiguous, that is, if there is only
one leftmost derivation for each x, the conditional probability of task ¢ under
state x of the environment is defined by
K(t)
Pr{t|z} = kl:[l Pr{r,(k)|z} (5.7)
where K (t) represents the number of steps in the derivation of t, and Pr{r (k)|z} is

the probability of the production used in the kth step of the derivation of t.

Definition 5.3.7 Conditional reliability of command ¢;, ¢ = 1,...,n. is the

average conditional reliability among all tasks translating the command:
A ll . .
R(cilz) 2> Pr{ti|z}R(t}|x) (5.8)
7=1

The unconditional reliability is obtained from the definition of conditional
algorithm reliability and from any of the equations (5.2), (5.5) and (5.8) by averaging
over all states of the environment:

R(x) = Y Pr{a}R(x|z)
zeX
where * stands for algorithm, event, production or command, and X is the set of
states of the environment. Pr{z} is the probability of state = of the environment.

The total reliability of the IM is the average reliability over all commands:

R(IM) = i Pr{e;} R(¢;)

where Pr{¢;} is the probability of command ¢;, ¢ = 1,...,n. to be issued.

Similarly, the unconditional cost is obtained from the definition of condi-
tional algorithm cost and from any of the equations (5.1), (5.3),(5.4),(5.6) and by
averaging over all states of the environment:

C(*) = Z Pr{z}C(x|x)

zeX
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where * stands for algorithm, event, production or command, and X is the set of
states of the environment. Pr{z} is the probability of state = of the environment.

The total cost of the IM is the average cost over all commands:
C(IM)=> Pri{c}C(c)
=1

where Pr{¢;} is the probability of command ¢;, ¢ = 1,...,n. to be issued.

Entropy was the generic performance measure for a HGDIM originally pro-
posed by Saridis[69]. One of the components of the cost function proposed in this
thesis, reliability, can be univocally mapped to entropy at all levels of the HGDIM,
as long as its value is greater or equal than 50 %. Otherwise, a reliability of 20 %
or 80 %, for example, would correspond to the same entropy.

As for reliabilities, entropies are conditioned by the state x of the environment,
that is, H(x|x) is defined based on the conditional reliabilities. Another important
measure is the equivocation, obtained from H(*|z) as

H(x|X) = Z H(x|x)Pr{x}

zeX
and it represents the average information about reliability of * (algorithm, primitive
event, production, command), assuming observation of all states of the environ-
ment. Unconditional entropies H(x) are similarly derived from the unconditional

reliabilities.

Definition 5.3.8 Conditional Entropy of primitive algorithm a € A, k =

1o, nes
Hal|x) 2 —R(alx)log R(alx) — (1 — R(a]z))log(1l — R(a|z)) (5.9)
Definition 5.3.9 Entropy of primitive algorithm a« € Ay, k=1,... n.:

H(a) 2 —Z;{{R(a|:1;)Pr{x}log[R(a|:1;)Pr{:1;}]—|—

(1 — R(al|x)) Pr{x}log[(1 — R(a|x)) Pr{x}]} (5.10)



72

or
H(a) = H(a|X)+ H(X)
where H(X) = — Y cx Pr{z}logPr{a} represents the environment uncertainty,
while
H(a|X) =) Pr{a}H(a|x)
zeX
is the equivocation of primitive algorithm « € Ay, k =1,...,n. with respect

to the environment, representing the uncertainty about the success of the algorithm.

Definition 5.3.10 Conditional entropy of primitive event ¢, € F:

[

Hiee) & =3 {Pr{aile} Rl o) loglPr{aile} Riof o)+

Pr{ag|o}(1 — R(ai|x)) log[Pr{at|v}(1 — R(a}]e))]}
H(ex|x) =< H(ag|z) > +H(Ag|2) (5.11)

where

ng
< H(ag|z) >= ZPr{aﬂx}H(aﬂx)
i=1

is the average uncertainty about the success of the algorithms translating the event,
given the state of the environment, and
ng
H(Aglz) = =" Pr{a|a}log Pr{a} |z}
=1

is the uncertainty about the translation itself.
Definition 5.3.11 Entropy of primitive event ¢, € E:
Hier) & H(AWX)+ < H(ax|X) > +H(X) (5.12)

When learning is involved, and using the reinforcement scheme of Fu’s gener-

alized LSA, the equivocation with respect to the environment about the translation
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(H(Ar|X)) is reduced along time, due to the convergence to 1 w.p.1 of the action
probability of the optimal algorithm.

Similarly, the average uncertainty about the success of the algorithms trans-
lating the event (< H(ax|X) >) can be reduced at design time by choosing more
reliable algorithms.

Finally, H(X) is the uncertainty about the environment and can not be re-

duced.

Definition 5.3.12 Conditional entropy of production r, assuming indepen-

dent events:

H(rle) 2 Y H(exlz) (5.13)

ekegr

where &, is the set of primitive events in the consequent of the production.
Conditional Entropy of a task is similarly defined. The summation is
made over the events composing the task.

If independence can not be assumed and productions are directly reinforced
H(r|z) 2 —R(r)log R(r) — (1 — R(r))log(1 — R(r)) (5.14)

Entropy of production r is defined from the unconditional reliabilities in

either case, and so does Entropy of a task.
Definition 5.3.13 Entropy of command ¢;, i = 1,...,n. is

H(c) & H(T|X)+ < H(t|X) > +H(X) (5.15)
Definition 5.3.14 Entropy of the HGDIM s

H™ 2 —iZPr{c,'|:1;}Pr{x}R(c,'|:1;)log[Pr{ci|x}Pr{x}R(c,'|:1;)]

i=1xeX

= - i > Pr{cila} Pr{z}(1 — R(cilx)) log[Pr{c;|a} Pr{x}(1 — R(ci[2))]

i=1xeX
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or

H(IM)=H(C|X)+ < H(c¢|X) > +H(X)

where Pr{c¢;|x} is the probability of issuing command ¢;, i = 1,...,n. under state x
of the environment, and C is the set of commands. H(C|X) represents the equivo-
cation with respect to the environment about the command issued. < H(c|X) > is

the average uncertainty about the success of the command.

5.4 Hierarchical Reinforcement Learning

The definition of HGDIM left open the selection of the reinforcement or learn-
ing scheme. This section defines the learning scheme used at the two stages of the
HLSA.

All definitions of reliability in the previous section assume exact knowledge
of the conditional reliability of an algorithm. However, as it was explained before,
the nature of the environments under consideration requires the estimation of this
reliability.

Let A;; be the probabilistic event corresponding to the successful application
of algorithm «a; to state z; of the environment. Successful application means that
the algorithm obtains the desired goals and meets the specifications. Then, y;; € Y,

for the set Y in the above definition of environment, is a random variable such that

1 if A;; occurs
Yij =
0 otherwise

Also from the definition of environment,
Pr{A;} = Pr{y;; = 1} = R(ujlz:) = R

Furthermore,

Rij = Ely.;]
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Now, if several observations of the random variable y;; are made along time,
and since y,;;(1),...,y;j(n;;) are independent and identically distributed random

variables, the following reliability estimate after n;; observations

S () (5.16)

converges w.p.1 to R;j, by the Strong Law of Large Numbers, as n;; — oco[64].

The recursive version of the sample mean estimator of the reliability (5.16) is

N N N

Rij(ni; + 1) = Rij(nij) + m[%]‘(% +1) = Rij(nig)], Ry(0)=0  (5.17)
ij

Equation (5.17) is the estimate of performance function (3.5) of Fu’s general-

ized LSA, when v(n;; +1) = n‘l-l—l and 2ij = fx’”

Hence, Fu’s generalized LSA, described by equations (3.6)- (3.9), can be ap-
plied to learn the optimal primitive algorithms translating each of the primitive
events at the bottom stage of the HLSA.

In the following definitions of the HLSA reinforcement scheme, the notation
R(uj|x;) is reduced to a more compact R;;, where z; is a state of the environment
and u; is one of a primitive algorithm, primitive event or grammar production.

Similarly C;; will stand for C'(u;|z;) and p;; for Pr{u;|z,}.

Definition 5.4.1 The reinforcement scheme FZ¢ of the Coordination-to-Execu-
tion Translation Interface is defined for primitive event e, € I, k =1,...,n.

by the following equations:

R (ni +1) = B (ny) + yij(nij + 1) — B (ny)] (5.18)

n,']‘ —|— 1
Jif (nij) = 1= Rif(ni) + pCif (nij) (5.19)
Py (it 1) = pi () o+ o TN () = i ()] (5.20)

ngk .
P (0) >0, > piy(0)=1, R3(0)=0 (5.21)
7=1
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)\Zk (nl) _ 1 Zf Jk(n”) == mml{Jllk(n,l)} (522)

0 if JiF (nis) # min{ i (na)}

where © = 1,...,d denotes states of the environment, 3,1 = 1,...,n; denote alter-

native algorithms for ey, and n; = 3775, ny;.

The reinforcement scheme of the top stage of the HLSA is similarly defined,
with the important difference that the estimates of the cost function are propagated

by the cost and reliability propagation equations of the previous section.

Definition 5.4.2 The reinforcement scheme FZ° of the Organization-to-Coor-
dination Translation Interface is defined for the subset Ry C R of productions

of a stochastic grammar G with the same premise By, by the following equations:

o Conditional reliability propagation equations (5.2), (5.5), ¥r € Ry, Yo € X,

with R replaced by its estimate fx’;

e Conditional cost propagation equations (5.1), (5.3), (5.4), Vr € Ri, © =

1 d.

9o ey

In the propagation equations pZ»ik is now a function of time pﬁk(n), updated by the

reinforcement scheme:

I (i) = 1= RE* (i) + pCi* (nar) (5.23)
1
pit(ni+1) = pi*(ni) + N5t (ni) = pi*(na)] (5.24)
ng
Pt (0) >0, 3 pi(0) = 1. (5.25)
7=1
1 j»Rk N,y ) — Min jl»Rk n;
)‘Z'ik(ni): / - ( ) q{ ; ( q)} (5.26)
0 if Jir*(nir) # ming{Jig* (nig)}
where 1 = 1,...,d denotes states of the environment, r,q = 1,...,my denote alter-

native productions in Ry and n; = Z;n:kl Ny -
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Figure 5.2: Diagram of the HGDIM-Environment loop.

Figure 5.2 shows a block diagram of the closed loop HGDIM-Environment
under the proposed definitions of Hierarchical Goal-Directed Intelligent Machine

and corresponding reinforcement learning schemes.

Theorem 5.4.1 Given a command and a state of the environment, the HLSA cor-
responding to these command and state of the environment (defined by 5.2.1) and
its Hierarchical Reinforcement Learning Scheme (defined by 5.4.2 and 5.4.1), are

optimal, i. e. the probability of selecting the optimal task and optimal primitive

algorithms converges to 1 w.p.1.

The proof of the theorem may be found in Appendix B.
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5.5 Feedback Hierarchy

When talking about feedback flow inside the HLSA modeling the translation

interfaces of a HGDIM, two types of feedback must be distinguished:

e Reinforcement feedback, consisting of success (1) and failure (0) signals

provided by the monitoring algorithms;

e State of the Environment feedback, consisting of a set of features char-
acteristic of the current state of the environment, provided by the monitoring

and/or other algorithms.

Reinforcement feedback is used by the reinforcement scheme to estimate the
cost function and from there the action probabilities.

State of the Environment feedback is necessary to identify the current state of
the environment and select the correct HLSA to be updated.

In the previous sections of this chapter, the definitions of reliability, cost and
action probability are conditioned by the state of the environment. However, several
questions arise regarding the definition of state of the environment at different stages

and even within the same stage of the HLSA:

e The HLSA faces an instance of the (well known to Artificial Intelligence re-
searchers) frame problem: even though the environment may have several
states, a change in the state of the environment may not represent an actual
change of the cost function for all LSAs at the bottom stage of the hierarchy.
For example in Robotic systems, switching off the lights may be critical for a
vision problem, but has no effect on control, path planning or other problems.
This may suggest more efficient ways of dealing with the combinatorial explo-
sion of (algorithm, state of the environment) pairs, perhaps by letting each
primitive event “decide” from the current features of the environment if, from

its point of view, there was a change in the state of the environment.
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o The state of the environment effectively “seen” by the top stage of the HLSA
is a composition of the states of the environment “seen” by the bottom stage.
For example, the state of the environment of a production may be obtained
from the current environmental states of the primitive events in the consequent

of the production.

The best way to handle these questions is not currently known. However, due
to its importance for this work, they were raised here to launch topics of future
work in HGDIM. In this thesis, the architecture proposed for the flow of state of the
environment feedback through the HGDIM is the following: at the bottom stage
of the HLSA, the state of the environment is determined by each primitive event
before using reinforcement feedback. The decision about the current state of the
environment pertains to each primitive event, and is typically obtained using Pattern
Recognition techniques. The set of current states of all primitive events is an input
feature set for the Pattern Recognition techniques used by the top stage production
subsets to determine its own environmental macro-state.

Notice that the flow reinforcement feedback is shown as part of Figure 5.2.

5.6 Design Methodology

The following is the proposed design methodology for the IM, based on the

discussion of the previous sections:
1. Define the set of commands C =¢;, 1 =1,...,n;

2. Design a stochastic grammar (; for each of the commands in the command set,
representing the alternative tasks for each command. If there is some evidence
leading to the assignment of specific initial values of action probabilities to
alternative productions of the grammar with the same premise, make them the

initial estimates. Otherwise, by Jaynes’ Principle of Maximum Entropy, assign
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equal initial probabilities to all productions of the same subset R;r, C R;, such

that they add up to 1;

. Define the set E of all primitive events, and its subsets E', ¢ = 1,...,n¢
for each command, together with the measure of specification error and the
specified accuracy ¢ for the problems represented by the events. Notice that
specifications are made for the problem represented by each event, not for the

algorithms translating the event;
. Assign a set of alternative primitive algorithms to each of the primitive events;

. Determine the states of model of the environment, from the point of view of
every primitive event. Then, determine the macro-states of the model of the

environment, from the point of view of top stage production subsets;

. Assign costs to all (primitive algorithm, state of the environment) pairs. The
bottom-up cost propagation may be done at this step, since the cost is not
estimated on-line. At the top stage, costs are assigned to (production subsets,

macro-state of the environment) pairs;

. If there is an initial estimate of the reliability (e. g. model based[49, 56])
for any primitive algorithm, use that initial value in the modified reliability
estimator (6.10) described in the next chapter. Otherwise assign to every
primitive algorithm an initial reliability of 0.5 by Jaynes’ Principle of Maxi-
mum Entropy. All assignments must be made to (primitive algorithm, state

of the environment) pairs;

. If there is some evidence leading to the assignment of specific action proba-
bilities to alternative algorithms translating an event, make them the initial

estimates. Otherwise, again by Jaynes’ Principle of Maximum Entropy, assign
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equal initial probabilities to all the algorithms translating an event, such that

they add up to 1;

9. Design a set of monitoring algorithms whose output are features that can be
used by the primitive algorithms to determine its own success or failure. These
features can also be used to continuously update a World Model and determine
the current state of the environment from the point of view of the primitive

algorithm.

The cost of every algorithm translating an event must be determined by the
same cost measure. However, in general, different measures may be assigned to
different events. For example, if the cost of a vision related event is measured in
terms of the number of frames necessary to obtain a reliable estimate, the cost
of a motion event in terms of the rise-time of the response, and path planning in
terms of the number of knot-points generated, they can still be combined under this
definition to obtain the task or production cost. The normalized cost pC € [0,1]
must be used not only to balance cost and reliability in the cost function, but also

to scale different cost measures among events.

5.7 Execution Algorithm

1. For every primitive event, determine and store the estimate of the initial state
of the environment, initial reliability estimates and initial probabilities of se-

lecting primitive algorithms;

2. For every production subset, determine and store the estimate of the initial
macro-state of the environment, initial reliability estimates and initial proba-

bilities of selecting productions;

3. Wait for a command ¢;, : = 1,...,ng;
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4. Given the current macro-state of the environment, translate the command

by a task selected from the productions of the stochastic grammar for that

command by random decision, using the current production probabilities (Or-

ganization-to-Coordination Translation Interface LSA);

5. For each of the primitive events composing the task, do:

(a)

Given the current state of the environment, select one of the primitive
algorithms translating the event by random decision, using the current
primitive algorithm probabilities (Coordination-to-Execution Trans-

lation Interface LSA);
Execute the primitive algorithm selected in the previous step;

Check the output of the monitoring algorithm associated to the selected
algorithm and update the reliability estimate of the algorithm using (5.18)
and the conditional reliability estimate for the primitive event (5.2), given
the current state of the environment. From these estimates and the cost,
obtain the estimated cost functions (5.19) of the primitive event and its
algorithms. Update the probabilities of the primitive algorithms trans-
lating the event, using (5.20) and (5.22);

6. Using Equation (5.5) update the reliability of productions having in the conse-

quent the primitive events whose reliability was updated in the previous step.

The current macro-state must be taken into account;

7. From the production reliability estimates and the cost propagated by Equa-

tions (5.3) and (5.4), build the estimated cost functions (5.23) of the grammar

productions. Update the production probabilities for each production subset,

using (5.24) and (5.26);

8. For every primitive event, update the estimate of the state of the environment;
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9. For every production subset, update the estimate of the macro-state of the

environment;

10. Go to 3.

5.8 Relationship with Previous Work

This section shows the relationship between the proposed model of the HGDIM
and past work in the area by Saridis and his associates.

According to Saridis[70], Machine Planning is
“the ordering of primitive events to form a task.”

While doing Machine Planning, if the number of primitive events is large, a
combinatorial explosion of the number of different possible sequences may happen.

One way of reducing this explosion is to express at design time the natural
constraints on events ordering by a grammar. This strategy consists of composing,
rather than decomposing, the available information. A priori knowledge is expressed
by a pre-designed set of primitive events and tasks which are known to be useful in
the context where the HGDIM will operate. The machine learns at execution time
from experience the best choices among each of these entities.

The stochastic grammar may be directly designed or learned off-line from
example tasks[54].

Also according to Saridis[70], Machine Decision Making is
“the process of selecting the sequence (task) with the largest probability of success.”

The task selection mechanism is implemented in this work by the Organi-
zation-to-Coordination Translation Interface LSA. For each primitive event
composing the task, the Coordination-to-Execution Translation Interface
LSA implements the primitive algorithm selection mechanism. However, the task
and primitive algorithms selected in steady state are not necessarily the most suc-

cessful (most reliable), but the ones that minimize the cost function (4.7).
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Still according to Saridis[70], Machine Learning is
“the feedback process of updating the action probabilities of the tasks and low level
algorithms after they are applied.”

The reinforcement schemes defined by 5.4.1 and 5.4.2 implement this feedback
process for primitive algorithms and tasks, respectively.

Previous work on the Analytic Theory of Intelligent Machines proposed solu-
tions for planning, decision making and learning for individual levels of the IM, but
not a global solution such as the one introduced in this thesis.

Moed and Saridis[54] proposed a Boltzmann Machine for Planning at the Or-
ganization Level. Saridis[70] describes a slightly different stochastic neural network
which has more similarities with the stochastic grammar used here. The nodes of
the network are stochastic units corresponding to events and primitive events. Each
of them has a probability of being active (1) or inactive(0). When one of the units
is clamped externally, meaning that the corresponding command was sent to the
machine, the sequence of units which become active represents the task chosen to
translate the command. The weights associated to the bidirectional arcs connect-
ing pairs of nodes are updated to reflect the probability update of the grammar
productions.

Wang and Saridis[92] proposed Petri Net Transducers (PNT) for the Coor-
dination Level, described in chapter 2. Beard and Saridis[8] refined this solution
recently. However, the main concept remains: each transition of the Hierarchical
Petri Net underlying the PNT is translated by a primitive algorithm at the bottom
level or by another Petri Net at the upper levels. The bottom level corresponds
to the Coordination-to-Execution Translation Interface LSA of the HLSA
described in this work. Transitions of the PNT Coordinators represent primitive
events. The transitions at upper levels correspond to the production subsets of

the stochastic grammar or equivalently to non-terminals (events) of the grammar.



89

These levels correspond to the Organization-to-Coordination Translation In-
terface LSA of the HLSA. The equivalence works if the Dispatcher PNT reads a
tape with the events corresponding to the premises of production subsets triggered
by a given command. The Hierarchical PNT of the Coordination Level is responsible
for the further decomposition of the events into primitive events and from those into

algorithms, and also by the reinforcement learning of the translation mechanisms.

5.9 Summary

This chapter introduced the main contribution of this thesis, which is to repre-
sent the feedback activity of Saridis” Hierarchical Goal-Directed Intelligent Machine
by a Hierarchical Learning Stochastic Automaton. The different types of feedback
involved in a HGDIM were also mentioned. A design methodology and a general Ex-
ecution Algorithm were introduced. The relationship with previous work by Saridis

and his associates was analyzed at the end of the chapter.



CHAPTER 6

Convergence Rate and Convergence Acceleration for Stochastic

Approximation

The hierarchical reinforcement scheme defined in the previous chapter is based on
stochastic approximation methods. The use of stochastic approximation has the
advantage of guaranteeing convergence w.p.1 to the optimal action. However, its
convergence rate is slow.

In this chapter the transient behavior of the LSA representing the bottom
level of the HGDIM is analyzed (section 6.1) to help understanding how long does
it take to choose the optimal action most of the times, and what happens while it
is not chosen. In section 6.2, two different acceleration schemes documented in the
literature on stochastic approximation will be adapted to the formulation of this
thesis. Its advantages and disadvantages will be illustrated with some examples and
the tradeoffs between using one or more of these methods or having no acceleration
at all will be discussed.

In the sequel, the dependence on the state of the environment is not relevant
and will be frequently ignored by dropping the corresponding index for simplicity

of notation.

6.1 Convergence Rate

Two natural questions concerning the practicality of the proposed hierarchical

reinforcement scheme are:

1. Even though the average over a large number of runs converges to the optimal

task, is there a risk that some individual run produces a sub-optimal task?

86
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2. How long will it take before the HGDIM selects the optimal tasks and primitive

algorithms most of the times?

Before answering these questions, the meaning of sub-optimal task or sub-
optimal primitive algorithm in this formulation must be emphasized: a sub-optimal
primitive algorithm (or task) is not necessarily one that may damage the machine or
produce very bad performance. According to the design methodology of section 5.6,
the primitive algorithms are designed to meet some set of specifications. Due to
incomplete modeling and other disturbances, they will not be 100 % reliable. The
same can be said about the design of the stochastic grammar for each command.
However, a sub-optimal algorithm and/or a sub-optimal task may achieve a reason-
able performance each time they are selected and applied. It is implicitly assumed
that a HGDIM is built with the experience of knowing the best algorithms, and
not randomly selecting algorithms, expecting the machine to “teach” them how to
improve their performance. As such, even during the transient period, the behavior
of the machine should be acceptable. This methodology aims at providing a mea-
sure to help compare different design alternatives and to guarantee the convergence
to the optimal operation for a specific design with various alternatives. Given the
above, the speed of convergence of the learning process is not as important as in
other applications.

The answer to question 1 above is no, as long as one waits long enough. To
understand this statement, suppose p(n) is a sequence of random variables (in this
case representing the evolution of the probability of the best action). The definition

of convergence of p(n) to 1 w.p.1 states[61]:

Pr{lim p(n) =1} =1

n—oo

or, equivalently

Ve, 6 > 0dng(6,¢) > Pr{sup [p(n)—1|<e}>1-16

n>ng
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That is, it is always possible to find a ng such that in most of the runs p(n)
will be in a neighborhood € of 1 for every n > ny. In general, when 6 — 0 and
e — 0, ng — oo. Hence, the optimal action will be chosen for all runs when n — oc.

To help answering the second question, the following Lemma will be proved

first:

Lemma 6.1.1 Consider the reliabilities Ry, ..., R, assoctated to m algorithms ca-
pable of translating some primitive event. With no loss of generality, suppose the
algorithms are ordered by increasing values of reliability, i. e. u,, is the most reliable
algorithm, u,,_1 the second most reliable algorithm and so on. Let A = R,,, — R,_1.
Assuming that R, is unique, A > 0. If fi,(n,) denotes the sample mean estimator

of R; after u; is applied n; times, the following holds:

. m ARl — R))

Pr{Rp(nm) > Ri(n;), j=1,...,m -1} > [[(1 - ). Yi=l...m
=1 2

(6.1)

Proof (partially derived in [79]): Let A; be the probabilistic event correspond-
ing to the successful application of algorithm wu; to the environment. Then, y; is a

random variable such that

1 if A; occurs
Yi =
0 otherwise

And the following equations hold:
Pr{y, =1} = R;
Ely] = Ri
var y; = R;

(1-R;)

The sample mean estimator of R; is given by

i) = 23 (b

1
; k=1
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with mean and variance

A

ElR(ni)] = R
Ri(1 —R,))

1

var fi,(n,) =

Using Chebyshev’s inequality, the following holds for ¢ = 1,...,m:

CAR(1 - Ry)

Pr{|Ri(n:) — Ri| < A2} > 1 — ﬁm Fafn = 1= 20

(6.2)

This inequality presents a lower bound for the probability that each estimate
Ri(n;) is in the interval [R; — A/2, R;+ A/2]. By definition of A, a lower bound for
the probability that the reliability estimate of the optimal action has the greatest

value among all reliability estimates is given by

N

Pr{Rp(nm) > Rj(n;), j=1,...,m—1} > f[Pr{U%,(n,) — Ri| < A/2}

From this inequality and Equation (6.2), Equation (6.1) holds. O

A similar reasoning leads to an approximate measure of convergence speed for
the reliability estimates: the sample mean estimator converges in probability, by the
weak law of large numbers[61], for all e = 1,...,m:

lim Pr{Ri(k) =R} =1

k;—oo

or equivalently
Ve, 8> 03n; (e, 6) < 0o > Pr{|Ri(k) — Ri| < e} >1—8, Vki > nimin

For ¢ = A/2, a lower bound is given by Chebyshev’s inequality, for each

v=1,...,m:

AR(1 = R))

Pr{|Ri(nimm) — Ri| < A/2 1 -
V) — il < /2 > 1 - L

where A > 0 is again the difference between the actual reliabilities for the two best

actions.
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It 6 is given,

4R (1 — Ry) . 1
= 71 =

Mimin SAZ2 ) geee s I (63)

and, by Lemma 6.1.1:

N

Pr{]%m(km) > Ri(kj),g=1,...,m=1} > (1=6)" = Prp Yki > nigin, t = 1,...,m
(6.4)

Hence, if a lower bound Pj g is specified for the probability that the reliability
estimate of the optimal action has the greatest value among all reliability estimates,
6 can be obtained from Equation (6.4). Given 6, the step n;in, ¢ = 1,...,m after
which the lower bound holds is given by Equation (6.3) for each of the estimates of
reliability. Notice that n;,, is an upper bound for the actual n;.,;,: the number of
steps needed to reach exactly Prp is less than n;.,;,, but no more than n;.;, steps
are needed to guarantee (6.4).

According to the reinforcement scheme (3.6-3.9), when the number of algo-
rithms capable of implementing a primitive event is m, the knowledge of n;,;,, ¢ =
1,...,m gives approximate information about the step after which the probabil-
ity of the optimal action being rewarded is lower bounded by FPrp. In fact, if
Nmin = 2 ieq Nimin, the probability of the optimal action being rewarded after the
Nminth probability update is lower bounded by (1 — 6)™. Suppose Prp = 95%. This
means that in ‘more than 95" out of 100 runs, the estimate of the most reliable
action will in fact be larger than the other estimates. Hence, for these ‘more than
95 runs’, the optimal action will be rewarded by increasing its probability. For high
Pr s, the optimal action will become the most probable in a few steps after nu,.

This will be now illustrated with an example concerning a 2-actions LSA, for
which m = 2 in equation (6.3) above. Given a desired lower bound Prp, nmm =
M1 min T P2min depends on the reliabilities Ry and R; of the two actions and on the

difference between them, A = Ry — Ry (assume Ry > Ry).



91

Ry 0.70 | 0.75 ] 0.80 | 0.85 | 0.90 | 0.95 | 1.00
Nmin || 897 | 848 | 780 | 692 | 585 | 458 | 312

Table 6.1: n,;, for a 2-actions LSA. A =0.2 and ;.5 = 0.9

A 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50
Nmin || 10838 | 2885 | 1343 | 780 | 508 | 355 | 259 | 195 | 149 | 115

Table 6.2: n,,;, for a 2-actions LSA. R, = 0.8 and P,z = 0.9

Prp was fixed at an arbitrary value of 0.9. For this value, Table 6.1 shows
the values npy;, for a 2-actions LSA, when R, increases from 0.7 to 1.0 in steps of
0.05, given A = 0.2. Table 6.2 shows the values ny;, for a 2-actions LSA, when A
increases from 0.05 to 0.5 in steps of 0.5, given Ry = 0.8. There are infinite possible
combinations of Prg, Ry and A. The values shown in the example sweep a range of
typical values (see case studies). For other combinations, nmm is determined from
Equations (6.3) and (6.4) above.

The results show that ny;, decreases when Ry and A increase, i. e. the larger
the maximum reliability is, and/or the larger the difference between reliabilities is,
the faster the LSA converges to the optimal decision. The influence of A dominates.
Even though large ny,, correspond to small A, it is important to keep in mind that
Nmin 18 a loose upper-bound and the lower A is, the smaller is the error due to
selecting the wrong action, as discussed above.

Lemma 6.1.1 will now be used to investigate the time evolution of the mean
value of action probabilities. The probability update equations are rewritten here

for the case of a single-state environment:

piln+1) = pi(n)+

(ANi(n) —pi(n)), i=1,...,m (6.5)
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)\,(n) =

1 ifj,' n;) — min J(n m
{ () = minhm)} e
=1

0 if Ji(ni) # ming{Je(nx)}

Notice j,(n,) shares the above properties of fi,(n,) Also, minimizing J corre-

sponds to maximizing R if the cost is zero, as will be assumed in the sequel. This

does not imply any loss of generality, because the cost may be interpreted as a bias
added to the complement of reliability.

Taking mean values of (6.5)

Elpi(n +1)] = Elpi(n)] + {Ei(n)] = Elpi(n + 1)1}

n4+1

and rearranging terms

Bl + 1)) = = Blp(n)] + — < B (n)

Using the general solution of the difference equation describing a time-varying

discrete system[9], one obtains

n

n+l n
Elpi(n +1)] = ([] ——)E +zn—§ NG 1), 0> 1

where T[;_, 1, kk? =1 is assumed.
Due to its particular structure, the solution can be simplified to

Bl + 1)) = —{Blp(1] + 3 BNG)) (6:0)

=1

Now notice that, assuming all costs equal to zero to simplify the derivation:

E\i(n)] = Pr{Ri(n;) = k{glaxm{ﬁ?k(nk)}}

.....

It + = m, that is, focusing on the probability of the optimal action, and using

Lemma 6.1.1:

Em(n)] = Pr{Rm(nm)> Ri(n;), j=1,...,m—1}
[0 - =R, (6.7

=1
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where n =37 n;.

Hence, making (with no loss of generality) n, =n/m, Vi=1,...,m,
m o mRi(1 - Ry)

E, l—-— :

(R e (65)
and
1 n.om 4mRi(1 — R,)

Elpm 1 —A{ Elpn(1 - .

o+ 1> Pl + S0 - G oo

Inequality (6.9) gives a lower bound of the actual time evolution of E[pm(n)].
It is a loose lower bound, since the lower bound for E[A,,(n)] is also loose. However,
it gives a reasonable idea of what one may expect in the worst case.

Again, a LSA with 2 actions will be used to illustrate these results. Figure 6.1
shows plots of the lower bound of E[pz(n)] when R is incremented from 0.80 to 1.0
in steps of 0.05. Figure 6.2 shows plots of the lower bound of E[ps(n)] when A is
incremented from 0.05 to 0.3 in steps of 0.05. Again, the plots represent a small
subset of the possible combinations, chosen due to its representativeness. F[Ay(n)]
was made 0 when Equation (6.8) gave a negative lower-bound. Initial probabilities

p1(1), p2(1) were made equal to 1/2, by Jaynes’ Principle of Maximum Entropy.

6.2 Methods of Convergence Acceleration
6.2.1 Fu’s Acceleration Scheme

One common measure of the convergence rate of a Stochastic Approximation
algorithm is the mean square error E[(0(n) — 0)%] between the estimate 0(n) at step
n and the actual value 6.

An acceleration algorithm proposed by Fu and his associates[22] consists of
replacing y,;(n;; + 1) in Equation (5.17) by

1 et

> yii(k)

nl] —I_ 1 k=1
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Figure 6.2: Lower bound of E[p,(n)], for different A = D when R, = 0.9.
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This modified algorithm converges w.p.1 and has a mean square error lower
than the original algorithm[22]. Hence, convergence is accelerated and the evolution

of the estimates is smoother.

6.2.2 Use of Initial Reliability Estimates

If there is an apriori estimate of the sought quantity, the convergence rate may
be significantly improved by using that estimate. However, the recursive version of
the sample mean estimator of the reliability produces the same estimates as the
non-recursive version only when fx’(()) = 0 (see Equation (5.17)).

An estimator which includes the apriori reliability estimate fx’(()) and a confi-

dence factor W in that estimate is given by[20]

RY (n) :n+WZy ) + WR(0)]

Its recursive version follows:

1

RW 1) =RY _ 1) — kY 1
R4 )= RV 4 sl ) - ) (610)
The estimator is asymptotically unbiased
w .
lim {E[R" (n)] = — -
fan (ERY ()] = T Bt o ) = &

and consistent

lim {var R" (n) = t (0t W)
n—oo n

where RV (n) = ]%W(n) — R, the estimation error.

Furthermore, from the variance of the estimation error, it is possible to analyze

the convergence rate for different W. Noticing that

n 1 2W+W?/n

(n+W)2_n_ (n+ W)?
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the error variance can be rewritten as

- R(1—R) 2W+W?3/n W2 .
_ _ _ -

var R (n) = " (n £ V)2 R(1 - R)+ R

By 2W 4+ W?/n w2 .

= var R(n) (n £ V)2 o (W2

where ¢ = R(1 — R) > 0, ];’2(0) = (R - ]%(0))2 > 0 and var fx’(n) is the error

variance for the sample mean estimator. Defining the polynomial in W > 0
P(W) = (R*(0)n — a>)W?* = 2na*W

the error variance can be further rewritten as

. N P(W
var RW(n) = var R(n) + W

The behavior of the convergence rate can be studied by investigating the be-
havior of P(W). For example, in the trivial case where the initial estimate fx’(())
equals the actual value R, ];’2(0) =0and P(W) <0, VW > 0Vn > 0. Hence, the es-
timator ]%W(n) accelerates convergence in this case, because var R (n) < var R(n).

When fx’(()) # R different situations exist, depending on the value of W. P(W)

has two roots:

Wy =

EQ(O)n — o2

Assuming n > RQL, so that wy > 0, two situations must be considered. Given

(0)
R (which determines the value of ¢?) and fx’(()) (which determines the value of

R2(0)),

e if the confidence factor W > wy, P(W) > 0 and the convergence rate is slower

than when the sample mean estimator is used;

e if the confidence factor wy < W < wy, P(W) < 0 and the convergence rate is

faster than when the sample mean estimator is used;
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This acceleration method works well when ];’2(0) ~ 0, as expected, because
the range of W for which P(W) < 0 increases significantly, meaning that one can
put more confidence in the initial estimate.

To avoid the dependence of wy on n, one may prefer to use

Woeo = lIMm wy = ——

I
as the second root of P(W) and study the behavior of the polynomial as above, but
now the results will be valid only when n — oc.

The stochastic approximation algorithm using this acceleration method does

also converge w.p.1. This is proved in Appendix B as part of the proof of Theo-
rem 5.4.1.

6.2.3 Comparison of Acceleration Methods

All combinations of the acceleration methods discussed above were simulated
for a 4-algorithms LSA and compared with the case where no acceleration was
used. The reliabilities simulated for the 4 algorithms were: R; = 0.8, Ry =
0.85, R; = 0.9, Ry = 0.95. These values were chosen to illustrate a situation
where convergence is slowed by the reasonably large number of algorithms and the
small differences in reliability between them. All plots show the average of 50
runs, with 400 iterations each. Whenever used, initial reliability estimates were
]%1(0) =0.9, ]%2(0) =0.7, ]%3(0) = 0.75, ]%4(0) = 0.9. The confidence factors used
were Wy = 2, Wy =0, W3 = 0, Wy = 20, meaning that some confidence is put
on the initial estimates of Ry and R4, and that the initial estimates for the other
algorithms will not actually be used. Notice that wse, = 32 for algorithm w; and
W = 38 for uy, hence in both cases the convergence rate should improve when
n — oo (where n corresponds to iterations in the figures), because Wy and W are

both smaller than ws..



98

RAN0)=(1111); W=(000D0) RA0)=(1111); W=(0000)
1

0.9 g

0.8 T T N —-- 7

0.7 e 1

Probability
o
o

. . n ° . . , . . . .

50 100 150 200 250 300 350 200 o 50 100 150 200 250 300 350 400

iterations iterations
RA(0) = (0.90 0.70 0.75 0.90); W = (2 0 0 20) RA(0) = (0.90 0.70 0.75 0.90); W = (2 0 0 20)
1
o.9F g
0.3f g

o.8f b
0.7t g
o.6f g
0.5 R

Probability
\

0.051 1
. . . . . . . o . . . . . . .
50 100 150 200 250 300 350 400 o 50 100 150 200 250 300 350 400
iterations iterations
RA0) = (111 1); Fu etall acceleration RA0) = (111 1); Fu etall acceleration
1
0.91- 1
0.3 1
0.8 1

Probability

o . . . . I : : o . . . . . . .
(] 50 100 150 200 250 300 350 400 (] 50 100 150 200 250 300 350 400
iterations iterations
RA(0) = (0.90 0.70 0.75 0.90); W = (2 0 0 20); Fu algorithm for R~ RA(0) = (0.90 0.70 0.75 0.90); W = (2 0 0 20); Fu algorithm for R*
1 =
P
0.9 7 B R ST T T TS T T ST TS T T T T oo T T
! 0.3F 7 1
0.8 <7 ] b
’ V1
'
o7k i 0250 P 4
oer ! 1 s
= I 4
k=) /
gos5 4
]
£ i

250 300 350 400 (9 50 100 150 200 250 300 350 400
iterations iterations
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The top of Figure 6.3 shows the case where no acceleration was used. The
second row of the same figure shows the result of using initial estimates of reliabil-
ity to accelerate the estimation of the complement of reliability. Even though the
convergence is slightly faster for the reliability estimation process, the probability
convergence is slower. This illustrates how difficult it is to assign proper initial re-
liabilities and confidence factors. In the third row, only Fu’s acceleration method
was used. Both plots are smoother than in the previous examples, but convergence
of probabilities is still slow. Finally, the bottom of the figure shows the best among
all combinations: when Fu’s method and initial reliability estimates are used, con-
vergence of both the complement of reliability estimates and the probabilities gets
significantly faster: this is the only case where the optimal algorithm is chosen with

probability 1 (for practical purposes) at the end of the 400 iterations.

6.3 Summary

The convergence rate of stochastic approximation algorithms was studied in
this chapter. Lower bounds for the evolution of the cost function estimates and the
process of learning action probabilities were presented. Two acceleration algorithms
were adapted to the problem approached in this work and their performance was

investigated both analytically and by simulation.



CHAPTER 7
Case Studies

In this chapter, two case studies in different control areas are presented, to illus-
trate the application of the theory introduced in the thesis and to demonstrate its
flexibility.

Section 7.1 treats the operations management of a glass melting furnace. A
small subset of the operations is simulated to introduce in a simple way the main
concepts of the theory. Section 7.2 describes a realistic simulation of an intelligent

robotic system. This case study is richer in details and number of handled situations.

7.1 Case Study 1 - Operations Management of a Glass Melting Furnace

The operation and control of large scale industrial processes such as water
treatment, cement or glass processing is usually a hard task, because it involves sev-
eral control loops (air, fuel, pressure, temperature) resulting in coupled multivariable
systems, with difficult mathematical modeling. The solutions usually implemented
are based on conventional controllers (e.g. PID), manually tuned or self-tuned for
each control loop. The systems are managed by experienced operators who modify
the set points for each loop with the objective of maximizing efficiency, constrained
by specifications concerning production levels and final product quality. In recent
years, there has been a growing concern about pollutant production, and some con-
trol strategies include its minimization as another goal.

Process controllers based on expert system shells or fuzzy rules have emerged
in the last years[28, 29, 35]. Advantages in terms of efficiency and final product
quality have been reported for several practical applications on different process
industries. The main reason for these improvements lies in that the Knowledge

Based Systems used take into account not only overall performance improvement

100
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(e.g., maximizing heat transfer to glass), but also the handling of exceptions. For
example, if the heat transfer to the glass is maximized, but there is non melted glass
in certain areas due to an improper temperature profile, the main goal of the system
must temporarily change in order to deal with this problem, even though the goal
of maximizing transferred heat is momentarily sacrificed.

These solutions, even though promising, suffer of the usual drawback associ-
ated to Artificial Intelligence approaches: the lack of an analytical analysis capable
of providing performance measures and a methodology of design. Hence it seems

interesting to approach the problem using the methodology described in this work.

7.1.1 Description of the Problem

This section presents the results of modeling a subset of the Operations Man-
agement of a Glass Melting Furnace as a HGDIM with the translation interfaces
modeled by a HLSA. Due to the current lack of reliable data concerning the per-
formance of the algorithms, the problem is described with detail to illustrate the
involved tradeoffs and empirically extrapolate data for the simulations. The model-
ing issues raised here are typical not only of Glass Manufacturing but also of other
industrial processes.

The algorithms referenced in the case study were developed during the EEC
ESPRIT-II project AIMBURN (“Advanced Intelligent Multi-Sensor System for Con-
trol of Boilers and Furnaces”)[2], where they were used under a different approach,
described in [40].

A glass furnace usually includes 3 areas[63]:
o (Glass Melting Area;
o Working Area;

e Fining Area;
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The raw material (batch) is fed to the furnace and is transformed into molten
glass in the Glass Melting Area. The homogenization of the glass occurs in the
Working Area, and finally its temperature is slowly lowered in the Fining Area,
where the glass softly flows to the furnace outlet.

The main objective in the operation of Glass Melting Furnaces is to achieve
specified production levels and final glass quality while minimizing fuel consumption.
The most important variable that has to be controlled such that specifications can
be met, is the temperature profile along the furnace. Different temperature profiles
lead to different amounts of heat flur to the molten glass. Production level and
glass quality are indirectly related to the amount and distribution of heat input.
Maximization of thermal efficiency, defined as the fraction of total energy input
(fuel + air energy) transmitted to the glass, corresponds to the minimization of
input fuel energy for a desired heat input to the molten glass.

However, direct temperature control by manipulating fuel flow and fuel tem-
perature is not enough, because several factors can disturb the process and hence

have to be taken into account. Some examples of such disturbing factors are:

e Inadequate batch composition leading to incorrect glass color. Air/fuel ratio
must then be re-tuned for the new conditions, and coloring materials may have

to be introduced;

e Changes in molten glass level inside the furnace may introduce impurities in
the final glass, or prevent it from reaching the outlet zone of the furnace.

Hence the batch input rate must be controlled by the glass level;

e The air pressure inside the furnace lower than the outside pressure allows the
leaking of outside cool air having as a result the decreasing of the temperature.

Hence a pressure control loop is needed.

e The reduction of pollutant emissions is usually accomplished by decreasing
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the excess-air level (amount of air added to the combustion air specified by
the desired fuel flow and air/fuel ratio). However, this decreases the heat flux

to the glass and increases the unburnt hydrocarbons leaving the furnace[12].

The management of all these loops and disturbances is usually the responsibil-
ity of trained operators who can control the process not only using the information
supplied by the flow, the temperature, the pressure, and the glass level meters, but
also visual information about flame quality provided by video cameras. Given that
information, they may decide to change set-points and air/fuel ratios, or add col-
orings, to assure regular functioning. Monitoring the location and motion of non
melted materials which may be located in, or moving towards, forbidden regions is
possible through a video camera momentarily entering the furnace. A barrier of air
bubblers is used to prevent the flow of those aggregates of non melted material to
reach the furnace outlet. The control of the bubblers air flow can take into account
the vision system information. The differential control provided to each furnace
burner can also be used to melt the aggregates. The AIMBURN project included a
Vision System that provided a set of features describing the non melted aggregates,
the flame and the status of burners and bubblers[90].

The furnace considered in the AIMBURN project burns oil and is of the end-
fired type. There are 6 burners, installed in the back wall, divided in 2 groups
of three, fired alternately each 20 minutes. Each of the 3 burners of a group can
be independently controlled. The expertise acquired during the project focused on
regular operation and removal of non melted materials, the most important fuel
saving and final product quality factors.

One possible design option for these two operations is to consider them as
two separate (not independent) goals. Hence, two commands are defined: Regular
Operation and Remove Non Melted Materials. Defining the removing of non melted

materials as a separate command was the option taken because it is an emergency
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operation that must be done as soon as it is detected, hence it can not wait for
the learning process to reach steady state. However, switching between Regular
Operation and Remove Non Melted Materials can be accomplished without human
intervention, using the results provided by the vision system: after each task is
applied, geometric features of the non melted parts are checked for their proximity
of the Fining Area and their dimensions. The features provided by processing the
inside-furnace images are the area and mass center of the whole set of non melted
glass parts, a measure of its eccentricity in 2-D, and the radius in the longitudinal
direction of the furnace which measures the extent of the danger of reaching the
neighborhood of the bubblers. This information is to be used later by the task
translating Remove Non Melted Materials, but at this point the command will be
activated only if the materials are too big and too close to the Fining Area.

The simulations described in the next subsection concentrated on the com-
mand Regular Operation. The regular operation of glass melting furnaces often faces
contentious goals. For example, the goal of maximizing the heat (), transferred
from flame and radiating walls to the molten glass, conflicts with the need to min-
imize pollutant levels, expressed by the nitric oxide concentration ([NO]) inside
the furnace. Carvalho et al[12] used a mathematical model to study the effects of
combustion excess-air level, air preheating, and fuel composition on the nitric oxide
emissions of an industrial glass furnace. The authors concluded that decreasing the
excess-air level leads to a decrease of [NO], but also to a decrease of (). Preheating
the combustion air increases @)y, but [NO] is also significantly increased. Further-
more, when the fuel used is a mixture of methane and nitrogen rather than pure
methane, both [NO] and ), decrease.

To handle these conflicting goals, Farmer and Bryant[16] proposed a control
scheme to maximize thermal efficiency, constrained by specifications on the maxi-

mum allowed pollutant level. First, they estimated on-line an energy balance model
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relating the heat flux to the glass ), to the total energy input, due to fuel and air
flow and temperature. Then, they used this model to predict changes in thermal
efficiency, due to changes in fuel and air flow. The optimal controller maximizes
efficiency by searching for the optimal fuel and air flow set points, given the current
model and constraints on the allowed [NO].

This strategy has its drawbacks:

e experimental data shows[2, 11] that generally thermal efficiency increases when
fuel flow decreases. To increase the thermal efficiency, this implies a decrease
in (), and an increase in minimum residence time of the molten glass inside

the furnace, thus leading to a production decrease;

o allowed pollutant levels are fixed at design time and used as constraints, not

as part of a global performance index.

An alternative considered here is to have another control scheme to minimize
pollutant levels, constrained by the desired production rate, or indirectly by the
desired (),. Similarly to the other controller, a model of pollutant level formation
is needed, to predict changes in [N0] due to changes in excess-air. Such a model is
described in [12].

Following the linguistic formulation of task generation in HGDIMs each alter-
native strategy described above corresponds to separate primitive events. Actually,
for reasons made clear below, the two models estimators and the two different op-
timal controllers have to be separated. The primitive event set F is thus composed

by 4 primitive events:
A .
e ¢; =estimate-energy-balance-model;
A .
e ¢, =estimate-pollutant-levels;

A .
e c¢3 =max-thermal-efficiency;
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A .
o ¢4, =min-pollutant-levels;

Even though in the general case each primitive event may be translated by
more than one primitive algorithm (or by different parameterizations of the same
algorithm), in the sequel only one primitive algorithm per primitive event is con-
sidered for simplicity. As an example, the choice of the on-line search technique to
determine the optimal fuel and air flow, would distinguish the algorithms translating
es. In the real furnace all primitive algorithms read information from sensors inside
the furnace and modify the set points of PID control loops.

e; and e; are estimation problems. A natural specification for them is to
require the variance of the estimation errors to be less than some accuracy ¢; and
€9, respectively: var (Qg —Qy) < € and var ([Z\fO] —[NO]) < €. The heat input to
the glass is estimated by a{ (the only algorithm translating e;) from the information
provided by the crown, gas and stack temperature sensors. The pollutant levels are
estimated by a from the current flame characteristics, such as flame length, and
oxygen concentration[16]. Both algorithms will be assumed to be 100% reliable.

The specifications for ez and ¢4 reflect the constraints in each case:
3 |[Z\f0] — [NOJ4| < €3. [NO]q is the desired concentration of nitric oxide;

o |Qg — Qg < €4. Qy, is the desired concentration of heat input to the molten

glass.

The air-fuel ratio is kept constant. When «a} increases the fuel flow (and the
air flow, according to the air-fuel ratio), (), increases and so does [NO]. Similarly,
when af decreases the excess-air level, [NO] decreases, and so does Q,. The two
estimators ¢; and e; must always be activated prior to the application of any of the
optimal controllers. One of them provides the model used by the search algorithm,

the other provides information to check the specifications.
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aj and af are designed to meet the specifications for the respective events.
However, the actual constraints come from indirect indices, such as minimum excess-
air, maximum crown temperatures and flame length for e3, whose actual constraint
is [VO]g4. Thus, in general these algorithms will not be 100% reliable. The reliability
of the algorithms can be checked on-line from the specified @),, and [NO]4, and the
estimates provided by e; and e,.

The validation of mathematical models of glass furnaces is difficult due to
the lack of reliable data. Furthermore, data concerning the performance of optimal
controllers is scarce in the case of a} or non-existent in the case of af, which is intro-
duced here. The tradeoff between minimizing pollutant emissions and maximizing
heat flux to the molten glass is clear from the results of running the mathemati-
cal models for different operating conditions[2, 11]. However, the reliability of the
estimators and optimal controllers can only be empirically assigned. Similarly, it
is natural that computational costs reflect the CPU time spent by the estimators
and search algorithms, but this will strongly depend on the actual algorithms, not
defined here.

Given these considerations, the case study focus on the convergence of the
HLSA to the most reliable decisions, assuming zero costs for all primitive algo-
rithms. Furthermore, a change in fuel composition is simulated in the middle of
the experiment. The change is simulated by switching the state of the environment.
State 0 corresponds to a pure methane fuel, while in state 1 the fuel is a mixture of
methane and nitrogen. Following the results of Carvalho et al[12] both [NO] and @,
are expected to decrease from state 0 to state 1. Hence, it is reasonable to expect
that the reliability of a7 will increase, because its constraint on the concentration
of nitric oxide will be easier to meet. The reliability of a] will decrease, because its
constraint on the heat flux to the molten glass is harder to satistfy.

Alternative tasks differ by the decision of maximizing thermal efficiency or
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Figure 7.1: Results of case study 1.

minimizing pollutant level. The stochastic regular grammar for the command is:

G = (Vr, Vv, R, P,S)
W = {5}

Vi = {e1, €2, €3, ¢4}

R = {

S — €1 €9 €3

rO = rO =
w2

— €1 €9 64}

The numbers to the left of the productions are the initial production proba-

bilities.

7.1.2 Results

Figure 7.1 shows the average over 50 sample functions of the stochastic pro-
cess corresponding to the evolution of action probabilities (top) and cost functions

(bottom) of the 2 productions composing the stochastic grammar for the case study.



109

[event [ er [ e2 [ es | ea |
Ro; 1.00 | 1.00 | 0.60 | 0.70
R 1.00 | 1.00 | 0.80 | 0.55
Co, =Ci ]l 0 ] 0 ] 0 ] 0

Table 7.1: Reliabilities and costs assigned to the primitive algorithms
translating the primitive event set F.

Each sample function consisted of 500 task runs (iterations in the figure). The state
of the environment switches from state 0 (pure methane fuel) to state 1 (methane +
nitrogen fuel) at iteration 200, but state 0 remains the estimated state for the IM.
This was done to test the adaptiveness of the learning scheme.

The rates of successes for the different algorithms were simulated by a Monte
Carlo method from the actual reliabilities assigned to each algorithm. No physical
model was run. Reliabilities were assigned qualitatively, based on the above dis-
cussion. a; was assumed to be initially more reliable than a3. After state of the
environment changes, the reliability of a} decreases and the reliability of a7 increases,
such that it becomes more reliable than af. Costs and reliabilities are tabulated in
Table 7.1.

A recursive sample mean algorithm with forgetting factor was used to improve
the adaptiveness of cost function and probability estimates. No proof of convergence
exists for this algorithm, which resembles the stochastic approximation algorithm

described before, but gives more weight to recent samples than to old samples. Its

general expression is

Rin) = L 3 - 0t 4 ) (1)

=1

where y € {0,1} is the reinforcement signal and the forgetting factor 0 < g <1 is
usually made close to 1, so that only the most recent samples are used to compute

the mean without being too sensitive to small data changes. W is the confidence
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factor on the initial estimate fx’(()) (see chapter 6). No acceleration method was
used, and fx’(()) = 0, hence the confidence factor was only included in the expression
for completeness and future reference.

The recursive version of Equation (7.1) is

R(n+1) = Bl(n) + m{[n(l — )+ 1]y(n+1)— BR(n)} +(1— B foﬁnw
(7.2)

Notice that Equation (7.2) is the same as Equation (5.17) when § = 1 and
W =0.

The recursive version was used for the estimation of algorithm reliabilities
and production probabilities. The forgetting factors used were g = 0.97, 0.98
respectively.

The plots show that in state 0, the HLSA converges to the most reliable task,
erezey4. After the change to state 1, task ejeges becomes the most reliable, and the
probability of production 0 becomes greater than the probability of production 1.
Convergence is slower after the change in the environment, due to the memory of

the stochastic approximation algorithms.

7.2 Case Study 2 - An Intelligent Robotic System

The coordination of vision and motion algorithms is one of the typical problems
in Intelligent Robotic Systems. This is the subject of the case study described in

this section.

7.2.1 Description of the Problem

The workspace setup for Case Study 2 is depicted in figure 7.2.
A manipulator PUMA 560 has to grasp a cylindrical strut whose 3D pose
(position + orientation) is roughly known. There is a pair of cameras in the ceiling,

overviewing the working space of the manipulator and used by a stereo vision system



111

Figure 7.2: Workspace setup for Case Study 2.

to determine more accurately the 3D pose of the object. The manipulator has
position, velocity and force sensors. The scene is well illuminated but from time to
time lights go off, deteriorating the accuracy of vision algorithms. The environment

has 2 states, one corresponding to lights on (state 0) and the other to lights off
(state 1).

The only command available is ¢ =Grab-Strut.

The event set is composed by 5 events, E = {ey, €2, €3, €4, €5}, where

A .
® ¢; =move manipulator;



112

° ¢ égrasp object with compliance;
A .

e c3 =locate object;
A .

e ¢4 =plan trajectory;
A .

e ¢; =grasp object hard;

Event e; represents the motion of the manipulator tip along a pre-planned
trajectory in joint space. It must not precede e4. Two Computed Torque algorithms
distinguished by their gains (K, K,) (see Appendix A) are capable of implementing
e1, given the desired joints position, velocity and acceleration provided by e4. The
specification for e; requires that the quadratic error between the desired and the
actual final positions (time t;) of the manipulator tip in cartesian space, do not

exceed the accuracy ¢; specified for the event:

(2(ty) —xalty)® + (y(ty) —ya(ty))? + (2(t5) — za(ty))? < &

Event ey assumes that the tip (tool) of the manipulator is close enough to the
object to be grasped and the gripper is opened. Motion driven by some desired force
takes the tool to the object. If the pose errors are small, they will be accommodated
by the translating algorithms. Then, the force along pre-specified direction(s) will
be checked at each step. If the sensed force remains within the desired accuracy
interval [fq — €2, fa+ €] (where f; is the desired force along that direction) during a
reasonable number of steps, before a pre-specified limit number of steps is reached,
the gripper will be closed to grasp the object. If either the pose errors are too large
when the tool contacts with the strut and/or the desired force is not obtained before
the limit number of steps, a failure will be reported.

Even though Position Accommodation Control (see section 4.4.2) is used by
all algorithms translating e; to accomplish compliance control of the manipulator,

different parameterizations of the required impedance (similar to a mass, spring and
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damper system) result in different algorithms with different costs and reliabilities
(see Appendix A).

Event e3 determines the pose of an object using stereo vision algorithms. The
uncertainty on pose determination by stereo vision is mainly due to matcher er-
rors when determining which image pixels in the two cameras correspond to the
same point in the observed scene. This may be due both to spot noise and pixel
resolution[36, 51], and leads to disparity errors which affect the 3D pose estima-
tion. The results obtained for the open loop and closed loop algorithms described
in section 4.4.3 were used in the simulation of the two algorithms translating es
(see Appendix A). In a real-world implementation, each of the algorithms would
determine the strut end-points in each of the images to match them and compute
the 3D pose of the strut.

Changing the state of the environment deeply affects the two algorithms.
Switching the lights off increases spot noise which affects the estimation (by any
of the algorithms) of the strut end-points in each of the images , as it was shown in
section 4.4.2. This will increase disparity errors and consequently pose estimation
errors.

Figuring out a convenient specification for a sensing event such as e3 is usually
hard and application-dependent, because the algorithms do not know any desired
set point, in the sense of the specifications for e; or e;. In this case, the measure
used was the difference in estimated depth for both ends of the strut. It is assumed
that the strut lies in a plane parallel to the camera plane, even though its distance
from the latter is not known. Hence, depth should be the same for both extremes.
The specification requires the depth difference to be below an accuracy ¢z which
equals the depth resolution of the stereo system.

Event ¢4 plans a trajectory in joint space whose end-points are the joint-space

vectors corresponding to the initial and final pose required for the manipulator
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event €1 €9 €3 €4 €5
algorithm || a] a; ai a; az a; aj a; aj || af
cost 0.55 ] 0.44 || 0.18 | 0.14 | 0.16 | 0.22 || 0.35 | 0.35 || 0.00 || 0.3

Table 7.2: Primitive events, primitive algorithms and assigned costs.

tip when moving from a standby position to the grasping position. A minimum-
jerk trajectory generator introduced by Kyriakopoulos and Saridis[32] is the only
algorithm used. It generates the desired joints acceleration, velocity and position at
a number of pre-specified points along the trajectory by a method which minimizes
the jerk, or third derivative of joint position.

Event e5 is a non-compliant version of e;. All compliance will be passive, i.
e., a result of the manipulator mechanical compliance. The manipulator is position-
controlled only. There is neither a desired force nor any checking of the actual
force. Specifications concern the capability of the manipulator tool to comply with
errors in pose estimation. This capability is however much smaller than for e (see
Appendix A).

A realistic simulation of the algorithms presented here was developed. The
details are given in Appendix A.

Table 7.2 shows the costs of the primitive algorithms for the different primitive
events. Notice that specifications are made for each event, not for each algorithm.
Cost does not change with the state of the environment. Appendix A explains how
the costs for the various primitive algorithms were obtained, based on the results of
Section 4.4.

During the simulation, the reliabilities of the algorithms were estimated based

on the rewards resulting from successes of their application over the environment.
The HLSA defined by 5.2.1 and the hierarchical reinforcement scheme (Definitions
5.4.1 and 5.4.2) were used to simulate the HGDIM.
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To grab the strut, the system must first estimate the strut pose. Then, it plans
a path from the current pose of the manipulator tip to the neighborhood of the
strut pose, and moves along that path. Finally, the manipulator slowly approaches
the strut and tries to grasp it. Alternative tasks differ by the inclusion or not of
compliance and by using or not using stereo vision to refine the a priori knowledge

of the strut pose. The stochastic regular grammar for the command is:

G = (Vr, Vo, R, P, S )
Vy = {S,A, B}

Vi = {e1, €5, €5, €4, €5}
R = {

05 S — e3A

05 S — A

10 A — e;e0 B

05 B — e

05 B — e5)

The numbers to the left of the productions are the initial production proba-
bilities, that is P(0), assigned by Jaynes’ Principle of Maximum Entropy.
Productions such as S — A, with no terminal symbols in its right-hand side,

are assigned zero cost and 0.5 reliability (see section 5.3).

7.2.2 Results

The simulation described in the previous section was run for several different
situations in order to point out the main concepts and tradeoffs of the proposed
execution and design methodologies, and also to suggest future work.

All results shown are the average over 50 sample functions of some stochastic
process, such as the evolution of action probabilities or cost function, except when

noted.
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event €1 €9 €3 €4 €5
algorithm || a} a; ai a; az a; aj a; aj a3
R(0) 0.77 1 0.90 || 0.80 | 0.80 | 0.50 | 0.50 || 0.85 | 0.93 || 1.00 || 0.75
w 10 10 10 10 10 10 50 | 50 0 20

Table 7.3: Primitive events, primitive algorithms, initial reliability
estimates and corresponding confidence factors.

Each sample function consists of 150 task runs (iterations in the figure), except
when noted. The production and algorithm probabilities are updated after a task
is applied. The initial state of the environment is always state 0 (lights on).

Figures 7.3-7.8 show the evolution of action probabilities and cost functions
associated to the main events and productions when the environment is assumed to
have only one state — state 0 (lights on). Fu’s acceleration technique together with
initial reliability estimates were used to obtain the results shown in Figures 7.3, 7.5
and 7.7. The initial reliabilities and confidence factors are tabulated in Table 7.3.
The values were picked as approximations of the actual values, from the experience
acquired after several simulation runs. No acceleration techniques were used in the
other cases. Notice that when the confidence factor W = 0, fx’(()) = 1.00, because
in the actual implementation the complement of reliability is estimated, not the
reliability itself.

In all cases the probability of the best action eventually converges to 1.00.
However, for events e¢; and ¢, the evolution is slow, due to the close reliability
values for the algorithms involved. This initial difficulty of the learning algorithm
is enhanced in Figure 7.9, where the decrease of the entropies for the two events is
slow when compared with the entropy decrease rate of es.

The effect of using acceleration techniques is clear: only the probability of the
best algorithm for event e; does not reach a close neighborhood of 1.00, but even in

this case the acceleration helps a fast distinction between the two best algorithms
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and the other two.

From the stochastic grammar for the problem and the results shown for the
production probabilities, it may be noticed that task es ¢4 ¢ ¢y is the optimal task.
This corresponds to using stereo for pose estimation and compliance for the grasping
subtask, as expected. Figure 7.10 shows that task entropy decreases with learning.

Figures 7.11- 7.13 show an example of adaptation of the IM to an unacknowl-
edged change in the state of the environment. In this case each figure shows only one
sample of the stochastic processes. The state of the environment switches from state
0 (lights on) to state 1 (lights off ) at iteration 150, but state 0 remains the estimated
state for the IM. The simulation consisted of 600 task applications. No accelera-
tion method was used. To improve adaptiveness, Equation (7.2) was used for the
estimation of algorithm reliabilities and probabilities, and production probabilities.
The forgetting factors used were g = 0.97, 0.98, 0.98 respectively.

After the state switching, production 0 is no longer the best production, since
the performance of the stereo algorithms deteriorates under poor lighting conditions,
and the initial rough estimate of the strut pose is preferred. In this run, the IM
learned the change.

At a first glance, the state switching should only affect event es; and conse-
quently productions 0 and 1. However, figure 7.12 shows that the cost function of
event ey does also change. Even though this change is not reflected in the evolution
of algorithm probabilities (which is messy in this example just because of the close
values of the different reliabilities), the increase in the cost function shows the exis-
tence of a dependence between events. In the example, the reliability of the grasping
events decreases due to the decrease in the quality of the object pose estimates when
lights go off. The cost function of event e5 does not change, only because production
4 is not applied since very early.

An interesting issue here is the comparison between the direct reinforcement
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of task probability with the indirect reinforcement resulting from the propagation
of the cost function. The latter is the method described elsewhere in the thesis,
while the former consists of using sensor information (e. g., a cross-fire sensor when
the goal is to grasp an object) to directly determine the success or failure of a task
and provide the appropriate reinforcement signal to the top level generalized LSA,
whose reinforcement scheme will in this case be equal to the bottom level LSA
reinforcement scheme (see Definition 5.4.1).

The advantage of the direct reinforcement method is a more realistic estimate
of the task cost function, since the propagation equations for the reliability assume
independent events, which is not always true, as it was evident in the adaptive
example just shown. However, the interaction between the two independent LSAs
in the direct reinforcement case has not been studied yet, thus convergence can not
be guaranteed. Of course, if there is no way of directly checking the success or
failure of a task, only the indirect reinforcement method can be used.

The evolution of production probabilities and cost functions when direct task
reinforcement is used is plotted in Figure 7.14. Comparing with the indirect rein-

forcement method (Figure 7.7), two main differences are noticeable:

e The cost functions steady state values are larger when direct reinforcement is
applied. Since the same algorithm costs and cost propagation equations were
used, this means that the actual task reliability is smaller than the task reli-
ability obtained by propagating the event reliabilities. The evolution of event
estimated reliabilities when direct task reinforcement was used (not shown) is

very similar to the indirect reinforcement case, as expected.

e Production 1 probability is initially larger then production 0 probability for
the direct reinforcement case, while production 0 has always larger probabil-
ity in the indirect case. In the latter, cost and reliability of production 1

are initially assigned to 0 and 0.5, remaining equal to these values along the
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simulation. Using the direct task reinforcement method, the complement of
reliability for both productions is learned along time. The initial estimate
of the complement of reliability for both productions is equal to zero. The
costs are 0.35 for production 0 and 0 for production 1. Hence the initial cost
function of production 1 is smaller than that of production 0 in the direct

reinforcement case, and larger in the indirect reinforcement case.

The main drawback associated to direct task reinforcement is that there is no
proof of its convergence. However, these experiments suggest the method converges

and obtains more accurate estimates of production cost function and probabilities.

7.3 Summary

Two case studies were presented where the proposed formalism is applied
the Operations Management of a Glass Furnace and an Intelligent Robotic System
requiring coordination among vision and motion control. The results show the con-
vergence of the reinforcement schemes at the different levels of the IM hierarchy.
Different tradeoffs concerning direct versus indirect task reinforcement, convergence
speed and adaptiveness to changes in the state of the environment were also ana-
lyzed.

The overall entropy decrease with learning was also shown in Case Study 2.
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CHAPTER 8

Conclusions and Future Work

The translation interfaces of a Hierarchical Goal-Oriented Intelligent Machine, based
on the 3-level architecture proposed by Saridis[67], have been modeled as a 2-stage
Hierarchical Learning Stochastic Automaton (HLSA). The model takes into account
the feedback from the environment where the HGDIM operates, using that feedback
to learn the optimal task among those capable of translating a command sent to the
machine and the optimal primitive algorithms among those capable of translating the
primitive events composing a task. An optimal action has been defined as the action
(task or primitive algorithm) which minimizes a cost function recursively updated
through feedback. The cost function of an action has two terms: one is the cost of
applying the action, and the other is the complement of the reliability of the action.
Reliability of an algorithm has been defined as the probability that the algorithm
meets a set of specifications, while cost of an algorithm is a general measure of
the resources needed by the algorithm to accomplish that reliability. Resources may
include, but are not limited to, CPU time, memory, number of processors or number
of FLOPs.

This approach unifies the solution of the Decision Making and Learning prob-
lems in Intelligent Machines at all levels of a HGDIM, as the optimization of a global
cost function. The cost function is general enough to be applied to different algo-
rithm types, a common requirement to Intelligent Machines. Furthermore, it allows
the comparison between differently designed HGDIMs, given a (set of) goal(s).

Learning is based on a hierarchical version of Fu’s Generalized Learning Sto-
chastic Automaton: at each step, the cost function estimate is updated at the bottom
level by a Stochastic Approximation Algorithm. The current estimates of the cost

function for all the algorithms translating a primitive event are used by another
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Stochastic Approximation Algorithm to update the algorithm subjective probabil-
ities. Then, those estimates are propagated bottom-up by a set of equations to
obtain event and task reliabilities. The latter are used by still another Stochastic
Approximation Algorithm to update the task subjective probabilities.

Decision Making is accomplished similarly at the two stages of the HLSA:

e Commands are translated into tasks by random selection among the current

task subjective probabilities;

e Primitive events are translated into primitive algorithms by random selection

among the current subjective probabilities of primitive algorithms.

It was shown in Chapter 5 that the translation from commands to tasks is im-
plemented by a stochastic grammar. Hence, the probabilities of selecting alternative
productions of the grammar, not the probabilities of selecting tasks, are actually
updated.

The reinforcement scheme proposed for the HLSA has been proven to select
the optimal actions at the two levels with probability 1 when the number of iterations

tends to infinity.

8.1 Contributions

The contributions of this work are the following:

o A coherent analytical measure of algorithm cost and reliability. This mea-

sure can be improved on-line through feedback or used for off-line design of

HGDIMs.

e A new measure of performance for HGDIMs, represented by a global cost

function which combines cost and reliability;
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An original hierarchical version of Fu’s generalized LSA: the Hierarchical Re-
inforcement Learning Scheme which uses feedback from the environment to

recursively improve the estimate of the HGDIM cost function;

The original modeling of a HGDIM by a HLSA that uses the Hierarchical

Reinforcement Learning Scheme;

The introduction of a Design Methodology for a HGDIM, based on the HLSA

model;
An original analytical study of the convergence rate of Fu’s generalized LSA;

A study of algorithms for acceleration of stochastic approximation in the con-

text of this work;

The simulation of two case studies describing the application of the formalism
to two different areas of Intelligent Control: intelligent process control and in-
telligent robotic systems. The latter includes a realistic simulation of a PUMA

manipulator, a stereo vision system and compliance control.

Future Work

The following are topics of future work aiming to extend the results described

in this thesis:

e The implementation of the case studies using real setups;

o Further investigation of the behavior of a HGDIM in the presence of non-

stationary environments. This should include the study of learning algorithms
capable of adapting to changes in state of the environment without needing

one LSA per state;
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o Further investigation of methods to accelerate convergence speed of Stochas-
tic Approximation algorithms. There are other methods described in the lit-
erature (e.g. Kesten’s algorithm[27], or 2nd order stochastic approximation
algorithms[66]) and other combinations of the methods presented in this work
are possible, such as extending the acceleration to the probability update al-

gorithm. The 2nd order stochastic approximation algorithm consists of using

1

the covariance matrix of the estimated vector of parameters instead of the -5

gain used in this work. This is equivalent in the estimation of the reliabilities
(scalar case), but the convergence rate of the probability update algorithm

may be increased by one order of magnitude (thus the name 2nd order).

o Analytical study of convergence when task probabilities are directly reinforced

by the learning scheme, as shown in chapter 7;

e Study and proposal of new architectures for State of the Environment Feed-
back (see section 5.5). These may include a quantification of the uncertainty
involved in modeling a stochastic environment by a finite number of states (for

example a Markov chain);

o Study of reliability “indirect learning” methods which use existent reliability
models and update some of their parameter estimates, such as covariance

matrices, instead of directly updating the reliability estimate.

o The generalization of stochastic regular grammars used here to stochastic
context-free or even context-sensitive grammars. This will permit dealing with
more complex systems, requiring the derivation of tasks with higher level of

sophistication.
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8.3 Conclusion

This thesis represents a step towards a comprehensive analytical theory of
Intelligent Controllers and Intelligent Systems, offering a framework for design and
performance analysis of HGDIMs and showing its successful application to realistic
simulations of systems as diverse as a Glass Melting Furnace and an Intelligent

Robotic System.
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APPENDIX A
Simulation of Case Study 2 - Intelligent Robotic System

This appendix describes the implementation details of case study 2 (Intelligent
Robotic System) simulation. The description covers the setup of the workspace,
algorithm implementation and cost determination for the main events, world model
structure and software issues regarding the communication between the Intelligent
Machine and the environment, separately simulated. The simulation was designed
to balance accuracy and realism with reasonable computational load and develop-
ment time. The details given here will help guiding a future implementation of the

case study.

A.1 Setup of the Workspace

A general picture of the simulated workspace is depicted in Figure 7.2. Also
shown are the camera coordinate frame, world coordinate frame and table coordinate
frame. The origin of the strut coordinate frame, not shown, is located in the middle
top of the strut. X lies along the length of the strut and Z; points downwards. The
PUMA coordinate frames are those used in [4]. The world coordinate frame coincides
with coordinate frame 1 when the PUMA is in the zero position (see Figure 7.2).
The origin of the camera coordinate frame is located halfway between the origins of
the two image plane coordinate frames, at a distance A along 7 (see Figure A.2).

The strut is on a table located inside the workspace of the PUMA 560 (see
Figures A.1 and A.2. Actual dimensions were taken from [87]). Strut and PUMA
gripper dimensions are shown in Figure A.3.

The two cameras are positioned above the workspace, and their image coordi-
nate frames are perfectly aligned, differing only in the origin of their coordinates by

a distance called baseline (B). The image planes are also parallel to the table top.
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right camera

Figure A.1: Above view of the workspace showing PUMA 560 operat-
ing envelope.

Zc

S=0.5m

Figure A.2: Lateral view of the workspace showing PUMA 560 oper-
ating envelope.
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Force-Torque
Sensor

d=0.2236m

w=15mm
v

Figure A.3: Gripper and strut dimensions.

The camera produces images of 512 by 512 pixels. The pixel width pw and focal

length A\ are given:

pw = 10um (A.1)

A = 16mm (A.2)

The vertical distance H between the top of the table and the image plane was
dimensioned based on the the camera parameters and such that the whole top of

the square table can seen by the cameras (see figures for meaning of symbols):

>

= 1.5625
- 512pw "

Hence, H was made equal to 2 meters.
The baseline distance is determined from the desired precision for depth esti-

mates AZ in the camera coordinate frame by the equation
H2
AZ| = —|Aé
a7 = L ja
where ¢ is the disparity along X, or the difference between the pixel coordinates in
the two cameras corresponding to the same 3D point in the camera frame, and A¢

its (finite) precision. Assuming Aé = Ipixel = 10um and AZ = 5mm, B = 0.5m.
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Some important homogeneous transformation matrices representing relative

poses of coordinate frames follow. The subscripts and superscripts used are s for

strut, ¢ for table, w for world and ¢ for camera. T denotes the pose of the camera

coordinate frame with respect to the world frame.

T

Tw

Tw

A.2 Software Issues and Structure of World Model

1

o o O

0

0.45

0.89

0.45

0.89

0
0

0 03

0 —-0.3

1 —0.46

0 1

089 0 0.15

—0.45 0 0.3
0 -1 0.03
0 0 1

089 0 045

—0.45 0 0
0 -1 —0.43
0 0 1
0 0.55
0 —0.05
-1 1.54
0 1

(A.3)

(A4)

The HLSA model of the IM was written in C, including all necessary data

structures and user interface. Each of the events was written as a separate Matlab

m-file. The world model is initialized by another m-file, and includes object di-

mensions, modified Denavit-Hartenberg description of the PUMA manipulator[13],
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initial zero position of manipulator, transformation between coordinate frames, ini-
tial rough estimate of strut pose (obtained by adding noise to the joint positions
corresponding to the actual pose), nominal image coordinates of the strut extremes
in the two cameras, orientation and position clearance of the manipulator tool. The
communication between C and Matlab used the Computational Engine Services
provided by version 4.1 of Matlab.

Each m-file representing an event has approximately the same structure:

function header - function [pr]=eventname(algnumber), where pr represents the
returned success or failure signal, and algnumber is the number designating

the algorithm selected to translate the event.

global variables - declared as global varnamefs]. All global variables are shared
among m-files and are declared as global inside the module which initializes
the world model. They include the current state of the environment, desired
pose of manipulator tip and current pose of manipulator tip. The set of global
variables represent the world model. All events can update and access the

world model using them.

function body - generally divided in if ...then modules corresponding to the dif-
ferent combinations of current state of the environment and selected algorithm.
In some cases, the behavior of the algorithm does not depend on the current
state of the environment, hence no conditional tests to check the state of the
environment are necessary. Fach submodule must include the assignment of

a success or failure value to the variable pr.

A.3 Events Simulation
e3: locate object

Objective: Assign to the global variable Ttipfinal the estimated pose of the
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strut coordinate frame. If event es is not invoked (production 1 is selected), the
default value assigned to Ttipfinal is the rough estimate of the strut pose.

Specifications: If |2f — 2§| < bmm, report success; otherwise, report failure.
ZAZ»C, 1 = 1,2 is the estimated Z coordinate of the strut in the camera coordinate
frame (see below). Recall that the distance from the strut to the camera frame is
not known, but it is assumed that the strut lies in plane parallel to the image planes
of the two cameras.

Algorithms: Two different algorithms may be selected: the open loop (a?)
and closed loop (a3) algorithms in chapter 4. Both estimate the coordinates of the
strut extreme points (P = (X" V" Z")T i = 1,2) in the left camera [ and right
camera r. The pin-hole parallel stereo model[36] is used to obtain the transformation

between image plane coordinates in the two cameras and 3D coordinates in the

camera coordinate frame:

BX}
Xp = — (A.8)
B(Y} +Y7)
ye = —~r v/ A9
; %, (A.9)
B
Zi = S5 i=L% 4= v -y (A.10)

The open loop and closed loop algorithms are not actually implemented, but
their performance in the presence of spot noise and finite pixel resolution is simu-
lated, according to the results in section 4.4.3.5 and [51].

The general algorithm for this event, distinguished by selected algorithm and

state of the environment at step 2, is:

1. Add noise with uniform distribution in the interval [—pw/2, pw/2] to the nom-
inal image coordinates of the strut extremes in the two cameras, for open loop
algorithm only. This simulates errors due to pixel resolution, unexistent in the

closed loop algorithm.
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2. To simulate estimate errors due to spot noise, add or subtract (with probability
0.5) 1 pixel to the image coordinates obtained in step 1. On the average, do

this:

e for af, 20% of the runs when lights are on and 40% of the runs when
lights are off;
e for a3, 5% of the runs when lights are on and 30% of the runs when lights

are off;

3. Determine the position estimate of the strut extremes Pe = (Xf Yozt i =

2

1,2 from Equations (A.8-A.10), and P! = T'Pr.
4. Check specifications. Make Z{ = Z; = (2{ + 25)/2

5. Determine

d = (Xt X2+ (3F - 1)

) A o
H = arctan(#
X5 —Xi

7! = TRANS(P,) ROT(X,, ) ROT(Z,, —0) TRANS((d/2 0 0))

where TRANS and ROT are the homogeneous translation and rotation ma-

trices described in [19].
7. Ttipfinal « 7% = Tw7*

Cost: If the cost is made proportional to the number of frames averaged to
obtain the image processed by the algorithms, and if both algorithms use the same

number of averaged frames, both will have the same cost (see Table 7.2).
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e1: move manipulator

Objective: Move the manipulator from its zero position to a point in space
10c¢m above the strut location estimated by es3. Hence, the final desired pose of the

manipulator gripper is given by

TRANS((0 0 0.1)) Ttipfinal

Specifications: Given the desired final position (z4(ty) ya(tys) za(ty)) and the

actual final position of the manipulator (x(t;) y(ts) z(ts)), if

(2(ty) — xalts))* + (y(ts) — yalts))* + (2(ty) — zalty))* < 10um
report success; otherwise report failure.
Algorithms: There are two algorithms to translate this event. Both are
controllers based on the Computed Torque Method (see section 4.4.1). The choice

of gains k, and k, distinguishes them:

Algorithm | &k, | ky | w, | €

al 100 | 10 | 10 | 0.5

al 100 | 8 |10 | 0.4

Algorithm a3 is more underdamped and after some overshoot reaches the final
value faster. Since only the final position is checked and not the deviations from the
nominal trajectory, al is expected to be more reliable than af.

The PUMA dynamics was simulated based on the equations and estimated
Modified Denavit-Hartenberg parameters for the PUMA 560 in [4]. The inverse kine-
matics came from notes written by Ken Kreutz-Delgado while at JPL in Pasadena,
California. The software used was written by S. Murphy and D. Swift at CIRSSE-
RPL

Uncertainty is due to three factors:
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e The controller uses a time-invariant and diagonalized Mass matrix;
o Except for gravity, non-linear terms are not subtracted in the control law;
e Noise with variance 10™° was added to the actual joint positions.

Reliability is also influenced by the velocity of the manipulator tip. In the
simulation, this velocity was made equal to 0.6ms™!, which is less than the nominal
maximum velocity (1ms™!) [87].

Cost: Using Equation (4.35), the normalized cost pC' of the two algorithms
was defined as (i = 1,2):

Cla}) = d
ST ENET
Ky Ky 02 + 07

((Kpy Koy + Kp, Koy )0 + (Ko, + Ko, )o?)

Replacing o2 = 107> and o7 = 0 and the gains from the above table, the costs

in Table 7.2 are obtained.

e9: grasp object with compliance and e5: grasp object hard

Objective: Move manipulator from current pose to Ttipfinal and grasp object.
e2 uses force control and e5 uses position control.

Specifications: e5 must pass two clearance tests: the position clearance test
and the orientation clearance test, in this order. e; must pass a further test: if

|fsy — f-(N2)] < 0.1N report success; otherwise report failure. f., is the desired

force and fZ(NQ) is the sample mean of actual force sensed from step Ny — 10 to N,

of the simulation (see below). A failure is reported if any of the above tests fails.
Algorithms: In the simulation of e;, the Position Accommodation Controller

described in section 4.4.2 is used. The manipulator tip is required to behave as

a Mass, Spring and Damper (MSD) system. The integrators in Figure 4.1 were
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Figure A.4: Discrete Mass, Spring and Damper block diagram.

replaced by a first-order rectangular integration to obtain the implemented discrete

version in Figure A.4.

In the figure, T} is the sampling time of the trajectory generator. The timeout

referenced in section 4.4.2 is the parameter Ny above. In the simulation, Ny = 100

and Ts = 25ms, which allows a maximum traverse time of 2.5s for a path length of

10e¢m. This can be considered fine motion (velocity is much less than the maximum

velocity of the manipulator tip), and errors of the manipulator position controller

were disregarded, so the PUMA dynamics did not have to be simulated in this case.

The figure also shows noise added to the force sensor. This noise was simulated as

a zero mean gaussian random number generator with variance 0.01.

Algorithm | B | K | N. | N;
a? 50 | 10 | 25 | 24
a’ 30 [ 10 | 19 | 40
as 30 [ 50 | 21 | 40
a; 50 [ 50 | 30 | 24

Table A.1: Parameterization and performance

rithms.

of ¢, primitive algo-
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POSITION CLEARANCE ORIENTATION CLEARANCE

Ivs

Xs

AYmax=1/2-r o= asin (w/b)
2 2 2
b=1"+w

D8ymax = acos (2r/b) -a

Figure A.5: Position and Orientation Clearances.

4 algorithms were considered to translate e, consisting of all combinations of

two different values for the parameters K and B. The discrete MSD system was

initially simulated with no force noise, to determine the number of steps N, taken

from the initial position to the point where the tip contacts with the strut, and the

number of steps N, taken from contact to the point where the sensed force comes

within 5% of the desired force. All values are tabulated in Table A.1.

The position and orientation clearances are illustrated in Figure A.5. Given

the strut and gripper dimensions in Figure A.3, the clearance values are:

position: AY.x = 2mm

orientation: A8, ., = 12.6°

The clearance tests are made in two steps:

1. Given T and T,°, the homogeneous transformation matrices representing re-

spectively the current pose of the manipulator tip and the strut pose, 6T =
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(T)=*T* is determined. If the orientation errors are small, §7" is given by:

ol =

1 =80, 60,
SR=1| s0. 1 —s0,
—80, &0, 1

represents the rotation error[62], where 66,, 66,, 60, are the differential rota-

tion errors about X, Y and Z, respectively.

2. To simulate compliance, extra position and orientation clearances are allowed
to all four algorithms. The percentages of clearance increase depend on the

parameter K and are tabulated below:

Algorithm | K | Ap. | Ao,

a2, a2 1020 % |50 %

a2, a2 |50 |10 % |30 %

Depending on the algorithm selected, AY,.x and A#f,,.x are increased by
the corresponding percentage, and compared with oy and 66, to check actual

clearance.

Event es is translated by only one algorithm. Only position is controlled.
The number of steps until contact N. was designed such that the movement is

slower than when ey algorithms are applied: N.(a}) = 40. The extra position and
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clearance percentage are smaller than for e, algorithms, to reflect the existence of
passive compliance only: Ap. = 0%, Ao, = 20%.
Cost: The number of steps until contact N, of the four e; algorithms and the

es algorithm are put together to obtain normalized costs for the 5 algorithms:

Nc(az’S)

2

T Y Ne(@d) + No(d))

Replacing N, by the above values, the costs in Table 7.2 are obtained.



APPENDIX B
Proof of Theorem 5.4.1

To help proving the Theorem, the following proposition will be proven first:

Proposition B.1 [fC € ®, C >0 is a constant, a(n; +1) = in (3.6), J is

given by (4.7) and its estimate by (5.19) or (5.23), Fu’s generalized LSA is optimal.

Proof: For the proposition to be true, the necessary and sufficient condition
(3.10) of Theorem 3.1.1 must be satisfied. First, assume that the LSA has m actions,
and that (with no loss of generality) the optimal action is u,,. z; is the state of the
environment. Furthermore, the costs will be assumed zero, also with no loss of
generality. In fact, a cost different from zero may be interpreted as a bias of the

actual reliability. From (5.22) or (5.26)

ElXij(na)ly(1), ..., y(nyg)] = Pf{jzg‘(nz’j)fogﬂ{jz’q(nzq)}}

= Pr{fij(nij) = max{Rig(ni,)}} (B.1)

From Lemma 6.1.1 it can be derived that, for sub-optimal actions u;

; A . O 4R;;(1 — Ry
Pr{Rij(nij) > Rim(nim), j =1,...,m =1} <1 —=JJ(1 - ](—2]))

j=1 n,'jA
Noticing that n; = 3771, n,j, one can assume (with no loss of generality) that

ni; = ni/m. Denoting terms in negative integer powers of n by O (nl—k), the following

equality is obtained:

[0 - St = S m 3o ()
1 k3 j= = k3

=1

Hence,

~ ~ . 4 m m 1
PI’{R,']‘(TL,']‘) > R,’m(n,’m), V] = 1, e, — 1} < n»ZZ ZR,’j(l — Ri]‘) + Z O (_k)
k3 ] l

=1 k=2 n
m? i 1
cSegoly)  we
2 =2 2
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where the last inequality results from the fact that 0 < R;; < 1.

To obtain a reasonable approximation of Pr{R;;(ny) = max,{Ris(ni)}} in
Equation (B.1) above, one may admit that the probability of the reliability estimate
for a sub-optimal action being greater than the reliability estimate for the optimal
action is approximately the same as the probability of the reliability estimate for a

sub-optimal action having the maximum value among all reliability estimates:

N

Pr{Ri;(ni;) > Rim(nim). j =1,....m =1} = Pr{Ri;(n;;) = mgx{fézq(nzq}}

Given this approximation, Equation (B.1), inequality (B.2), and the expression
a(n; + 1) above,

> alni+ DB () ly(L), ()] <
ad m? s 1
n;{ni(nﬁr 1+ C)A +kz::20 (nf(nﬁr 1 +0))}

The summation on the right of the inequality above converges, hence the
condition of Theorem 3.1.1 is satisfied and the Proposition proved. O

By Proposition B.1, every LSA of the Coordination-to-Execution Trans-
lation Level is optimal, that is when the number of times a task (and consequently
the composing primitive events and algorithms) is applied tends to infinity, the
probability of selecting the optimal primitive algorithms for each of the primitive
events converges to 1 w.p.1. This is valid also for the acceleration scheme described
in section 6.2.2, when ' = W.

To prove the optimality of the Organization-to-Coordination Translation
Level level LSA, it suffices to show that Proposition B.1 applies to the LSA repre-
senting one of the subset of productions Ry of grammar G for the given command.

First take production r € Ry, and recall the definitions of production and

primitive event reliability

N

Ri(ni) = ]I fi(ekvnih;i)
er €Ly
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ng
R(ex,nilz;) = ZPURZ‘(”U) Ver € B

=1

Since, by Proposition B.1
Pr{ lim pjn(n;) =1} =1
and by the Strong Law of Large Numbers

Pr{ lim fx’fj(n”) =R}=1VYj=1,....m

Ng;—00

there exists some NV; for which

]%(ek|:1;,) ~ ]%fm(n,m), Vn; > N; Ver € E
assuming, for simplicity, that all primitive events are translated by an equal number
of primitive algorithms m.

Hence,

fx)”(n,) ~ H ]fifm(n,m), Vn, > N;

ekegr

From the independence of the random variables fx)fm(n,m) and recalling that

var fx’,r(n,) = E[R2 (n;)] — (E[]%w(m)])z

ekegr ekegr
= Il El(RL (i) = 11 (R
ex€Er e €&,
and noticing that
. Rf (1 — R*
B, ()] = (R, 2 Fon =Tl

one finally obtains, making n;, = n;/m

2

A el
var R (n;) = Z(’) (—l)
=1 n;
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and an argument similar to that used to prove the convergence of each of the bottom
level LSAs applies, using Proposition B.1 and productions as actions of the LSA.

Recall that the main argument for the proof was the fact that

- i1 — Rij 1 :
VarRij:M:O( 4), Vi=1,....m

Hence, if the reinforcement scheme picks the optimal production for every
subset of the set of productions of (¢, it does actually pick the optimal task for the

command, given the current state of the environment, and the Theorem is proved.

a



