
INTELLIGENT MACHINES ASHIERARCHICAL STOCHASTIC AUTOMATAByPedro M. U. A. LimaA Thesis Submitted to the GraduateFaculty of Rensselaer Polytechnic Institutein Partial Ful�llment of theRequirements for the Degree ofDOCTOR OF PHILOSOPHYMajor Subject: Electrical, Computer and Systems EngineeringApproved by theExamining Committee:George N. Saridis, Thesis AdviserChuanyi Ji, MemberRobert McNaughton, MemberHarry E. Stephanou, MemberRensselaer Polytechnic InstituteTroy, New YorkAugust 1994

CONTENTSLIST OF TABLES : vLIST OF FIGURES : viACKNOWLEDGMENTS : ixABSTRACT : x1. Introduction : 11.1 Motivation : 21.2 Problem Statement : 71.3 Overview of Proposed Solution : 81.4 Organization and Terminology of the Thesis : : : : : : : : : : : : : : 91.5 Summary : 102. Literature Review : 112.1 Architectures for Intelligent Machines : : : : : : : : : : : : : : : : : : 112.2 Learning Stochastic Automata and Grammars : : : : : : : : : : : : : 132.3 Theory of Complexity : 162.4 Summary : 173. Theoretical Background on Learning Stochastic Automata : : : : : : : : : 183.1 Learning Stochastic Automata and Stochastic Approximation : : : : 183.2 Stochastic Grammars : 263.3 Linguistic Formulation of Task Generation in HGDIMs : : : : : : : : 283.4 Summary : 294. A Performance Measure Based on Computational Cost and Reliability : : : 304.1 Information-Based Computational Cost of a Problem : : : : : : : : : 324.1.1 Problem Formulation : 324.1.2 Information : 334.1.3 Model of Computation : 334.2 Coherent De�nition of Reliability and Complexity : : : : : : : : : : : 354.3 A Cost Function for Intelligent Machines : : : : : : : : : : : : : : : : 38ii

4.4 Applications to Robotic Systems : 414.4.1 Pose Control : 414.4.2 Compliance Control : 464.4.3 Image Processing : 504.5 Summary : 585. The Intelligent Machine as a Hierarchical Stochastic Automaton : : : : : : 605.1 Assumptions : 615.2 The Closed-Loop Intelligent Machine and the Environment : : : : : : 625.3 Propagation of the Cost Function : 675.4 Hierarchical Reinforcement Learning : : : : : : : : : : : : : : : : : : 745.5 Feedback Hierarchy : 785.6 Design Methodology : 795.7 Execution Algorithm : 815.8 Relationship with Previous Work : 835.9 Summary : 856. Convergence Rate and Convergence Acceleration for Stochastic Approxi-mation : 866.1 Convergence Rate : 866.2 Methods of Convergence Acceleration : : : : : : : : : : : : : : : : : : 936.2.1 Fu's Acceleration Scheme : 936.2.2 Use of Initial Reliability Estimates : : : : : : : : : : : : : : : 956.2.3 Comparison of Acceleration Methods : : : : : : : : : : : : : : 976.3 Summary : 997. Case Studies : 1007.1 Case Study 1 - Operations Management of a Glass Melting Furnace : 1007.1.1 Description of the Problem : 1017.1.2 Results : 1087.2 Case Study 2 - An Intelligent Robotic System : : : : : : : : : : : : : 1107.2.1 Description of the Problem : 1107.2.2 Results : 1157.3 Summary : 119iii

8. Conclusions and Future Work : 1268.1 Contributions : 1278.2 Future Work : 1288.3 Conclusion : 130LITERATURE CITED : 131APPENDICES : 138A. Simulation of Case Study 2 - Intelligent Robotic System : : : : : : : : : : 138A.1 Setup of the Workspace : 138A.2 Software Issues and Structure of World Model : : : : : : : : : : : : : 141A.3 Events Simulation : 142B. Proof of Theorem 5.4.1 : 151

iv

LIST OF TABLESTable 4.1 Actual reliability and cost of open loop algorithm for a desiredreliability of 90 %. : 56Table 4.2 Actual reliability and cost of open loop algorithm for an ac-curacy � = 0:3 pixel. : 57Table 4.3 Compared reliability and cost for the open loop (ol) and closedloop(cl) algorithms. : 58Table 6.1 nmin for a 2-actions LSA. � = 0:2 and PLB = 0.9 : : : : : : : 91Table 6.2 nmin for a 2-actions LSA. R2 = 0:8 and PLB = 0.9 : : : : : : : 91Table 7.1 Reliabilities and costs assigned to the primitive algorithmstranslating the primitive event set E. : : : : : : : : : : : : : : 109Table 7.2 Primitive events, primitive algorithms and assigned costs. : : : 114Table 7.3 Primitive events, primitive algorithms, initial reliability esti-mates and corresponding con�dence factors. : : : : : : : : : : 116Table A.1 Parameterization and performance of e2 primitive algorithms. 147

v

LIST OF FIGURESFigure 1.1 Hierarchical Learning Stochastic Automaton and HierarchicalGoal-Directed Intelligent Machine. : : : : : : : : : : : : : : : 5Figure 3.1 Closed loop between LSA and environment. : : : : : : : : : : 19Figure 3.2 Closed loop between generalized LSA and environment. : : : : 21Figure 4.1 Continuous Mass, Spring and Damper block diagram. : : : : : 48Figure 4.2 Image processed by the two algorithms : : : : : : : : : : : : : 52Figure 5.1 HGDIM and Hierarchical Learning Stochastic Automaton. : : 66Figure 5.2 Diagram of the HGDIM-Environment loop. : : : : : : : : : : : 77Figure 6.1 Lower bound of E[p2(n)], for di�erent R2 when � = D = 0:2. 94Figure 6.2 Lower bound of E[p2(n)], for di�erent � = D when R2 = 0:9. 94Figure 6.3 Evolution of probabilities (left) and complement of reliabilityestimate (right) for a 4-algorithms LSA. : : : : : : : : : : : : 98Figure 7.1 Results of case study 1. : 108Figure 7.2 Workspace setup for Case Study 2. : : : : : : : : : : : : : : : 111Figure 7.3 Evolution of probabilities and cost functions for algorithmstranslating events e1 and e3. : : : : : : : : : : : : : : : : : : : 120Figure 7.4 Evolution of probabilities and cost functions for algorithmstranslating events e1 and e3, when acceleration method is used.120Figure 7.5 Evolution of probabilities and cost functions for algorithmstranslating events e2 and e5. : : : : : : : : : : : : : : : : : : : 121Figure 7.6 Evolution of probabilities and cost functions for algorithmstranslating events e2 and e5, when acceleration method is used.121Figure 7.7 Evolution of probabilities and cost functions for productions0,1,3 and 4. : 122Figure 7.8 Evolution of probabilities and cost functions for productions0,1,3 and 4, when acceleration method is used. : : : : : : : : : 122vi

Figure 7.9 Evolution of entropies of events e1, e2, e3 and e5. : : : : : : : 123Figure 7.10 Evolution of entropy for task e3 e4 e1 e2. : : : : : : : : : : : : 123Figure 7.11 Evolution of probabilities and cost functions for algorithmstranslating events e1 and e3, with a change in the state of theenvironment. : 124Figure 7.12 Evolution of probabilities and cost functions for algorithmstranslating events e2 and e5, with a change in the state of theenvironment. : 124Figure 7.13 Evolution of probabilities and cost functions for productions0,1,3 and 4, with a change in the state of the environment. : : 125Figure 7.14 Evolution of probabilities and cost functions for productions0,1,3 and 4, with direct task reinforcement. : : : : : : : : : : : 125Figure A.1 Above view of the workspace showing PUMA 560 operatingenvelope. : 139Figure A.2 Lateral view of the workspace showing PUMA 560 operatingenvelope. : 139Figure A.3 Gripper and strut dimensions. : : : : : : : : : : : : : : : : : : 140Figure A.4 Discrete Mass, Spring and Damper block diagram. : : : : : : : 147Figure A.5 Position and Orientation Clearances. : : : : : : : : : : : : : : 148
vii

�A mem�oria da minha m~aee ao futuro do meu �lho

viii

ACKNOWLEDGMENTSI would like to thank George Saridis for all his support and encouragement, andfor the many exciting discussions we had. I am looking forward to our future co-operation. I would also like to express my gratitude to all members of my doctoralcommittee for their helpful suggestions.An overseas thanks to all my friends and colleagues of Instituto SuperiorT�ecnico in Lisboa, especially to Jos�e Alberto Victor for his friendship and manylong-distance brainstorms, Paulo Oliveira for taking care of my paperwork in Por-tugal and his friendship, Carlos Pinto Ferreira for justifying the saying \better laterthan never", and Jo~ao Sentieiro, whose encouragement made all this possible. Ialso owe a word of acknowledgment to three partners in this american adventure:Rog�erio Rodrigues, Carlos Bispo and Jo~ao Costeira, for all their support. Manythanks also to Jo~ao Tasso for reviewing several drafts of this work and for a newfriendship. A special thanks to Internet, without which many of these thanks wouldnot be possible.Thanks also to my friends and colleagues in the 8th
oor of CII, especially themembers of the \Intelligent Machines Gang" (Joe Musto, Randy Beard and LindenCarmichael) for many insightful discussions, as well as to Deepak Sood, for teachingme many secrets of the UNIX system and CIRSSE Testbed.The computer code for the simulation of the PUMA dynamics and the graph-ical display of Case Study 2 setup was written at CIRSSE by S. Murphy, D. Swiftand Keith Nicewarner.Last, but not the least, a huge thanks to all my family for their never endingsupport and patience. Part of this thesis is theirs too.ix

ABSTRACTMost of the work done in the last few years by several researchers towards buildingAutonomous Intelligent Controllers quite often mentions the need for a methodologyof design and a measure of how successful the �nal result is.A new design methodology is introduced in this thesis for improvement of per-formance of Intelligent Controllers developed by the Analytic Theory of IntelligentMachines proposed by Saridis. The translation interfaces of a 3-level HierarchicalGoal-Directed Intelligent Machine (HGDIM) are modeled by a 2-stage HierarchicalLearning Stochastic Automaton (HLSA). The HLSA is an original extension of theGeneralized Learning Stochastic Automaton (LSA) proposed by K. S. Fu and hisassociates. The decision probabilities at the two stages are recursively updated fromthe success and failure signals received by the bottom stage whenever a primitivealgorithm of the HGDIM is applied to the environment where the machine oper-ates. Under this learning scheme, the probability of selecting the optimal tasks andprimitive algorithms is proven to converge to 1 with probability 1. An optimal ac-tion (task or primitive algorithm) is de�ned as the action which minimizes a costfunction recursively updated through feedback. This cost function of an action hastwo terms: one is the cost of applying the action, and the other is the complementof the reliability of the action.Other novel contributions of this work include a coherent analytical measureof algorithm cost and reliability, a new measure of performance for HGDIMs, andan original Hierarchical Reinforcement Learning Scheme for HLSAs, based on thebottom-up propagation of the cost function.Results of simulations show the application of the methodologies to the Oper-ations Management of a Glass Furnace, and Intelligent Robotic Systems.

CHAPTER 1IntroductionThe evolution of Control theory and applications in the past 60 years points towardsincreasingly complex systems. Conventional control design techniques assume theexistence of mathematical models that capture the dynamical behavior of the sys-tems to be controlled. The evolution from input-output to state-space models andfrom �xed feedback controllers to adaptive and robust controllers, capable of deal-ing with temporal changes and uncertainty about system parameters, correspondsto an increasing complexity of the control design process, motivated by an increas-ing complexity of design speci�cations and system models. As the mathematicalmodels become more involved, so does the number of simplifying assumptions, tokeep the model tractable. This may lead to control design strategies appropriateto the models, but inappropriate to the real systems they model, since one hardlycorresponds to the other.Since the late 60s, various strategies were proposed to address the controlof complex systems. K. S. Fu[17] was probably the �rst to write about LearningControl Systems and to coin as Intelligent Control Systems those systems of interdis-ciplinary nature, in the intersection of Arti�cial Intelligence and Automatic Control.An increasing number of other researchers have developed applications and theoryin the new discipline by introducing new ideas such as neural control[3, 25, 57], fuzzycontrol[94, 28, 35], hybrid control[77] or hierarchical control[3, 88]. Intelligent Con-trol techniques particularly qualify for applications to Robotics and Process Control,due to the need to coordinate a diverse and large number of sensors and actuators.They di�er from \conventional" techniques by aiming to attain higher degrees ofautonomy, thus dealing with higher uncertainty. To accomplish this, Intelligent1

2Controllers need to adapt to unexpected situations, and learn how to solve prob-lems associated in the past only with human decisions. In doing so, they attemptto emulate mental faculties which are believed to be important attributes of humanintelligence. The name Intelligent Control comes from this attempt.This thesis introduces a design methodology for Intelligent Controllers basedon the Analytic Theory of Intelligent Machines developed by Saridis[69]. Themethodology relies on the existing knowledge about designing the di�erent sub-systems composing an Intelligent Machine. Its goal is to provide a measure ofperformance applicable to any of the subsystems, and use that measure to learnon-line the best among the set of pre-designed alternatives, given a state of theenvironment where the machine operates. Di�erent designs can be compared usingthis novel approach.1.1 MotivationMost of the work done in the last few years towards building IntelligentControllers[77, 72, 3, 53, 10] quite often mentions the need for a methodology to de-sign an Intelligent Machine (IM) and a measure of how successful the �nal result is.An analytic design based on measures of performance recursively improved throughfeedback assures some degree of certainty about the measurability, repeatability andveri�ability of that design. This point of view also emphasizes an approach basedon Control Systems Theory, even though the whole design is based on other multi-disciplinary contributions, such as Arti�cial Intelligence and Operations Research.The architecture for an IM proposed by Saridis is based on a 3-level hierarchy,where more abstract actions are taken at the top Organization Level and moreprecise actions are taken at the bottom Execution Level. Given an external com-mand (goal), the Organization Level is responsible for sequencing the pre-de�nedevents into a task. The Execution Level executes a detailed translation of the task,

3generated by the intermediateCoordination Level. This level further decomposesthe events composing the task, and distributes them by a number of coordinatorsspecialized in speci�c sub-tasks, such as vision, motion or path planning in an In-telligent Robotic System. The coordinators invoke the Execution Level primitivealgorithms to precisely execute the task.When dealing with very large systems, there is always uncertainty about thebehavior of the system to be controlled. Hence there is always uncertainty about theresult of a given command sent to the controlled system. Uncertainty is experiencedby all levels of the Intelligent Machine:� at the execution level, there is uncertainty in terms of overshoots, posi-tion and velocity errors, con�dence interval of an object pose estimated bya computer vision algorithm, degree of accuracy to which a planned path ortrajectory follows a given set of knot points, and other similar features, sincemathematicalmodels never match exactly the actual controlled system. Imple-mented by primitive algorithms (e.g. controllers, image processing), feedbackreduces the uncertainty about the above mentioned features thus reducing theentropy of the system, as suggested by Zames[95].� at the coordination level, there is uncertainty in terms of the success of eachof the primitive events composing a task. In an Intelligent Robotic System,primitive events typical of this level are grasp strut, plan path, move manipu-lator, locate object. A primitive event represents a problem whose solution isimplemented by a primitive algorithm.� at the organization level, there is uncertainty in terms of the success of thetask planned.Thus, an Intelligent Machine should use the environment feedback to reducealong time the uncertainty about the success of its actions and the uncertainty about

4which tasks and primitive algorithms to select. Globally, performance is related touncertainty. Reducing the uncertainty improves the performance. However, the costof reducing uncertainty must also be taken into account.The boundary between the environment where an IM operates and the IM, isfrequently application-dependent. However, the general rule is that the IM includesall algorithms necessary to cope with some goal. The environment is the systemcontrolled by the machine, including algorithms which inspect the environment stateand the success of actions of the machine, and hardware which physically belongsto the wide-sense IM. As an example, consider an Intelligent Mobile Robot movinginside a room. The room and its objects, and the motors, wheels, cameras andsensors of the Mobile Robot are part of the environment. The planning, learning,decision making and execution algorithms (e. g. motion controllers, vision andsensor fusion algorithms, path planners) are part of the IM.This thesis proposes a methodology for performance improvement of Hierarchi-cal Goal-Directed Intelligent Machines (HGDIMs) based on Hierarchical Reinforce-ment Learning. The translation interfaces of the 3-level architecture proposed bySaridis and Valavanis[88] are modeled by a 2-stage Hierarchical Learning StochasticAutomaton (HLSA), as sketched in Figure 1.1. The HLSA includes a HierarchicalReinforcement Learning Scheme which recursively updates the decision probabili-ties at the two stages from success and failure signals received by the bottom levelwhenever an action of the HGDIM is applied to the environment where the machineoperates. Under this learning scheme, the probability of selecting the best tasks andprimitive algorithms is proven to converge to 1 with probability 1 (w.p.1).This work is an extension of the framework of the Analytic Theory of Intel-ligent Machines developed by Saridis et al[71, 68, 54, 88, 93, 50, 37]. The maincontribution of this thesis to the Analytic Theory of Intelligent Machines is the use

5
ORGANIZATION LEVEL

EXECUTION LEVEL

Environment

Organization-to-Coordination
Translation Interface LSA

Coordination-to-Execution
Translation Interface LSA

Ordering primitive events

Primitive Algorithms

COORDINATION LEVEL

respective Coordinators.

command

alternative tasks

selected task

alternative primitive algorithms
per primitive event

selected primitive algorithm

actuators

from primitive algorithms to
propagation of cost function

monitoring algorithms, sensors

primitive events

from primitive events to tasks
propagation of cost function

Dispatching events to the

Allocating Resources.

to compose a task.

Figure 1.1: Hierarchical Learning Stochastic Automaton and Hierar-chical Goal-Directed Intelligent Machine.

6of feedback from the environment to update a speci�c cost function which evalu-ates the performance of all three levels of the hierarchy. This evaluation guidesthe update of the decision making structure. The cost function has two terms:computational cost and reliability, which are de�ned coherently.Other novel contributions of this work include an original hierarchical exten-sion of Fu's Generalized LSA, the corresponding Hierarchical Reinforcement Learn-ing Scheme and the original modeling of a HGDIM by a HLSA.Previous results, referenced in chapter 2, established a general architecturefor Saridis' IM and detailed this architecture for the di�erent levels. However, the
ow of feedback through the hierarchy with the purpose of improving the overallperformance by updating the decision making structure, has never been detailed forthe complete hierarchy. Furthermore, even though the general goal is to decreaseentropy at all levels, and reliability has been proposed as an equivalent measure ofentropy[50], neither has computational cost ever been included in the cost function,nor has a recursive estimate of reliability been considered.To include those features, a coherent measure of computational cost and re-liability of an algorithm will be introduced before the deployment of the learningand decision making methodology. The two measures are later combined in a costfunction which is estimated as part of the learning algorithm. However, it can beused independently for o�-line design too, extending the methodology proposed byMcInroy and Saridis[49], and Musto and Saridis[55].This approach has the advantage of providing a guideline for the solution ofseveral di�erent problems, since it is based on measures of reliability of an algorithm(de�ned as the probability that the algorithm will meet some set of speci�cationsin a given state of the environment) and computational cost of an algorithm (i.e.the number of resources used by the algorithm to solve a problem with the requiredreliability). Computational cost includes general measures such as computation

7time, memory used, number of processors used or mean square error with respectto some desired set point. These are su�ciently general measures in the sense thatthe success of any primitive algorithm (e.g. a controller, a vision system) or taskcan be measured by determining how reliable the algorithm or the task are, whilesimultaneously imposing cost constraint(s).1.2 Problem StatementThe objective of the IM is to accomplish a goal dictated by an external com-mand. However, the IM operates in a complex environment that disturbs the ex-pected results of its actions. These disturbances result from incomplete environmentmodeling and unexpected events.By assumption, the environment is modeled as a discrete-state stochastic pro-cess. At each instant in time, the environment can be in one of several states, drawnfrom a �nite set. Every action of the IM over the environment generates some e�ectto which the environment responds. In most cases, the response denotes whether theaction succeeded or failed. This response of a state of the environment to a givenaction is non-deterministic. The model assumes that some probability of successcorresponds to each pair (action of HLSA, state of environment). This probabilityis also unknown to the IM. The environment is non-stationary if the probability ofsuccess of any action changes with time, and stationary otherwise.The problem addressed by this work may thus be stated as:A goal is dictated to a HGDIM by an external source (command). The HGDIMoperates within a stochastic environment assumed to have the following characteris-tics:� it has a �nite number of possible states. The transitions between states maydepend on the current and/or past states, and they may be deterministic orstochastic;

8� each state responds to an action of the IM with a success (1) or failure (0)signal;� it has unknown probabilities of success for each pair (action of IM, state of theenvironment),The purpose is to design a reinforcement learning scheme which make theprocess of Decision Making converge to the selection w.p.1 of the optimal actions atthe two translation interfaces (Organization-to-Coordination and Coordination-to-Execution) of a HGDIM operating in the environment, for each of its states. Optimalactions are those which minimize a cost function at the corresponding interface:tasks in the top interface, primitive algorithms in the bottom interface. De�ningthis cost function is also part of the problem.1.3 Overview of Proposed SolutionIn general terms, the HLSA and its Hierarchical Reinforcement Learning Sche-me model the translation interfaces of a HGDIM as follows:Learning: at the bottom level of the hierarchy, a cost function combining reliabilityand computational cost of the primitive algorithms is estimated from the suc-cess and failure responses of the environment to the application of one of thesealgorithms. This estimate is used by a Reinforcement Learning Algorithm toupdate the subjective probabilities of selecting the primitive algorithms capa-ble of translating a primitive event at the bottom stage of the HLSA. Then,the cost function estimate is propagated to the top stage, where it is used byanother Reinforcement Learning Algorithm to update the subjective probabili-ties of alternative tasks (sequences of primitive events) capable of translatinga command sent to the machine.

9Decision Making: Given a command, a task is selected by random decision atthe top stage, based on the current task subjective probabilities for that com-mand. At the bottom stage each of the primitive events composing the taskis translated by a primitive algorithm selected by random decision, based onthe current subjective probabilities of primitive algorithms.Chapter 5 will show that the translation from commands to tasks is imple-mented by a stochastic grammar. Hence, the probabilities of selecting alternativeproductions of the grammar, not the probabilities of selecting tasks, are actuallyupdated.1.4 Organization and Terminology of the ThesisThe thesis is organized as follows:Chapter 2 reviews the current literature in the areas of Architectures for Intelli-gent Machines, Learning Stochastic Automata and Stochastic Grammars, andTheory of Complexity;Chapter 3 covers the basics of the theoretical background on Learning StochasticAutomata and de�nes relevant terminology;Chapter 4 introduces the cost function based on reliability and computational costof an algorithm. Several examples of application of the formalism are shown;Chapter 5 introduces the new formulation of an Hierarchical Goal-Directed Intel-ligent Machine as a Hierarchical Learning Stochastic Automaton, with specialemphasis on the feedback hierarchy. This is the main chapter of the thesis;Chapter 6 studies the convergence rate of stochastic approximation algorithmsand methods to accelerate it.

10Chapter 7 describes two case studies based on the proposed formalism: one isconcerned with Operations Management of a Glass Melting Furnace and theother with an Intelligent Robotic System.Chapter 8 concludes the thesis and leaves some clues for future work.Along the thesis, several abbreviations will be used quite often, such as:� LSA for Learning Stochastic Automaton� HLSA for Hierarchical LSA� IM for Intelligent Machine� HGDIM for Hierarchical Goal-Directed IM� w.p.1 for With Probability OneVectors will be underlined, such as in x. Matrices will be denoted by capitalletters. The context will distinguish them from some scalars also denoted by capitalletters. Keywords will be italicized when they appear in the text for the �rst timeand wherever else it is relevant.1.5 SummaryIn this chapter, the problem addressed by this thesis was stated and anoverview of the proposed solution was introduced.

CHAPTER 2Literature ReviewIn this chapter current and pioneer literature in the areas of Architectures for In-telligent Machines, Learning Stochastic Automata and Stochastic Grammars, andTheory of Complexity will be reviewed. These are the 3 research �elds with majorcontributions to the theory developed in the following chapters.2.1 Architectures for Intelligent MachinesThe debate on Architectures for IntelligentMachines or Architectures for Intel-ligent Control Systems (AICS) is essentially divided today among those who proposea Behavior-Based, non-hierarchical solution [10] and a Goal-Oriented hierarchicalarchitecture[3, 67]. In the the former formulation di�erent agents compete to ini-tially satisfy the basic needs of the machine (search for food, avoid obstacles), andafter these are accomplished, to achieve more intelligent behavior, such as coordinat-ing a few of those agents by assigning priorities. The latter distinguishes the levelsof the hierarchy by the level of abstraction of the executed tasks, and a formulationclose to the Theory of Control Systems is used to measure performance.This distinction between goal-oriented, hierarchical architectures and behaviorbased, layered architectures, is somewhat arti�cial. While in the latter it is claimedthat lower-level behaviors continue, even when momentarily subsumed by higher-level behaviors, these eventually take command in a hierarchical fashion. Similarly,there exist parallel distinct behaviors at each level of goal-oriented hierarchies [77].The hierarchical architecture proposed by Saridis and Stephanou [72] for Intel-ligent Control of a prosthetic arm, analytically formulated by Saridis[70] and Saridisand Valavanis[73] is adopted in this work.While these works put some emphasis on the Organization Level, Graham and11

12Saridis [23] proposed linguistic decision structures, called Linguistic Decision Sche-mata, used at all levels of the hierarchy, for the top-down translation of commands.Wang and Saridis [93] re�ned this linguistic approach by proposing the im-plementation of the Coordination Level by a Petri Net Transducer (PNT). A PNTis composed of an Input Tape, a Petri Net Controller and an Output Tape. TheCoordination Level is actually composed of a 2-stage hierarchy of PNTs. The toplevel implements the Dispatcher whose Output Tape is the input of several otherPNTs implementing the Coordinators. The decision to �re an enabled transition ofa PNT is based on the symbol currently read by the input head of the PNT. Thissymbol determines also the translation of the transition into some output symbol.The output symbols of the Coordinator PNTs represent low level algorithms whichtranslate primitive events represented by the input symbols.In Wang's work, there was a �rst attempt to address the feedback problem byupdating the frequencies of success of each of the algorithms, but neither concretemeasures such as reliability and complexity were mentioned nor a bottom-up prop-agation of such measures was envisaged. Furthermore, the entropy-based approachmeasures the uncertainty of translations at the Coordination Level, but does nottake into account the uncertainty due to the reliability of the low level algorithms.A major criticism of PNTs is that, despite the ingenious solution and theelegant formalism, the dispatcher seems di�cult to design, even for problems ofmoderate complexity, since implicitly the di�erent possible tasks coming from theOrganization Level must be anticipated.In recent work, Beard and Saridis [8] modi�ed Wang's proposal in order toovercome this problem. A Petri Net Transducer or Translator (PNT) interprets itsInput Tape as a string of some pre-de�ned language and translates it into a Hierar-chical Petri Net. The macro-transitions of the top level Petri Net are translated into

13sub-Petri Nets representing the coordinators, whose transitions are in turn trans-lated into low-level algorithms. A measure of structural cost for the alternative PetriNets representing a task is also introduced.Moed and Saridis [54] proposed a Boltzmann Machine to handle the combi-natorial explosion associated to the Planning and Decision Making processes whendi�erent events are sequenced to form a task at the Organization Level. The conver-gence of the search for a task given a command is achieved using a Modi�ed GeneticAlgorithm. However, task translation is learned o�-line and no update occurs afterexecution of a given task. Another potential drawback is that the design of theBoltzmann Machine, namely the required number of hidden units, is accomplishedby heuristics.McInroy and Saridis [50], and Musto and Saridis [56] introduced reliability andentropy-based criteria to choose the best algorithm among those capable of solvingsome problem, given a set of speci�cations for the problem, under some environmentconditions. The environment conditions are implicitly assumed as stationary in bothworks, even though the latter relaxes the gaussian assumption for the noise in theformer. Also, no learning of model parameters is involved. Actually, no learning atall is considered, since the main goal is to obtain a model for o�-line selection ofplans based on reliability and entropy.The Execution Level has been implemented in CIRSSE, by utilizing a SpaceTruss Construction paradigm[14].2.2 Learning Stochastic Automata and GrammarsThe literature about learning automata models is vast and not limited tocontrol applications. The �rst learning models were developed in mathematicalpsychology in the 1950s. However, this section will focus only on the most relevantworks for control applications.

14Tsetlin[83] introduced the use of deterministic automata operating in randomenvironments to model learning. Later, Varshavskii and Vorontsova [89] introducedthe concept of Stochastic Automata with Variable Structure, so called due to theupdate of the automata state probabilities along time.Fu and his associates in the United States[20], Tsypkin and Pozniak in theSoviet Union[85], were among the �rst to propose Stochastic Automata models forLearning Control[17, 86].The application of linear reinforcement learning to control systems was intro-duced by Waltz and Fu[91]. A seminal paper by Nikoli�c and Fu[60] introduced theuse of a performance function which is iteratively updated by a stochastic approxi-mation algorithm and used by another stochastic approximation algorithm to learnthe action probabilities of a controller. This approach is not based on StochasticAutomata, in a strict sense. McLaren[52] suggested the concept of \growing" au-tomaton. An overview of the work of this group of researchers can be found in[66]. Fu and Booth[18] survey methods of Stochastic Grammar inference from asample set of strings. The methods are generally valid for Context Free Grammars.Special emphasis is put on learning the productions probabilities when the followinginformation is available: all the other grammar parameters, a sample set of strings,and the frequency of occurrence of a string in the sample set. A Maximum Likeli-hood Method which accomplishes this is described. The generation of alternativegrammars is also referenced. Even though this is a time consuming process, one ofthe solutions described takes into account the complexity of the language generatedto decide among grammars which �t equally well the sample set. This suggests away of minimizing the structural cost referred in section 2.1.Another school of research on the topic of Stochastic Automata is constitutedby Narendra, Thathachar and their associates. Surveys of their work can be found in

15[58, 59]. The latter is the most recent book on the subject, including more in-depthapproaches to nonlinear reinforcement schemes and operation in non-stationary en-vironments.Lakshmivarahan and Thathachar[34] proved a necessary and su�cient condi-tion for learning automata using a general nonlinear learning scheme to be abso-lutely expedient. The same authors[33] proposed a Bayesian technique to updatethe penalty probabilities of the environment, simultaneously leading to a smallerconvergence time to the best action and providing a con�dence level on the estimateof that action.Recent work of these authors focus on Hierarchical Learning Stochastic Au-tomata, where the actions of an automaton at one level represent automata at thelevel immediately below. The reward/penalty of the environment comes from eithera single-teacher[78, 79] or multi-teacher[5].The relation between stochastic approximation and stochastic automata is asubject of continuous debate. Narendra and Thathachar claim:\It is well known that stochastic approximation methods are applicable to parame-ter optimization problems, while the methods" (of Narendra and associates) \(...)are concerned with cases where probability distributions over �nite action sets areupdated"[59].However, Fu and Nikoli�c introduced a general expression which encompasseslinear reinforcement methods as a particular case of the stochastic approxima-tion[21, 22]. These authors sought to conform original stochastic automata methodswith stochastic approximation methods with the objective of proving convergencewith probability 1 (w.p.1) of action probabilities. This convergence is not achievedby either linear or nonlinear reinforcement schemes not based on the stochasticapproximation.In the last few years, Barto, Sutton and their associates explored reinforcement

16learning solutions which associate these two schools [7, 74, 75, 76]. Some currentwork on reactive agents[41, 47] and behavior-based agents was triggered by [7], wherethe authors explore and compare the formulation of learning stochastic automataand supervised learning pattern classi�cation to overcome the need to store a prob-ability vector for each state of a non-stationary (multi-state stochastic) environmentin a lookup-table. The use of this lookup-table is a memory-consuming procedureand slows the learning rate. In their formulation, the action probability vector isparameterized and a mapping from vectors of input features representing environ-mental states to the parameter is constructed. However, the algorithm proposed islimited to 2 actions, and this is the main drawback of the approach.2.3 Theory of ComplexityThe �eld of research on computational complexity has several branches. Mostof the work focus on Combinatorial Complexity. The early work of Kolmogorov[30]introducing notions such as �-entropy, Complexity and combinatorial foundations ofInformation Theory, has recent followers[39, 1] among Computer Science researchers.Zames[95] introduced Kolmogorov's �-entropy in Control Theory. Most recentlyTsitsiklis has developed work on Theory of Complexity in the context of ControlTheory[84].The so called Information-Based Complexity Theory was introduced in theearly 1980s by Traub, Wasilkowsky and Wozniakowsky[81]. Information-BasedComplexity di�ers from Combinatorial Complexity since in the former informa-tion is partial, noisy and costly, as opposed to complete, exact and free informationin the latter. The information considered here is the information contained in theanswers to questions about the problem element (see Chapter 4), not the informa-tion content of those answers, that is, the uncertainty about their correctness. This

17distinguishes the concept of information in Information-Based Theory of Complex-ity and the concepts of information and entropy in Shannon's Information Theory[80]. However, there is a link between how much information is needed to limit theuncertainty to a speci�ed level and Kolmogorov's �� entropy.2.4 SummaryThis chapter reviewed the literature in the areas of Architectures for IntelligentMachines, Learning Stochastic Automata and Stochastic Grammars, and Theory ofComplexity. The theory introduced in this thesis stands in the intersection of thesethree areas.

CHAPTER 3Theoretical Background on Learning Stochastic AutomataThis chapter provides the background needed to understand the theory of LearningStochastic Automata used in the following chapters. Section 3.1 covers the basics ofLearning Stochastic Automata with special emphasis on their generalized version,proposed by Fu and his associates, which uses a performance function and updatesthe decision probabilities by a stochastic approximation algorithm. Section 3.2summarizes some concepts related to stochastic grammars which will be referencedin the sequel. Section 3.3 de�nes linguistically the task generation process in aHGDIM. Even though the previous work of Valavanis and Saridis[88] is partiallyfollowed here, the formulation has its own novelty and coherence, paving the wayfor the ideas presented in chapters 4 and 5.3.1 Learning Stochastic Automata and Stochastic ApproximationLearning Stochastic Automata(LSA) [20, 59] have been suggested as appropri-ate solutions for the control of systems whose dynamics are completely or partiallyunknown and environments with unknown stochastic descriptions[17, 66] . Theirapplication is particularly suited to levels where decision making is required, suchas the Coordination and Organization Levels of Saridis' Intelligent Machine.Some applications of LSAs are also usually associated to performance-adaptivemethods, that is methods where the controller is modi�ed structurally or parame-trically along time, according to the evolution of the estimate of some performancefunction. This makes them even more relevant in this context.De�nition 3.1.1 A LSA is de�ned by the quintuple fY;Q;U; F;Gg, where Y =f0; 1g is the �nite input set, with 1 representing a reward and 0 a penalty, Q =18

19
monitoring
algorithms

SYSTEM

ENVIRONMENT

action
success/failure

LSA

action

Figure 3.1: Closed loop between LSA and environment.fq1; : : : ; qsg is a �nite set of internal states and U = fu1; : : : ; usg is the output setor action set. F (P (n); y(n)) is called the updating or reinforcement scheme whichgenerates P (n + 1) from P (n) and y(n) 2 Y , where P = fp1; : : : ; psg is the set ofprobabilities governing the (random) choice of state at each time instant, that is,P = P (n). Finally, G is the output function G : Q ! U . G is stochastic in thegeneral case, but with no loss of generality[59] it will be assumed to be representedby an identity matrix, i.e. each action is univocally and deterministically associatedto a state.Any LSA interacts with the external world, usually denoted as the environment(see Figure 3.1). Every action of the LSA generates a response from the environment.In most cases, the response denotes whether the e�ect produced by the action wasa success or a failure. In turn, the failure or success signal is used by the LSA toupdate its internal action probabilities according to the reinforcement scheme. Anaction probability is rewarded when applying the action over the environment resultsin a success or penalized when a failure occurs. This method is called reinforcementlearning. These probabilities weight the random choice of the next state for theLSA, thus determining the next action.

20In general, the response of the environment to a given action is non-determi-nistic. The interaction model assumes that some probability of success correspondsto each action. This probability is unknown to the LSA.De�nition 3.1.2 A stochastic environment is de�ned by the quintuple fU , X, Y ,H, Rg, where U = fu1; : : : ; usg is the �nite input set, X = fx1; : : : ; xdg is a �niteset of internal states and Y = f0; 1g is the output set, where 1 represents a successand 0 a failure. R is a matrix whose general element Rij is the probability of asuccess due to the application of input j over state i:Rij �= PrfY = 1jxi 2 X; uj 2 UgR determines the rate of failures and successes for each pair (input,state). If anyof these rates change with time, the environment is non-stationary. Otherwise, theenvironment is stationary. Finally, H : Xr ! X is the state transition functionwhich generates x(n+ 1) 2 X from x(n); x(n� 1); : : : ; x(n� (r � 1)) 2 X.The above de�nition of environment as a multi-state stochastic process or chainimplies a non-stationary environment in the general case, because the probabilityof success depends on the current state. Only a single-state environment can bestationary. However, such an environment may be non-stationary if the probabilityof success of any of its actions continuously changes with time.The non-stationarity of a multi-state environment may be overcome by gen-eralizing the notion of LSA to a set of d sub-LSAs, where each sub-LSA is assignedto a di�erent state xi 2 X of the environment. This approach has two draw-backs: it may not be feasible if the actual number of states d of the environmentis too large and it requires that the LSA is aware of the environment in which itoperates[59]. Hence, methods capable of coping with non-stationary environmentsare worth studying. Analytic studies are known for speci�c models of non-stationaryenvironments, such as a Markovian Switching Environment, where H depends only

21
monitoring
algorithms

SYSTEM

ENVIRONMENT

evaluation

performance

GENERALIZED LSA

LSA

action

success/failure
action

state
environment

Figure 3.2: Closed loop between generalized LSA and environment.on the current state (r = 1 in the above de�nition of environment). In this particu-lar model of a stochastic environment, the overall system automaton + environmentis equivalent to a homogeneous Markov chain, as shown in [59]. The case studies inthis thesis propose an alternative strategy to deal with non-stationary environments.Another extension of the basic concept of LSA was proposed by Fu[20], wherethe state probabilities are not rewarded or penalized directly. Instead, success andfailure signals are used to update a performance function which is later used toupdate the probabilities (see Figure 3.2). There is a performance function for eachpair (action, state of the environment).When the LSA models a Hierarchical Controller, a Hierarchical Learning Sto-chastic Automaton (HLSA) must be used. At the bottom level of the hierarchyseveral LSAs interact directly with the environment. At the levels above, the actionchosen by one of the LSAs corresponds to another LSA at the level immediatelybelow. This is actually an advantage in terms of learning e�ciency, since the highdimensionality of the decision space is overcome[78]. Some HLSAs were proposedwhich rely on this architecture. In some examples the reinforcement signal goes

22directly to all levels (single-teacher) [78], while in others there are di�erent rein-forcement signals for each level (multi-teacher)[5]. Chapter 5 introduces a di�erentapproach where reinforcement signals are propagated bottom-up.The adaptation of the LSA to the state changes - with the consequent changesof the penalty probabilities - depends usually on the learning scheme used. Someschemes are capable of adaptive behavior in particular instances, such as the LRPscheme described by Narendra and Thathachar[59] or the Linear Reinforcementscheme of Waltz and Fu[91]. However, both schemes are not guaranteed to convergew.p.1 to the best action even if the environment is single-state.An alternative consists of dealing with the large number of states of the en-vironment in a hierarchical fashion. If a HLSA is considered, higher level statesof the environment can be obtained as a composition of lower level states of theenvironment, thus reducing the actual number of options to explore. This subjectwill be further explored in section 5.5.The behavior of an automaton can be measured to determine if its learningscheme leads to correct decisions after some interactions with the environment. Res-tricting the analysis to a single-state environment, one such measure is the averagereward received by the automaton at instant n:M(n) = sXj=1 pj(n)Rj (3:1)When all actions are chosen with equal probability, the average reward isdenoted by M0 and given by: M0 = 1s sXj=1RjOnly a stochastic automaton with a learning scheme such that its averagereward is greater than M0 can be fairly called a Learning Stochastic Automaton asit is implicitly assumed in the above de�nition of LSA.

23A LSA is called expedient iflimn!1E[M(n)] > M0 (3:2)and optimal if limn!1E[M(n)] = maxj=1;:::;sfRjg (3:3)Optimality implies that asymptotically the action associated with the maximumreward probability is chosen with probability one, that is, if Rm = maxj=1;:::;sfRjg,Prf limn!1 pm(n) = 1g = 1 (3:4)For some learning schemes it can only be proved that in all stationary single-state random environments when n ! 1, the LSA chooses with probability onean action whose reward probability belongs to a neighborhood � of the maximumreward probability (�-optimal LSA[58]). That is the case of the LRI (Linear RewardInaction) scheme described by Narendra and his associates, which always convergesto some action whose probability is one, but this action is not necessarily the opti-mal action. Optimality can only be obtained by suitable initial conditions for theprobabilities and values of parameters of the learning scheme. Another learningscheme they describe, the LRP (Linear Reward Penalty) scheme, is only expedient,and its sequence of action probabilities distribution function converges to a distri-bution function at all points of continuity of the latter[58]. In these schemes, actionprobabilities are updated by a reinforcement scheme which uses the reinforcementsignal from the environment directly.Fu and his associates describe a di�erent learning scheme that they apply toLearning Control Systems[17]. Fu's LSA updates �rst an estimate of performancefor the current (LSA action, state of the environment) pair. This estimate is subse-quently used to update action probabilities.The general performance function Zij is de�ned as the mean value of theinstantaneous performance function y 2 Y when the LSA action uj is applied to the

24state of the environment xi: Zij = E[yjxi; uj]y evaluates the response of the environment to a particular action (success orfailure in the above de�nition of LSA).The general performance function is estimated iteratively using a stochasticapproximation method[20, 66]:Ẑij(nij + 1) = Ẑij(nij) +
(nij + 1)[y(nij + 1) � Ẑij(nij)] (3:5)where nij = 0; : : : ;1 is the number of simultaneous occurrences of environmentalstate xi 2 X and LSA action uj 2 U . Ẑij(nij) denotes the nijth estimate of themean value of the instantaneous performance function y 2 Y . There are separateestimates for each pair (state of the environment, LSA action).If Zij <1; E[y2jxi; uj] <1 Ẑij(0) <1hold and 1�
(nij + 1) > 0; 1Xnij=1
2(nij + 1) <11Ynij=1(1�
(nij + 1)) = 0; i = 1; : : : ; d j = 1; : : : ; sDvoretzky's conditions[15] are satis�ed and the estimate converges w.p.1 to theactual value of the performance function, i. e.,Prf limnij!1 Ẑij(nij) = Zij; 8i; jg= 1Action probabilities are updated by a reinforcement scheme also based onstochastic approximation:pij(ni + 1) = pij(ni) + �(ni + 1)(�ij(ni)� pij(ni)) (3:6)

25where ni = Pj nij is the number of times any action has been applied to environ-mental state xi 2 X so far, 0 � �ij(ni) � 1; Pj �ij(ni) = 1, i = 1; : : : ; d denotesstates of the environment, and j = 1; : : : ; s denotes LSA actions. Also,1��(ni+1) > 0; 1Xni=1�2(ni+1) <1; 1Yni=1(1��(ni+1)) = 0; i = 1; : : : ; d (3:7)and pij(0) > 0; sXj=1 pij(0) = 1 (3:8)Given the estimates of the performance (or cost) function at each time instant,�ij is de�ned by �ij(ni) = 8><>: 1 if Ẑij(nij) = minkfẐik(nik)g0 if Ẑij(nij) 6= minkfẐik(nik)g (3:9)De�ning also the optimal action as the action um 2 U such thatZim = mink fZikg i = 1; : : : ; dthe following Theorem is proved in [21]:Theorem 3.1.1 The necessary and su�cient condition for (3.6), (3.7), (3.8) and(3.9) to yield Prf limni!1 pim(ni) = 1g = 1 i = 1; : : : ; dis that for every sub-optimal action uj 6=m 2 U1Xni=1�(ni)E[�ij(ni)jy(1); : : : ; y(nij)] <1; i = 1; : : : ; d j = 1; : : : ; s j 6= m (3:10)Hence, Fu's generalized stochastic automaton can be made optimal in the senseof (3.3).Essentially, the necessary and su�cient condition for optimality says that theestimates of the performance (or cost) function must converge faster than the actionprobabilities.

26The convergence speed of stochastic approximation can be improved by theuse of acceleration methods [22, 66, 27] and model-based initial estimates of relia-bility[20]. This will be discussed in chapter 6.3.2 Stochastic GrammarsGrammars are usually employed to describe the syntax of languages or struc-tural relations de�ning a pattern. They are useful in the context of HGDIMs todescribe the constraints imposed to the ordering of events composing a task, asexplained in section 3.3. In particular, Stochastic Grammars allow the assignmentof probabilities to con
icting productions or rewrite rules. This turns out to beequivalent to the assignment of probabilities to the di�erent strings of the generatedlanguage. The probabilities of the productions in each con
icting set can be learnedby a LSA. Hence, stochastic grammars provide the means to learn the ordering ofevents composing a task, as will be shown in section 3.3 and Chapter 5.De�nition 3.2.1 [18] A stochastic grammar is de�ned by the quintuple G = (VT ,VN , R, P, S), where� VT is a �nite set of terminal symbols;� VN is a �nite set of nonterminal symbols;� R is a �nite set of productions or rewrite rules;� P is a �nite set of probabilities that are assigned by a one to one mapping tothe elements of R;� S is the start symbol.Only stochastic regular grammars will be considered here, that is stochasticgrammars whose productions have the general syntaxA! � or A! �B; � 2 V �T ; A;B 2 VN

27where the symbol to the left of the arrow is called premise while the term to theright of the arrow is the consequent. V �T denotes the set of all the possible stringscomposed by elements of VT , including the null string.The set of productions R can be partitioned into m disjoint subsets R =fR1; : : : ;Rmg, where m is the number of nonterminal symbols, m = jVN j. Inparticular, Ri is the subset of productions with the same premise Ai, correspondingto the ith nonterminal symbol.Correspondingly, the set of probabilities P can be partitioned into m disjointsubsets, where subset Pi contains the probabilities of the productions of Ri.A stochastic grammar is proper ifmiXk=1 pik = 1; pik 2 Pi; jPij = mi; i = 1; : : : ;mTo each string x of the language L(G) generated by G corresponds a wordfunction f(x). If the grammar is unambiguous, that is, if there is only one leftmostderivation for each x, f(x) = K(x)Yk=1 p(k; x); 8x 2 L(G)where K(x) represents the number of steps in the derivation of x, and p(k; x) is theprobability of the production used in the kth step of the derivation of x.A language L � V �T , where V �T represents all strings of �nite length composedby elements of VT , including the null string �, is called a stochastic language if there isa function 0 � f(x) � 1; 8x 2 L, called probabilistic word function, f(x) : L! <,such that Px2L f(x) = 1.Not all stochastic grammars generate stochastic languages. Some restrictionsmust be imposed to the stochastic grammar.A stochastic grammar G is a consistent grammar i� the word function de�nedover L(G) is a probabilistic word function, that is, i� L(G) is a stochastic language.If the grammar is proper, then it will be consistent.

283.3 Linguistic Formulation of Task Generation in HGDIMsA command sent to the Intelligent Machine may be translated by more thanone task, de�ned as an ordered sequence of events.Ti = fti1; : : : ; tilig is the set of tasks capable of implementing command ci; i =1; : : : ; nc.E is the set of all primitive events. jEj = ne.Ei = fei1; : : : ; emi ig � E is the set of primitive events compatible with com-mand ci. This de�nition reduces the search space when looking for events to composea task. Notice that E = [nci=1Ei, but in general the sets Ei are not disjoint. Thatis, a primitive event may be compatible with two di�erent commands.We further associate to command i a language Li whose set of terminal symbolsis Ei. Task tij is a string of Li. Moreover,Ti � Li = Ei+; jTij = lithat is, task tij; j = 1; : : : ; li is one of the possible strings composed by elements ofEi, excluding the null string. The size of Ti depends on the constraints imposed by agiven command to its compatible primitive events. These constraints are expressedby a grammar Gi which generates Ti and whose start symbol represents commandci. An event is a symbol representing a non-null string of primitive events. Eventscan be represented by non-terminal symbols of the grammar Gi which generates Ti.A primitive event is an event which is no further decomposable. It representsa problem which can be solved by some algorithm. For each event there is at leastone algorithm which translates the event, e. g., one algorithm which can solve theproblem represented by the event. Primitive events are terminal symbols of thegrammar Gi which generates Ti.Ak = fak1; : : : ; ankkg is the set of alternative algorithms which may translate

29primitive event ek, k = 1; : : : ; ne.3.4 SummaryThis chapter presented the concepts and terminology considered relevant forthe understanding of the following sections. Basic notions of Learning StochasticAutomata and Stochastic Grammars were summarized, and a linguistic formulationof an Intelligent Machine was introduced. The following chapters will put togetherall this theoretical background to introduce a new model of an IM with feedbackfrom the environment.

CHAPTER 4A Performance Measure Based on Computational Cost and ReliabilityThere are di�erent options to reach a goal or a subgoal at the two highest levelsof the IM: the Organization Level has to decide among di�erent tasks capableof executing a given goal (command) sent to the machine; given the chosen task,composed by subgoals (events), theCoordination Level has to determine, for eachevent, the best among the set of primitive algorithms capable of solving each subgoalat the Execution Level. To compare the di�erent alternatives at each level a costfunction is necessary.The di�erent algorithms used at the Execution Level of an Intelligent Machineare frequently designed in order to meet a set of speci�cations or, without loss ofgenerality, in order to keep the error between the actual and desired values of a setof variables below some desired accuracy �.The uncertainty involved in the design of these algorithms is mostly due toapproximate or incomplete modeling and statistical
uctuations around nominalparameters. Previous work in this area [49, 56] models the uncertainty associatedto the di�erent algorithms using the concepts of reliability and entropy. It describesalgorithm selection techniques, based on entropy, which will choose the most reliablefrom a set of di�erent algorithms capable of solving some speci�c problem. However,the most reliable algorithm may have a non feasible computational cost, in termsof the time it takes to complete, the amount of memory it uses, or the number ofresources (e.g. processors) required. No attempt is made in this work to deal withthis problem, with the exception of plan execution time, modeled as a speci�cationby McInroy and Saridis[50].Thus, it makes sense to think of a selection technique which includes bothreliability and computational cost, but �rst the two measures must be coherently30

31de�ned. Information-Based Theory of Complexity provides some assistance to solvethis problem.The computational complexity of a problem is de�ned by Traub et al as\its intrinsic di�culty as measured by the time, space or other quantity required forits solution"[80].More formally this is equivalent to the cost of the optimal algorithm (in thesense of computational cost) for the solution of the problem.Two main kinds of computational complexity may be categorized into:� information-based complexity, when information about the problem ispartial (e.g. aliasing - more than one signal has the same values at thesampling instants), noisy (e.g. the samples are corrupted by noise) and costly(e.g. the smaller the sampling time the more costly is the sampling operation);� combinatorial complexity, when information about the problem is com-plete (e.g.: all distances in a robot-in-a-maze problem are given), exact (thedistances are assumed to be error-free) and free (there is no charge to knowthe distances).In the sequel, the focus will be on Information-Based Complexity. Problemsassociated to Intelligent Machines, whether they consist of position or force con-trollers, path or trajectory planners, robotic vision algorithms or others, deal withinformation of all kinds, and this information is often partial, noisy and costly. More-over, this work deals with strongly uncertain environments, and it has been pointedout before that reducing the degree of uncertainty in controlling those environmentsis the goal.This chapter introduces a cost function combining reliability and computa-tional cost (cost for short, in the sequel) of an algorithm, based on a coherentde�nition of the two. The link between reliability and cost is the assumption that

32all algorithms are designed to meet an error speci�cation for the problem they cansolve. Given some desired reliability for the problem, the cost of obtaining that reli-ability can be determined for each of the algorithms, according to the cost measurede�ned (number of operations, elapsed CPU-time, memory used) for the problem.Conversely, if the cost measure is �xed at di�erent values for the di�erent algorithms,this will correspond to di�erent reliabilities for each of them.This formulation has been introduced by Lima and Saridis in [42, 46] and itis based on the Theory of Information-Based Complexity[81].The next section summarizes the general formulation of information-basedcomplexity. The original theory is adapted to this formulation when needed. Thesecond section coherently de�nes cost and reliability. In the third section the costfunction and the equations to propagate its value bottom-up through the hierarchyare introduced. Finally, several examples of application of the formalism to RoboticSystems are described in detail in the last section.4.1 Information-Based Computational Cost of a Problem4.1.1 Problem FormulationFor each f 2 F , where F is a set of problem elements, it is desired to computean approximation U(f) of S(f), where S : F ! G is called a problem solution and Gis a normed linear space over the scalar �eld of real or complex numbers. To measurethe distance between S(f) and U(f) an absolute error criterion, kS(f) � U(f)k isused. U(f) is an �-approximation of S(f) i� kS(f) � U(f)k � � � 0. The originaltheory establishes three di�erent settings for the error of the approximation U(f) ofS(f): worst-case, average and probabilistic[81]. In the �rst two settings, U(f) mustbe an �-approximation of S(f) in the worst-case speci�cation error (kS(f)�U(f)k)or for the average speci�cation error, respectively. In the probabilistic setting, which

33will be used in the sequel, the speci�cation error is required to be below � except ina subset of G with a small measure.4.1.2 InformationIt is assumed that the only initial existing knowledge about f is that it be-longs to the set F , and also that more knowledge about f may be gathered usingcomputations of the form L(f); L : F ! Hfor some set H.L must belong to the class � of permissible information operations (oracles),that is L 2 � i� L can be computed for each f 2 F .H may assume several di�erent forms. For example, it may either be the setf0; 1g of answers to a question like \what is the intensity value of pixel (i,j) in someblack-and-white image?" or the set of real numbers when � is a collection of afunction and its derivative values at some point x, Li(f) = f (i)(x); 0 � i � r.The information I(f) is then de�ned asI(f) = (L1(f); L2(f); : : : ; Ln(f))T ; 8f 2 F:. Finally, U(f; �) = �(I(f)) where �(I(f)) 2 G is an algorithm that computesan approximation of S(f) given the information I(f).4.1.3 Model of ComputationThe initial assumptions are:� either a sequential or parallel model of computation is assumed;� there is a charge for each information operation;

34� all information and combinatorial operations are performed with in�nite pre-cision and �nite cost.The model postulates a constant cost c for each information operation L(f) 2� and unit cost for each combinatorial operation performed by � over I(f).The cost of an algorithm � has two components:cost(�; f) = ci(I(f); f) + cp(�;I(f)) (4:1)where ci is the cost of getting information about f needed by algorithm �, and cpis the combinatorial cost of processing that information by algorithm �. Given theabove, ci(I(f); f) � cjI(f)j, where jI(f)j denotes the cardinality of I(f), that is,the number of information operations. The term ci is inherent to information-basedcomplexity. Information is gathered to reduce uncertainty. cp would be the onlyterm in the absence of uncertainty.Under the probabilistic setting we control the error of estimating S(f) byU(f; �) (the result of algorithm �), keeping it below �, except in a subset of G withmeasure � 2 [0; 1]Given � and �, the cost of an algorithm is obtained for the most unfavorableproblem element f whose approximated solution U(f) still belongs to the subset ofG with measure 1� �:f� = arg inff2FfPrfkS(f)� U(f; �)k < �g 3 PrfkS(f)� U(f; �)k < �g � 1� �gcost(�) = cost(�; f�) (4.2)For example, N image frames or more need to be averaged to increase to acertain value the probability that the error of locating an object in a noisy imageis below �. Every image resulting from the average of a di�erent number frames isa problem element. If the cost of processing that information is not considered, theoverall cost will be equal to ci and proportional to the number of averaged frames.

35Among the number of image frames which have to be averaged, N corresponds tothe worst-case speci�cation error. A greater number of averages will decrease theerror probability, while a smaller number will push the corresponding approximatedproblem solution to the subset of G with measure �, for which PrfkS(f)�U(f; �)k <�g < 1 � �.4.2 Coherent De�nition of Reliability and ComplexityIn order to coherently de�ne cost and reliability for a given problem, the desiredaccuracy � of the problem speci�cation must be the same in both de�nitions.Given some problem, an algorithm capable of solving it with the required accu-racy may not exist, due to the inherent uncertainty of the problem. This uncertaintyis measured in Information-Based Theory of Complexity by the problem radius ofinformation, which resembles the selection of feasible plans proposed by McInroyand Saridis[49], based on the comparison of plan and speci�cation entropies.Assuming that the desired accuracy is greater than the radius of information,�-cost (cost for short) of a problem is de�ned here as the minimal cost among theset �feas of all available and feasible algorithms which solve the problem with errorde�ned in the probabilistic sense:�-cost = inf�2�feasfcost(�)g (4:3)Suppose now that in (4.2) S(f) is a vector of speci�cations for a given problem.The problem solution S(f) is for example the desired overshoot of a control algo-rithm implementing a move robot event, and the problem element f is the outputsignal used to compute U(f; �), the problem approximation.De�nition 4.2.1 Given some desired speci�cation accuracy �, and a problem ele-ment f 2 F , reliability of an algorithm � is de�ned as:R(�; f) = Prfspeci�cations metg

36= Prfspeci�cation error < �g= PrfkS(f)� U(f; �)k < �g (4.4)Now, making Rd = 1 � � when determining the cost of � by equation (4.2),the de�nition of cost is obtained.De�nition 4.2.2 Given some desired lower bound for the reliability Rd, cost of analgorithm � is de�ned asf� = arg inff2FfR(�; f) 3 R(�; f) � Rdg (4.5)C(�) = cost(�; f�) (4.6)that is, among all f 2 F capable of keeping the speci�cation error for algorithm� below � with reliability at least Rd, the one leading to the worst-case, i.e. thef leading to the larger probability of error, is picked. Here and henceforth, thereliability will be denoted as R(�) = R(�; f�).Notice that U(f; �) is a random variable due to the noisy measures of f andincompleteness of the model. Rd is a variable which may be used to help the designof an algorithm such that some reliability is achieved. However, the algorithm isusually designed to satisfy the requirements on accuracy � and then tested to checkits reliability. Rd could also be improved by increasing � (relaxing constraint onspeci�cation error), but that is not what is assumed here. Once � is �xed, there aretwo possibilities:� The di�erent algorithms for the problem are designed to meet the accuracyspeci�cation assuming no uncertainty. Their cost is determined by the numberjI(f)j of information operations plus the combinatorial complexity of process-ing such information. In this case, reliability is determined by (4.4) and Rd isthe reliability lower bound;

37� The di�erent algorithms for the problem are designed given the accuracy �and reliability Rd speci�cations. In this case, the alternative algorithms for aproblem typically di�er by the number of information operations they need.Hence, the cost is determined from (4.2), given � and Rd.The main di�erences between the de�nition of cost of an algorithm proposedhere and the de�nition of Information Based Complexity in the probabilistic casewill now be explained. The analysis provides a better understanding of the coherentde�nition of reliability and cost.Let � 2 [0; 1]. The probabilistic error associated to algorithm � is de�ned inthe context of Information Based Complexity bye(�) = infA f supf2F�A kS(f)� U(f; �)k : p(A) � �gIn other words: given a set A of measure less than or equal to �, the supremumof the approximation error among all f 2 F � A is sought. Then the error isminimized by seeking the set A (among all sets with p(A) � �) leading to thein�mum of the suprema of the errors.The probabilistic cost of algorithm �, under the worst case setting for the cost,is given by cost(�) = supf2F cost(�; f)that is, the cost of the algorithm does not depend on the speci�cation �.The complexity of the problem depends on � and it is de�ned as the minimalcost among all � with probabilistic error at most �:�-comp = inf� fcost(�) : e(�) � �gThe algorithm �� that achieves the minimal cost is called an optimal algorithm.This assures that the largest error among all realizations f 2 F � A willnot exceed �. The cost is determined for the worst case among these realizations.

38However, with probability less than or equal to �, there exists a set A which isnot checked, where some realization may lead to a larger error. If the algorithm ofminimum cost for f 2 F �A happens to have an actual error greater than � whenall f 2 F are considered, the increase in the actual error leads to an increase ofcomplexity, because some other algorithm �0 of larger cost will replace the previousoptimal algorithm.Equation (4.2) states that the cost is obtained for the worst-case f such thatthe reliability is greater than or equal to 1 � �. The algorithm may fail to meetits speci�cations with probability �. By De�nition 4.2.2, among the f 2 F whichachieve this reliability, the one of largest probability of error which still satis�esR(�) � Rd leads to the cost �. That is, the probability distribution depends in thiscase on a function of f , and not on f itself. As a consequence of this, the cost of analgorithm depends on the accuracy � and the reliability, and so does the complexityof the problem.In summary, the probabilistic setting of Information Based Complexity as-sumes uncertainty in the investigation of all possible situations an algorithm isapplied to, while the probabilistic setting used in this thesis assumes uncertainty inthe success of an algorithm, in the worst case for the error probability, among allpossible situations.4.3 A Cost Function for Intelligent MachinesThe coherent de�nition of reliability and complexity introduced in the previoussection allows the de�nition of a cost function combining the two, assuming thateach algorithm is designed to meet a set of speci�cations.De�nition 4.3.1 A Cost Function valid at all levels of a Hierarchical IntelligentMachine is de�ned by: J = 1 �R+ �C (4:7)

39where R is the reliability, C the cost and � a normalizing factor such that �C 2 [0; 1].In general � will be such that the cost does not overwhelm the reliability whensearching for the optimal action. Examples of � are � = 1maxa2AC(a) or � = 1Pa2A C(a),where A is the set of algorithms capable of solving a problem.De�nition 4.3.2 The optimization problem described in this thesis consists of �nd-ing the task and primitive algorithms which minimize (4.7) for a given commandissued to the machine and a given state of the environment.Equation (4.7) applies to all levels of the HGDIM, i.e., the performance of analgorithm, primitive event or task can evaluated by (4.7) if the cost and reliabilityare appropriately propagated bottom-up through the hierarchy.Recall from the previous chapter that a task t is composed by several eventsek 2 E, occurring either sequentially or in parallel. For each event ek there exist aset of alternative primitive algorithmsAk capable of solving the problem representedby the event, for k = 1; : : : ; ne, where ne is the total number of primitive events.The propagation equations are:De�nition 4.3.3 The Cost of event ek 2 E is the minimum cost among allalgorithms translating the event:C(ek) �= mina2AkfC(a)g k = 1; : : : ; ne (4:8)TheAction probability pa of algorithm a 2 Ak is the current probability ofa being applied. A probability density function is de�ned over the discrete algorithmspace Ak. Its purpose, discussed later in this thesis, is to help a learning algorithmconverging to the algorithm which minimizes the cost function J .De�nition 4.3.4 The Reliability of event ek is the average reliability among allalgorithms translating the event:R(ek) �= Xa2Ak paR(a) k = 1; : : : ; ne (4:9)

40If the cost function is to be used for designing purposes only and no learningis involved, an alternative de�nition which does not use action probabilities is:De�nition 4.3.5 The Reliability of event ek is the maximum reliability amongall algorithms translating the event:R(ek) �= maxa2Ak R(a) k = 1; : : : ; ne (4:10)De�nition 4.3.6 The cost of parallel execution of events e1; e2 isC(e1==e2) �= maxe1 ;e22EfC(e1); C(e2)g (4:11)while the cost of n events executed in series isC(e1j : : : jen) �= 1n nXi=1C(ei); e1; : : : ; en 2 E (4:12)The mean in equation (4:12) intends to keep the cost in the interval [0; 1].The successive application of these rules leads to the cost of a task, C(t).An additional structural cost may be added, for example as suggested by Beard andSaridis (1993)[8].The parallel execution of events is not logically parallel from the reliabilitypoint of view. In fact, all events must be successful to complete a task. Hence,De�nition 4.3.7 The reliability of task t isR(t) �= Yek2EtR(ek) (4:13)where Et � E is the set of events composing the task.In chapter 5 the propagation equations will be rewritten to include reliabilitiesconditioned by the state of the environment, and command cost and reliability. Theabove de�nitions apply to the particular case of a single-state environment and wereincluded here to help understanding how the cost function can be used at all levelsof an Intelligent Machine.

414.4 Applications to Robotic SystemsTasks implemented by Intelligent Robotic Systems may generally be decom-posed on primitive events. Among these the most typical are perhaps Move Robot,Locate Object, Plan Path, Plan Trajectory, Grasp Object. Algorithms capable of solv-ing these problems belong to the areas of Motion Control, Computer Vision, andPath or Trajectory Planning. In this section it will be shown how the performanceof some of these algorithms may be computed under the paradigm just formulated.The following three subsections cover examples of optimal pose (position + orienta-tion) control of manipulators, compliance control using a position accommodationtechnique and image processing. Emphasis was put on cost measures other thanexecution or computation time, to enhance the
exibility of the de�nition.4.4.1 Pose ControlThe dynamics of a n-degree of freedom robot manipulator can be expressedby the following compact form of Euler-Lagrange's equations of motion:D(�)�� +NL(�; _�) = u (4:14)where � 2 <n is the joint angles vector, u 2 <n is the control torques vector,D(�) : <n ! <nxn is the inertia matrix, and NL(�; _�) : <nx<n ! <n is the vectorrepresenting nonlinear coupling of Coriolis, centrifugal, gravity and friction torques.Luo and Saridis (1985)[48] formulated the optimal control solution for the problemof making the manipulator track a desired trajectory. They identi�ed the systemstate with x(t) = (�(t) _�(t))T and suggested the performance indexJ(u) = 12eT (tf)Ge(tf) + 12 Z tft0 [eT (t)Qe(t) + _eT (t)S _e(t)]dt (4:15)where S = 0B@ 0 00 S0 1CA, G is a 2nx2n and S0 a nxn real symmetric, positive de�nitematrix, Q is a real non-negative 2nx2n matrix, e(t) = xd(t) � x(t) and xd(t) =

42(�d(t) _�d(t))T is the desired state vector. When tf !1, the control law reduces tou� = D(�)f��d(t) +Kp[�d(t)� �(t)] +Kv[_�d(t)� _�(t)]g+NL(�; _�) (4:16)which has the same form of the Computed Torque Method, with Kp = S�10 P12 andKv = S�10 P22. P = 0B@ P11 P12P12 P22 1CA is the solution of a continuous algebraic Riccatiequation.Given the optimal control law, the closed loop state space model is_x(t) = Aclx(t) +Bclud(t) (4:17)where Acl = 0B@ 0 I�Kp �Kv 1CA, Bcl = 0B@ 0 0 0Kp Kv I 1CA, and ud = 0BBBBB@ �d_�d��d 1CCCCCA.I and 0 denote nxn identity and zeros matrices, respectively. The model canfurther be discretized by some suitable method, and a discrete time state spacemodel will be obtainedx((k + 1)Ts) = Adclx(kTs) +Bdclud(kTs) (4:18)if the sampling period is Ts.In this development it has been assumed:1. Perfect cancellation of the non-linear terms;2. Non-noisy measurements;3. Complete information about the state.However, assumption 3 can be kept but 1 and 2 may be relaxed by modelingthe resultant perturbations as zero mean gaussian noise. Then a new discrete statemodel is obtained:x((k + 1)Ts) = Adclx(kTs) +Bdclud(kTs) +Dv(kTs) (4:19)

43where v is a gaussian noise vector with E[v(kTs)] = 0; E[v(kTs)v(kTs)T] = Cv.The performance index has to be modi�ed when the noise is actually addedto the open loop system, and it becomes I(u) = E[J(u)].For this pose control problem (event move robot) the cost of an algorithm �solving the problem will be the optimal value of I:C(�) = I(u�) = e(0)TPe(0) + NXk=1 tr(PDCvDT) (4:20)where P is the solution of a discrete algebraic Riccati equation (Lewis, 1986 [38]),and N the number of samples in the trajectory.A lower bound for the Reliability can be obtained based on a method describedby McInroy and Saridis (1994) [49], when the speci�cations are quadratic in thetracking error e(kTs):e(kTs)TQse(kTs) � �; k = 1; : : : ; N; Qs � 0 (4:21)If C�1e (kTs)�Qs(kTs) � 0;8k = 1; : : : ; N (4:22)then R(�) � [�2d(�)]N (4:23)where �2d is a chi-square distribution with d degrees of freedom, Ce(kTs) is the covari-ance of the tracking error, N the number of points the speci�cations are concernedwith, and d the dimension of the state vector (d = 2n for a n-degree of freedommanipulator). Ce(kTs) can be determined by solving the di�erence equationCe((k + 1)Ts) = AdclCe(kTs)ATdcl +DCv(kTs)DT (4:24)Given Qs and �, the reliability lower bound is given by (4.23) for all di�erentCe which satisfy (4.22). The value of Ce depends on Adcl which in turn is a functionof the weighting matrices Q;S;G in the performance index. Hence, for di�erent

44lower bound reliabilities, di�erent Costs C will be obtained, and the performancefunction J = 1�R+�C helps deciding among di�erent optimal algorithms resultingfrom di�erent choices of Q;S;G.When a Computed Torque algorithm is used, Kp and Kv are usually madediagonal (Kp = kpI and Kv = kvI) and kp; kv are dimensioned to obtain desiredspeci�cations for each of n decoupled control loops. For each loop, and assumingperfect cancellation of the non-linear terms,wn = qkp (4.25)� = kv2qkp (4.26)where wn is the natural frequency and � is the damping factor. Notice that kp andkv are scalars.A natural approach to the translation of a Move Manipulator event will be toselect a set of Computed Torque algorithms with di�erent kp and kv (thus di�erentwn and �), and determine their costs and reliability. An expression to compute thecost will be derived next.Equation (4.20) is a truncated version of the actual expression for the cost ofthe discretized system under the assumptions of measurement noise and tf !1:C = I(u�) = e(0)TPe(0) + limN!1 1N NXk=1 tr(PDCvDT) (4:27)where N = tf=Ts, from (4.20). The cost is obtained for the number of steps takenby the actual displacement of the manipulator from the start to the end point only,but P is the steady-state solution of the Riccati Equation (when N !1).Now, making e(0) = 0; D = I and Cv = 0B@ �2pI 00 �2vI 1CA where �2p is thevariance of position noise and �2v the variance of velocity (or encoders) noise, thecost simpli�es to C = tr(PCv)N (4:28)

45In this expression, the sub-matrices of P are not known. However, the expres-sions for P12 and P22 may be simpli�ed because Kp and Kv are diagonal matrices:P22 = S0kvI (4.29)P12 = S0kpI (4.30)The steady-state Riccati Equation isQ� PSP + PF + F TP = 0 (4:31)where Q = 0B@ Q11 Q12Q12 Q22 1CA.Assuming di�erent S0 and Q will lead to di�erent solutions for P . Solving(4.31) for P11 given (4.29) and (4.30), one obtainsP11 = �Q12 + S0kvkpI (4:32)One possible solution used here consists of makingS0 = IQ12 = (kpkv � 1)IFrom these assignments one obtainsP11 = IP22 = kvIP12 = kpIQ11 = kp2IQ22 = (kv2 � 2kp)IQ12 = (kpkv � 1)I (4.33)and the cost comes, for a n degree-of-freedom manipulatorC = n(�2p + kv�2v)N (4:34)

46If encoder noise can be ignored, �2v = 0 and the cost is proportional to thetime taken by the movement.Another alternative is to make S0 = IQ12 = 0In this case, the cost is C = n(kpkv�2p + kv�2v)N (4:35)and it depends on kp and kv also.Other combinations of Q and S0 might have been used.The following instantiations of the de�nitions above for this particular examplesummarize and clarify the application of the formalism:� problem element f = (x xd)� problem solution S(f) = xd� solution approximation U (f; �) = x, as obtained by algorithm � (includesnoise Dv).� algorithm � = �(Q;S;G) = u�(Q;S;G)The performance function associated to the algorithms balances the penalty oferror and cost of control (by penalizing joint accelerations) to track a given trajectory(joint positions, velocities and accelerations) and the reduction of uncertainty dueto measurement noise.4.4.2 Compliance ControlThe robot comes in contact with the environment while performing many use-ful tasks. During the execution of these tasks the robot controller should control

47the forces exerted by the robot in relation with the motion of the end-e�ector. Thusthe robot may be required to exhibit a particular functional relation between theforce it exerts and the displacement that results. For contact tasks the desired rela-tionship is an impedance. Impedance control involves issuing a position commandand assigning a relationship between the interaction forces and deviations from thedesired position command. Thus, impedance control consists of a position controlloop with the assigned impedance determining the sti�ness of the manipulator[24].This type of compliance control is called Position Accommodation Control[65].Suppose the tip of a 6 degree-of-freedom manipulator is required to behaveas a Mass, Spring and Damper system. Let the [6x1] vectors x0 be the nominalend-e�ector trajectory and x be the actual end-e�ector pose (cartesian position +orientation). Let f be the forces and torques on the manipulator due to contactwith the environment.f = K(x� x0) +B(_x� _x0) + J(�x� �x0) (4:36)Equation (4.36) represents a relationship between the force at the end-e�ector andmotion about a nominal trajectory. If x = x0 the force f is zero. Thus x0 can beconsidered the non-contact trajectory. The choice of the [6x6] matricesK, B, and Jdepend upon the response desired from the system. Their values will also determinethe cost and reliability of compliance control algorithms.Suppose a manipulator has to grasp some object using impedance control.After getting to a position above the object with the required tool pose and xy posi-tion, the manipulator tip (tool) must approach the object with a vertical downwardmovement along the z axis. Once the object is reached, the manipulator will tryto grasp it after some desired force in the positive z direction is obtained or thepre-established duration time for the movement expires, whichever occurs �rst. Inthis study, compliance is assumed to work for all other components of x, and K;Band J are scalars.

48
+

-

- -

+

+

___ ___ ___

K

B

1

J

1

S

1

S

z∆

Ke

fd

fnFigure 4.1: Continuous Mass, Spring and Damper block diagram.If the downward movement is exclusively due to a desired force fd, the closedloop manipulator-environment can be roughly modeled as in Figure 4.1. The en-vironment is modeled as a spring of constant Ke and errors from the manipulatorposition controller are ignored. Ke = 0 before contact, and Ke � K after contact(very sti� object). The initial position of the manipulator is the nominal position.Measurement noise fn is added to the force sensor. This is a reasonable model forall situations except immediately after contact, where a non-linear system behaviorhas been experimentally observed[65].Possible measures for the cost are the delay-time or rise-time of the deviationfrom the nominal position, if the concern is about the time taken by the movementbefore contact. From Figure 4.1, and ignoring the force sensor noise, the closed looptransfer function is �Z(s)Fd(s) = 1Js2 + BJ s+ K0J (4:37)where K 0 = K +Ke and �Z(s), Fd(s) are the Laplace Transforms of the displace-ment from the nominal trajectory along z and the desired force fd respectively.Hence the following expressions are obtained for the natural frequency wn and

49the damping �: wn = qK 0=J ; � = B=(2pK 0J) (4:38)A reasonable approximation for the delay-time (time elapsed while the systemresponse raises from its initial value to 50% of the �nal value) when 0 < � < 1:2 isgiven by[31] td ' 1 + 0:6� + 0:15�2wn = s JK 0 + 0:3BK 0 + 0:0375B2K 0pK 0J (4:39)The delay-time depends on the 3 parameters J; K 0; B. Assuming a �xed J ,td increases with B for a �xed K 0 and decreases with K 0 for a �xed B.After contact, the main concern is about the time taken by the force sensed atthe manipulator tip to settle down to the desired force fd. If speci�cations requirethe force error in the z direction, jfz � fzdj to be less than some accuracy by thetime the object should be grasped, the system settling-time together with the forcesensor noise will a�ect the reliability.One de�nition of settling-time as the time the response takes to go from itsinitial value to within 5% of the �nal value leads to the following approximation:ts ' 3�wn = 6JB (4:40)Hence the settling-time and consequently the reliability do not depend on K 0.Again there is a tradeo� between cost and reliability: for some �xed K and J , if Bis increased, the cost (identi�ed here with the delay-time) will increase, but settling-time will decrease and the system will have more chances to attain the desired forcebefore timeout, thus increasing its reliability.The following instantiations of the de�nitions above for this particular examplesummarize and clarify the application of the formalism:� problem element f = (fz fzd)� problem solution S(f) = fzd

50� solution approximation U(f; �) = fz + fn, as obtained by algorithm �� algorithm � = �z, from the position accommodation controller.4.4.3 Image ProcessingThe use of stereo vision algorithms to determine the pose (3D position +orientation) of an object in a workspace is usually prone to errors due to� camera calibration process� spot noise superimposed on pixel brightness� pixel resolutionAssuming that camera calibration is reliable enough, the pose estimate de-grades with the distance of the object from the cameras due to pixel truncation[6].From the point of view of a passive vision algorithm, this uncertainty is irreducible.An alternative approach is to use an active vision algorithm to translate a locate ob-ject event. An algorithm of this type is described by McInroy and Saridis(1994)[49].They use Nv di�erent viewpoints to estimate the pose of an object by stereo vi-sion, and reduce the reliability of pose computation by averaging the Nv estimates.One natural measure of cost here would be the number Nv of estimates necessaryto increase the reliability beyond some desired level. Notice that an active visionalgorithm has additional sources of uncertainty:� incomplete modeling of manipulator dynamics� joint position and velocity measurement noiseStill assuming that camera calibration is reliable enough and if pixel noise isuncorrelated from frame to frame, spot noise may be �ltered by averaging the pixelbrightness from several pictures of the same static scene, taken at di�erent time

51instants. Suppose now an object is to be located in the image, and a lower boundfor the reliability of determining its pose with a given accuracy (with respect tothe actual pose) is given. If the computational cost of processing the image is notconsidered, one possible cost measure would be the number of frames one has toaverage to obtain the desired reliability.In the sequel, the cost/reliability analysis of a 2D object location problemusing two alternative algorithms is detailed. The images brightness is corrupted bysuperimposed spot noise only.Given a rectangle inside a M x M pixels image, the problem is to estimatethe position of the rectangle in the image (see Figure 4.2), that is, its central pixelof coordinates (xc; yc). The pixels inside the rectangle were initially set to 1, whilethe outside pixels were set to 0. To simulate spot noise, zero mean gaussian noisewas added to the initial value of each pixel in the whole image.Several assumptions were made with the goal of simplifying the mathematicalanalysis and the simulation:� The area of the rectangle is known and equal to A = (ye � yb)(xe � xb);� The whole rectangle is inside the boundaries of the image;� No other objects are present in the image;� Errors resulting from pixel truncation or computational roundo� were notconsidered.To solve the problem two algorithms are proposed:� The open loop algorithm determines the center of gravity of the total image,using the equations x̂c = PMi=1PMj=1 jb(i;j)Aŷc = PMi=1PMj=1 ib(i;j)A (4:41)where b(i; j) is the brightness of pixel (i; j).

52
M

M

cog

X

Y

Yb Yc Ye

Xb

Xc

XeFigure 4.2: Image processed by the two algorithms� The closed loop algorithm correlates the image (feedback) with a pattern rect-angle (reference) equal in size to the original noise-free rectangle of the imageand with the same orientation. The rectangle is assumed to be centered insidethe P x P pixels pattern image. The coordinates (x̂c; ŷc) of the pixel with thegreatest correlation coe�cient are the estimates of the rectangle position inthe image. Were this a stereo vision problem, and the rectangle in one of theimages might be used as the pattern to correlate with the other image.Both algorithms manipulate images resulting from the average of several imageframes to reduce noise.4.4.3.1 Problem formulationF is the set of M x M images containing rectangles with size (xe � xb) by(ye � yb). This includes images resulting of averaging several image frames.The goal is to compute an �-approximation for S : F ! R2, that is to deter-mine an estimate U(f; �) of S(f), obtained by an algorithm �, such thatkS(f)� U(f; �)k < �where S(f) = (xc yc)T and U(f; �) = (x̂c ŷc)T , and k:k some norm de�ned on <2.

53To simplify the analysis, and since what happens in one of the directions issimilar to what happens in the other, the error estimate of xc will be the only onechecked jx̂c � xcj < �where � is the accuracy. x̂c, xc and � may be expressed in pixels or regular lengthunits.4.4.3.2 InformationThe information operations Lij(f); Lij : F ! < give the resultsLij(f) = 8><>: 1 + nij if pixel(i; j) 2 fnij if pixel(i; j) 62 fand so I = [L111(f); : : : ; Lkij(f); : : : ; LNMM(f)] where k denotes the kthframe, N is the total number of averaged frames, M the number of pixels oneach side of the image and nij is a random variable representing the noise at pixel(i; j); nij � N (0; �b2), i.i.d.4.4.3.3 Model of computationIn this simple approach, the set of algorithms is restricted to those that cansolve the problem in polynomial time. This means that the cost of getting informa-tion is the main concern. For example, if a mobile robot has to stop and get severalframes of a scene in order to speedup posterior computations of its locations, a sloweralgorithm that requires less stopping time for the robot will be preferred. The algo-rithm may run while the robot is performing other tasks. Sequential computationis also assumed.Hence, cost(�) = cost(I; f) = cNolmin, that is, cost is proportional to theminimumnumber of averages needed by algorithm � to get the error below �. Noticethat here f represents an image resulting from the average of Nmin image frames.

544.4.3.4 Study of the algorithmsThe open loop algorithm estimates the center coordinates of the rectangle usingequations (4.41). Since the brightness of each pixel is a gaussian distributed randomvariable pBij (bij) � 8><>: N (1; �2b) pixel(i; j) 2 fN (0; �2b) pixel(i; j) 62 fand the Bij's are uncorrelated from pixel to pixel (given that they are independent),it can be deduced that, after N averages of distinct frames of the same image andif independent noise from frame to frame is assumed, pX̂c(x̂c) � N (�X̂c; �2̂Xc) with�X̂c = xc and �2̂Xc = M2(M + 1)(2M + 1)�2b6A2N (4:42)Now, given an accuracy � and a desired reliability Rd, a N will be determinedsuch that Prfjx̂c � xcj � �g � Rd�(Rd) in Prf jx̂c�xcj�X̂c � �g = Rd can be obtained from the table of standardnormalEquating �(Rd) = �=�X̂c and using (4.42):N � Nmin = �2(Rd)M2(M + 1)(2M + 1)�2b6A2�2 (4:43)The inequality in (4.43) comes from the fact that the reliability must be lowerbounded by Rd.The closed loop algorithm looks for the pixel where the noisy output of thecorrelator achieves a maximum when the pattern is displaced around the image.Due to noise, there is some probability that the wrong pixel is chosen. In order tomake the problem tractable, some assumptions have to be made, such as workingin 1D again, and considering errors of 1 pixel displacement at most.If the correlator input ucorr(x) = r(x) + n(x), where r(x) is a rectangle oflength xe � xb and n(x) is gaussian noise of zero mean and variance �2b=N , and the

55impulse response of the correlator is r(xc � x), then ycorr(x) = yr(x) + yn(x) is thecorrelator output, where yr(x) is an isosceles triangle of length 2(xe � xb), centeredat xc and of height xe � xb, and yn(x) is gaussian noise with mean x and variance�2n = �2b (xe � xb)=N .Now, if errors of 1 pixel at most are assumed (that is, � equals the pixel widthor 1 pixel, depending on the units used), the desired reliability comesRd = Prfjx̂c � xcj < �g= Prf(ycorr(xc + �)� ycorr(xc) < 0) ^ (ycorr(xc � �)� ycorr(xc) < 0)gLet one assume that the output noise of the correlator is independent frompixel to pixel. This is not actually true, but it allows us to proceed. Since the tworandom variables are correlated, under this assumption a smaller probability will beobtained, hence resulting in an upper bound for Nmin. ThenRd = Prfycorr(xc + �)� ycorr(xc) < 0g Prfycorr(xc � �)� ycorr(xc) < 0gNoticing that the sum of two random variables jointly and marginally gaussianis another gaussian distributed random variable[61]:Rd = 2Prfz < 0g; z � N (��; 2�2n)or qRd = Prf z + �p2�n < �gwhere �(Rd) can be read from a table of standard normal and is made equal to �p2�n ,hence the upper bound for the minimum necessary number of averaged frames isN clmin � Nminup = 2�2(Rd)�2b (xe � xb)�2 (4:44)Comparing Nminup and Nolmin for the open loop algorithm (4.43), it may benoticed that the closed loop upper bound on the number of averages does not depend

56on the size of the imageM , while the minimumnumber of averages for the open loopalgorithm increases with M , thus it is possible, with a reasonable ratio of image sizeto pattern size, to show that the closed loop algorithm upper bound Nminup will bebelow the actual value of Nolmin for the open loop case. Simulations show that (4.44)is a loose upper-bound and that in practice the cost of the closed loop algorithm ismuch smaller, for the same reliability. If the cost of processing information was alsoconsidered, other intermediate solutions between the two algorithms would have lesscost, since the open loop algorithm is computationally faster.4.4.3.5 Simulation resultsThe open loop algorithm was tested with di�erent sets of parameters as follows:set 1: Rd = 90%, and � = 0:1 pixel and 0:2.set 2: � = 0:3 pixel, and Rd = 90% and 95%.Each of the setups was tested with standard deviation of pixel noise �b = 0:1and �b = 0:3. Each side of the image had 32 pixels and the rectangle had 13 pixelsin the x direction, 9 in the y direction.�b 0.1 0.3� C = Nolmin R C = Nolmin R0.1 73 0.8733 655 0.89330.2 18 0.8333 164 0.8533Table 4.1: Actual reliability and cost of open loop algorithm for adesired reliability of 90 %.The simulations were made in PRO-MATLAB Version 3.5i, running on a SunSparkStation. The results are presented in tables 4.1 and 4.2 for parameter sets 1and 2, respectively. For each setup the reliability obtained from an average of 150

57�b 0.1 0.3Rd C = Nolmin R C = Nolmin R90 % 8 0.9267 73 0.873395 % 11 0.9400 103 0.9467Table 4.2: Actual reliability and cost of open loop algorithm for anaccuracy � = 0:3 pixel.runs is shown. The actual number of frames used in each run was slightly greaterthan the cost, i.e. the minimum number of frames theoretically required. Noticethat any N above Nolmin improves the reliability, for the same �. However, becausethe worst case was sought, the simulation was con�ned to values of N immediatelyabove Nolmin.In general, the outcomes agree quite well with the expected results. In somecases, reliability is slightly lower than expected. This may be explained by the factthat MATLAB's random number generator does not assure complete independenceof the output values, hence additional terms would be present in equation (4.43),raising the lower bound on the number of averages.The closed loop algorithm was simulated under the same setup. By trial anderror, one determines the standard deviation of the superimposed noise needed toobtain reliabilities close to those of the open loop case with the same number ofaverages. Table 4.3 shows these results. � was made equal to 1 pixel, because theclosed loop algorithm can not achieve sub-pixel resolution.For the same accuracy � and number of frames Nol;clmin , the open loop algorithmhas the same reliability of the closed loop algorithm only for noise standard deviationsone order of magnitude smaller.Both results show that, given a desired accuracy � and di�erent environmentalconditions (symbolized by di�erent pixel noise variances), the cost of the objectlocation algorithms increases with increasing demand on the reliability.

58Nol;clmin Rol/�b Rcl/�b4 98%/0.2 99%/2.09 97%/0.3 98%/3.0Table 4.3: Compared reliability and cost for the open loop (ol) andclosed loop(cl) algorithms.If the number of averages is constrained to some value, the open loop algorithmcan only attain the reliability of the closed loop algorithm under a much morefavorable environment. Hence, for the same cost and under the same environment,reliability would distinguish the two.Also, if di�erent algorithms of both types, distinguished by the choice of dif-ferent N at design time, were available, a combination of the cost and reliabilityassociated to each of them would help in the selection of the most reliable algorithmamong those constrained by some cost.4.5 SummaryIn this chapter, the formalism of Information-Based Theory of Complexityhelped in obtaining a joint de�nition of Cost and Reliability for the di�erent algo-rithms composing a feasible set for a problem. The feasibility is determined by theaccuracy desired for the solution of the problem and the radius of information ofthe problem.A problem must not be confused with the algorithms capable of its solution.��complexity was de�ned for a problem whose speci�ed accuracy is �, but the focusof this work is on the reliability and cost of the feasible algorithms.If the problem under consideration requires some level of accuracy, given adesired reliability, the formalism may be used to measure the cost of the alternativealgorithms. On the other hand, given some number of operations performed by an

59algorithm, or the amount of resources it uses, the maximumpossible reliability of thealgorithm can be determined. Hence, given a speci�ed accuracy for a problem, thereliability and the cost of the algorithms which solve the problem with that accuracycan be determined and combined in a cost function which was also introduced.The concepts of information used here and structured information in the senseof Shannon are di�erent. Shannon's information refers to the information contentor the information conveyed by a message, while this work deals with the amountof information contained in the message. However, when one seeks the amount ofinformation needed to limit uncertainty to a speci�ed level, as it is the case here,information-based complexity is related to Kolmogorov's notion of �-entropy[82]. �-entropy is in turn related to Shannon's entropy, which measures uncertainty as theinformation content of a message.The combined measure of reliability and cost presented in this chapter may beused for the o�-line design of IMs, if viewed as an extension of the work by McInroyand Saridis[49], and Musto and Saridis[55]. In the sequel, it will be used to build acost function which is updated recursively on-line and used to learn the action thatminimizes the cost function.

CHAPTER 5The Intelligent Machine as a Hierarchical Stochastic AutomatonThe use of feedback to reduce uncertainty and improve performance is a feature ofmost existing controllers. Uncertainty increases when higher levels of decision areintroduced, as it is the case with a Hierarchical Goal-Oriented Intelligent Machine.In a HGDIM, the uncertainty about which decisions to take is added to the un-certainty about the environment where the machine operates. Furthermore, in aHGDIM performance is related to uncertainty. Reducing the uncertainty improvesthe performance. Thus, a strategy designed to improve the performance of an IMmust use feedback from the environment to reduce uncertainty. However, the feed-back related to decision making is di�erent from that related to uncertainty aboutthe environment. An algorithm implementing an action selected by the decisionmaking mechanism interacts with the environment in a precise way, but the deci-sion making structure will only receive an abstract report of success or failure, afterthe algorithm �nishes its job. This characteristic of the response of the environ-ment to more abstract actions, and the need to avoid local minima in the searchfor optimal decisions, makes LSAs the appropriate solution to model the translationinterfaces of a HGDIM, where decisions are taken.This chapter introduces the modeling by a Hierarchical Learning StochasticAutomaton of the feedback structure and the use of feedback in Hierarchical Goal-Directed Intelligent Machines. This formulation has been proposed in several papersby Lima and Saridis[43, 45, 44]. Section 5.1 states the general assumptions made.In section 5.2 the general de�nitions of HLSA and environment are instantiatedwith elements of the closed loop HGDIM-environment. The cost function intro-duced in chapter 4 and its propagation equations are rewritten under this moregeneral formulation in section 5.3, including entropy propagation equations. There60

61are di�erent types of feedback involved in the HLSA. The hierarchical reinforcementlearning scheme, recursively updated by feedback, is explained in section 5.4. Thefeedback hierarchy is detailed in section 5.5. From an engineering point of view,there is a need for a HGDIM design methodology and the general description ofits operation by an execution algorithm. The design methodology and executionalgorithm for HGDIMs are presented in section 5.6 and 5.7, respectively. Finally,section 5.8 illustrates the relation between this and past work in the same area.5.1 AssumptionsSome general assumptions must be made before formalizing the relation be-tween the Hierarchical Learning Stochastic Automaton and the HGDIM, for bothpractical and theoretical reasons:� The HGDIM moves inside an environment which can be modeled as a multi-state stochastic process (see De�nition 3.1.2).� The HGDIM can recognize the di�erent states of the model of the environment.� The environment includes the controlled system and a set of monitoring al-gorithms. Each time an action of the HGDIM is applied to the controlledsystem, one or more of these algorithms check a set of environment featuresto determine if the action was successful or not. Notice that, even thoughmonitoring algorithms are conceptually distinct from the HGDIM executionlevel algorithms, in the actual implementation the former may be embeddedin the latter.� There is a mechanism of error detection and recovery to detect situationswhich could compromise the integrity of the HGDIM and/or the environment,and recover from them to resume the learning process. This is an important

62assumption, since the learning process is based on task repetition, and mostlearning comes from failures, even though they are not damaging in most cases.5.2 The Closed-Loop Intelligent Machine and the EnvironmentThe poor knowledge assumed about the environment discourages the use ofo�-line task selection. The model-based reliability and cost help choosing the bestalgorithms and tasks to implement the HGDIM, only when the environment condi-tions are well known. Thus, the strategy chosen for this work consists of assigning acost and estimating reliability. Furthermore, because the environment responds toactions with failures and successes only, reinforcement learning algorithms must beused to estimate reliability and learn the decision making structure. Finally, sincereliability has to be estimated on-line, random decision methods for primitive algo-rithms and tasks selection are necessary, to explore the di�erent alternatives sometime before the reliability estimates converge.The above suggests modeling the translation interfaces of a HGDIM as aHLSA. There are two translation interfaces in a 3-level HGDIM:� The task translating a command is selected by the Organization-to-Coor-dination Translation Interface;� The primitive algorithm translating a primitive event is selected by the Coor-dination-to-Execution Translation Interface.It is thus natural to use a 2-stage HLSA, with one LSA per translation inter-face. The term stage will be used for the HLSA, while level refers to the HGDIM.Given the De�nition 3.1.1 of a LSA, the linguistic formulation of task gener-ation in HGDIMs in section 3.3, and the cost function introduced in the previouschapter, the translation interfaces of a Hierarchical Goal-Directed Intelligent Ma-chine are modeled by a Hierarchical Learning Stochastic Automaton as follows:

63De�nition 5.2.1 For each member ci of a set of commands fci; i = 1; : : : ; ncg, anHGDIM is de�ned by a 2-stage generalized HLSA, denoted by the sextuple IMi =(Ui; Yi; Gi; OCi; CEi; Ci), where� Ui = [neik=1Ak is the set of primitive algorithms capable of translating all primi-tive events ek 2 Ei. Ei is the set of primitive events compatible with commandci. nei = jEij;� Yi = f0; 1g is the �nite input set, with 1 representing a reward and 0 a penalty;� Gi is a stochastic grammar de�ned by the quintuple (VTi ; VNi;Ri;Pi; Si), where{ VTi = Ei;{ VNi is the set of symbols representing events (non-null strings of primitiveevents ei 2 Ei). jVNi j = mi;{ Ri is a �nite set of productions or rewrite rules in the formA! � or A! �B; � 2 V �T ; A;B 2 VN{ Pi is a �nite set of production probabilities assigned by a one to onemapping to the elements of Ri;{ Si = ci is the start symbol;� OCi = f�oc1 ; : : : ;�ocmig is a set of Learning Stochastic Automata (one LSA pereach subset Rik; k = 1; : : : ;mi of the set of productions Ri of grammar Gi)corresponding to the top stage or Organization-to-Coordination Trans-lation Interface. LSA �ock 2 OCi; k = 1; : : : ; nei is de�ned by the 4-tuplefQock ; Uock ; F ock ; Gock g, where{ Uock = Rik is the set of productions with the same premise Bik correspond-ing to the kth non-terminal symbol of Gi, or the kth event of the IM forcommand ci;

64{ Qock = Uock is the �nite set of internal states, coincident with the �niteset of productions with the same premise Bik. This further implies thatGock = I, the identity matrix;{ F ock is a reinforcement scheme such that P ock (n+1) = F ock (P ock (n); yock (n)),where P ock (n) = Pik = fpik1 ; : : : ; pikmikg is the �nite set of production prob-abilities governing the (random) selection of the production to apply ateach step, among the productions in Rik, and yock (n) 2 Yi.Notice that, for reasons related to the propagation of the cost function and itsuse to reinforce the productions probabilities, the top stage LSA does not havean input set;� CEi = f�ce1 ; : : : ;�ceneig is a set of Learning Stochastic Automata (one LSAper each event ei compatible with command ci) corresponding to the bottomstage or Coordination-to-Execution Translation Interface. LSA �cek 2CEi; k = 1; : : : ; nei is de�ned by the quintuple fY cek ; Qcek ; U cek ; F cek ; Gcek g, where{ Y cek = Yi;{ U cek = Ak is the set of primitive algorithms capable of translating primitiveevent ek 2 Ei;{ Qcek = U cek is the �nite set of internal states, coincident with the �nite setof primitive algorithms capable of translating all primitive events ek 2 Ek.This further implies that Gcek = I, the identity matrix;{ F cek is a reinforcement scheme such that P cek (n+1) = F cek (P cek (n); ycek (n)),where P cek (n) = fpk1; : : : ; pknkg is the set of primitive algorithms probabili-ties governing the (random) selection of the primitive algorithm to applyat each step;� Ci is a cost vector, whose entries represent the costs of the set of primitivealgorithms [neik=1Ak capable of translating all primitive events ek 2 Ei;

65In other words: each command is the starting symbol of a stochastic grammarexpressing the constraints imposed by the command to its compatible primitiveevents. The grammarGi generates a language Ti, the set of alternative tasks capableof implementing command ci; i = 1; : : : ; nc. The non-terminal symbols of thegrammar correspond to events, which may be viewed as macros of primitive events,to structure the task description. Each subset of grammar productions with the samepremise represents one (or more) alternatives on the derivation of the translatingtask. There is a LSA associated to each of these subsets. The productions in eachsubset are the actions of the LSA, and their probabilities are learned according tothe LSA reinforcement scheme (see section 5.4 below). The set of all these LSAsrepresents the top stage of the hierarchy. The best task is indirectly learned alongtime, as a result of learning the best production of each production subset.At every step, a (sub)optimal task is selected by random decision, based onthe current subset of production probabilities. Each task is a string of primitiveevents, and each of the primitive events may be translated in general by more thanone primitive algorithm. To learn the best translations, a LSA is associated to eachprimitive event. The primitive algorithms for the event are the actions of the eventLSA. The set of all these LSAs represents the bottom stage of the hierarchy.The HLSA modeling the translation interfaces of the HGDIM is depicted inFigure 5.1. To help understanding the conceptual function of the top stage, a com-mand is associated to a LSA whose actions are tasks. This formulation is equivalentto the actual de�nition of top stage LSA.Since tasks are possible actions associated with a LSA representing a com-mand, Ti must be a stochastic language, hence Gi must be a proper grammar.The following de�nition of environment controlled by a HGDIM links theHLSA and the cost function de�ned in the previous chapter.

66
... ...

...

...

a a
11 11
1 2

a
11
n1

...

. . .
.

e
e

e

e
e

e

e
e

1
1

1

2
2

2

li
li

li

2

m1

1

2

m2

1

2

a
1m1

2

1

a
nm1
1m1

a
1
1m1

e
mli

Command

Tasks

... Primitive Algorithms

Coordination-to-Execution

Organization-to-Coordination

Interface LSA

Interface LSAFigure 5.1: HGDIM and Hierarchical Learning Stochastic Automaton.De�nition 5.2.2 The environment controlled by a HGDIM is de�ned by the quin-tuple fU , X, Y , H, Rg, where U = fu1; : : : ; usg = [neik=1Ak is the �nite input set,or the set of all primitive algorithms (in a total of s) applied by the HGDIM to theenvironment. X = fx1; : : : ; xdg is a �nite set of internal states and Y = f0; 1g isthe output set, where 1 represents a success and 0 a failure. R is a matrix withgeneral elements Rij, representing the reliability of algorithm uj 2 U , when appliedto state xi of the environment, according to De�nition 4.2.1:Rij �= Prfuj 2 U meets speci�cationsjxi 2 Xg = Prfy = 1; y 2 Y juj; xigR determines the rate of failures and successes for each pair (algorithm,state). Fi-nally, H : Xr ! X is the state transition function which generates x(n+ 1) 2 Xfrom x(n); x(n� 1); : : : ; x(n� (r � 1)) 2 X.To simplify notation, the above de�nition of HGDIM implicitly assumes asingle-state stationary environment. Given the general de�nition of a multi-stateenvironment, the HLSA modeling the feedback activity of the HGDIM must bereplicated as many times as the number of states d of the environment. Before a

67primitive algorithm or a task is reinforced, the state of the environment must be de-termined to select the appropriate HLSA. More details on the feedback architecturefor state determination are given in 5.5.5.3 Propagation of the Cost FunctionIn this section, the propagation equations for the cost function originally pre-sented in section 4.3 are rewritten, taking now in consideration the dependence onthe state of the environment. Also, the original equations propagated the cost func-tion of tasks. However, the actions of the top stage LSA in De�nition 5.2.1 areproductions, not tasks. The equations presented in this section propagate the costof both productions and tasks.The propagation equations are presented in parallel for the components of thecost function: reliability and cost. At each level of the HGDIM, equation (4.7)applies. All costs are considered normalized to the interval [0; 1].The conditional reliability of primitive algorithm a 2 Ak; k = 1; : : : ; neis de�ned similarly to the De�nition 4.2.1, but it is conditioned by the state x ofthe environment, and denoted by R(ajx).The conditional cost of primitive algorithm a 2 Ak; k = 1; : : : ; ne isde�ned similarly to the De�nition 4.2.2, but it is conditioned by the state x of theenvironment, and denoted by C(ajx).These notions can be extended to events, tasks, commands and the overallmachine.De�nition 5.3.1 Conditional cost of event ek 2 E; k = 1; : : : ; ne is the min-imum cost among all algorithms translating the event when x is the state of theenvironment. C(ekjx) �= mina2AkfC(ajx)g (5:1)

68Notice the similarity of (5.1) with the de�nition (4.3) of cost of a problem.De�nition 5.3.2 Conditional reliability of primitive event ek 2 E is theaverage reliability among all algorithms translating the event, when x is the state ofthe environment: R(ekjx) �= nkXj=1Prfakj jxgR(akj jx) (5:2)where Prfakj jxg is the probability of selecting algorithm akj as the action of event ekLSA when x is the state of the environment.Notice that this de�nition of primitive event reliability coincides naturally withthe de�nition of average reward of a LSA, given by equation (3.1). This is coherentwith the assignment of a LSA to each primitive event.De�nition 5.3.3 Conditional cost of parallel execution of events e1; e2 2 Eis C(e1==e2jx) �= maxe1;e22EfC(e1jx); C(e2jx)g (5:3)while the Conditional cost of n events e1; : : : ; en 2 E executed in series isC(e1j : : : jen j x) �= 1n nXi=1C(ei j x) (5:4)The sample mean is used in equation (5:4) to keep the cost normalized.The successive application of these rules to all primitive events (terminals ofthe stochastic grammar) composing the consequent of a production (whether theywork in parallel or in series) leads to the conditional cost of a production r,C(rjx). If there are no primitive events in the consequent, the production cost iszero. The parallel execution of events is not logically parallel from the reliabilitypoint of view. In fact, all events must be successful to complete a task, whetherthey work in parallel or series.

69De�nition 5.3.4 Conditional reliability of production r isR(rjx) �= Yek2Er R(ekjx) (5:5)The product is de�ned over the set Er of primitive events or terminal symbolsin the consequent of production r. If Er = ;, the production reliability is assignedthe value 0.5, according to Jaynes' Principle of Maximum Entropy[26].The task cost function is obtained from the composition of cost and reliabilityfor all the productions used in the task derivation.The above de�nitions of production and task reliability assume that eventsdo not interact, which is hardly true in practice. In fact, failure of one event mayimply the failure of another event, or even the success of an event which would beunsuccessful otherwise. For example, if the motion system of a robotic system failsto approach an object with the adequate pose, compliance control will not help themanipulator grasping the object. However, even if the vision system may determinethe location of an object with an accuracy out of the error speci�cations (a failure),the motion system may compensate that error with a positioning error.This suggests that estimating the task (or productions) reliability should al-ternatively proceed in parallel with the estimation of reliability of events, insteadof using the equations to propagate the cost function. The link between the two isimplicitly made by the environment. Case study 2 shows an example of separateestimation of productions and events reliability.The following de�nitions are not used by the reinforcement scheme, but arepresented here for completeness.De�nition 5.3.5 Conditional cost of command ci; i = 1; : : : ; nc is the mini-mum cost among all tasks translating the command:C(cijx) �= mint2Ti fC(tjx)g (5:6)

70De�nition 5.3.6 If the stochastic grammar is unambiguous, that is, if there is onlyone leftmost derivation for each x, the conditional probability of task t understate x of the environment is de�ned byPrftjxg = K(t)Yk=1 Prfrt(k)jxg (5:7)where K(t) represents the number of steps in the derivation of t, and Prfrt(k)jxg isthe probability of the production used in the kth step of the derivation of t.De�nition 5.3.7 Conditional reliability of command ci; i = 1; : : : ; nc is theaverage conditional reliability among all tasks translating the command:R(cijx) �= liXj=1PrftijjxgR(tijjx) (5:8)The unconditional reliability is obtained from the de�nition of conditionalalgorithm reliability and from any of the equations (5.2), (5.5) and (5.8) by averagingover all states of the environment:R(�) = Xx2X PrfxgR(�jx)where � stands for algorithm, event, production or command, and X is the set ofstates of the environment. Prfxg is the probability of state x of the environment.The total reliability of the IM is the average reliability over all commands:R(IM) = ncXi=1 PrfcigR(ci)where Prfcig is the probability of command ci; i = 1; : : : ; nc to be issued.Similarly, the unconditional cost is obtained from the de�nition of condi-tional algorithm cost and from any of the equations (5.1), (5.3),(5.4),(5.6) and byaveraging over all states of the environment:C(�) = Xx2X PrfxgC(�jx)

71where � stands for algorithm, event, production or command, and X is the set ofstates of the environment. Prfxg is the probability of state x of the environment.The total cost of the IM is the average cost over all commands:C(IM) = ncXi=1 PrfcigC(ci)where Prfcig is the probability of command ci; i = 1; : : : ; nc to be issued.Entropy was the generic performance measure for a HGDIM originally pro-posed by Saridis[69]. One of the components of the cost function proposed in thisthesis, reliability, can be univocally mapped to entropy at all levels of the HGDIM,as long as its value is greater or equal than 50 %. Otherwise, a reliability of 20 %or 80 %, for example, would correspond to the same entropy.As for reliabilities, entropies are conditioned by the state x of the environment,that is, H(�jx) is de�ned based on the conditional reliabilities. Another importantmeasure is the equivocation, obtained from H(�jx) asH(�jX) = Xx2XH(�jx) Prfxgand it represents the average information about reliability of � (algorithm, primitiveevent, production, command), assuming observation of all states of the environ-ment. Unconditional entropies H(�) are similarly derived from the unconditionalreliabilities.De�nition 5.3.8 Conditional Entropy of primitive algorithm a 2 Ak; k =1; : : : ; ne: H(ajx) �= �R(ajx) logR(ajx)� (1 �R(ajx)) log(1 �R(ajx)) (5:9)De�nition 5.3.9 Entropy of primitive algorithm a 2 Ak; k = 1; : : : ; ne:H(a) �= �Xx2X fR(ajx) Prfxg log[R(ajx) Prfxg]+(1 �R(ajx)) Prfxg log[(1�R(ajx)) Prfxg]g (5.10)

72or H(a) = H(ajX) +H(X)where H(X) = �Px2X Prfxg log Prfxg represents the environment uncertainty,while H(ajX) = Xx2X PrfxgH(ajx)is the equivocation of primitive algorithm a 2 Ak; k = 1; : : : ; ne with respectto the environment, representing the uncertainty about the success of the algorithm.De�nition 5.3.10 Conditional entropy of primitive event ek 2 E:H(ekjx) �= � nkXi=1 nPrfaikjxgR(aikjx) log[PrfaikjxgR(aikjx)]+Prfaikjxg(1�R(aikjx)) log[Prfaikjxg(1�R(aikjx))]oor H(ekjx) =< H(akjx) > +H(Akjx) (5:11)where < H(akjx) >= nkXi=1 Prfaki jxgH(aki jx)is the average uncertainty about the success of the algorithms translating the event,given the state of the environment, andH(Akjx) = � nkXi=1 Prfaki jxg log Prfaki jxgis the uncertainty about the translation itself.De�nition 5.3.11 Entropy of primitive event ek 2 E:H(ek) �= H(AkjX)+ < H(akjX) > +H(X) (5:12)When learning is involved, and using the reinforcement scheme of Fu's gener-alized LSA, the equivocation with respect to the environment about the translation

73(H(AkjX)) is reduced along time, due to the convergence to 1 w.p.1 of the actionprobability of the optimal algorithm.Similarly, the average uncertainty about the success of the algorithms trans-lating the event (< H(akjX) >) can be reduced at design time by choosing morereliable algorithms.Finally, H(X) is the uncertainty about the environment and can not be re-duced.De�nition 5.3.12 Conditional entropy of production r, assuming indepen-dent events: H(rjx) �= Xek2Er H(ekjx) (5:13)where Er is the set of primitive events in the consequent of the production.Conditional Entropy of a task is similarly de�ned. The summation ismade over the events composing the task.If independence can not be assumed and productions are directly reinforcedH(rjx) �= �R(r) logR(r) � (1 �R(r)) log(1 �R(r)) (5:14)Entropy of production r is de�ned from the unconditional reliabilities ineither case, and so does Entropy of a task.De�nition 5.3.13 Entropy of command ci; i = 1; : : : ; nc isH(ci) �= H(TijX)+ < H(tijX) > +H(X) (5:15)De�nition 5.3.14 Entropy of the HGDIM isHIM �= � ncXi=1 Xx2X PrfcijxgPrfxgR(cijx) log[PrfcijxgPrfxgR(cijx)]= � ncXi=1 Xx2X PrfcijxgPrfxg(1�R(cijx)) log[PrfcijxgPrfxg(1�R(cijx))]

74or H(IM) = H(CjX)+ < H(cjX) > +H(X)where Prfcijxg is the probability of issuing command ci; i = 1; : : : ; nc under state xof the environment, and C is the set of commands. H(CjX) represents the equivo-cation with respect to the environment about the command issued. < H(cjX) > isthe average uncertainty about the success of the command.5.4 Hierarchical Reinforcement LearningThe de�nition of HGDIM left open the selection of the reinforcement or learn-ing scheme. This section de�nes the learning scheme used at the two stages of theHLSA.All de�nitions of reliability in the previous section assume exact knowledgeof the conditional reliability of an algorithm. However, as it was explained before,the nature of the environments under consideration requires the estimation of thisreliability.Let Aij be the probabilistic event corresponding to the successful applicationof algorithm aj to state xi of the environment. Successful application means thatthe algorithm obtains the desired goals and meets the speci�cations. Then, yij 2 Y ,for the set Y in the above de�nition of environment, is a random variable such thatyij = 8><>: 1 if Aij occurs0 otherwiseAlso from the de�nition of environment,PrfAijg = Prfyij = 1g = R(ujjxi) = RijFurthermore, Rij = E[yij]

75Now, if several observations of the random variable yij are made along time,and since yij(1); : : : ; yij(nij) are independent and identically distributed randomvariables, the following reliability estimate after nij observationsR̂ij(nij) = 1nij nijXk=1 yij(k) (5:16)converges w.p.1 to Rij, by the Strong Law of Large Numbers, as nij !1[64].The recursive version of the sample mean estimator of the reliability (5.16) isR̂ij(nij + 1) = R̂ij(nij) + 1nij + 1[yij(nij + 1) � R̂ij(nij)]; R̂ij(0) = 0 (5:17)Equation (5.17) is the estimate of performance function (3.5) of Fu's general-ized LSA, when
(nij + 1) = 1nij+1 and Ẑij = R̂ij .Hence, Fu's generalized LSA, described by equations (3.6)- (3.9), can be ap-plied to learn the optimal primitive algorithms translating each of the primitiveevents at the bottom stage of the HLSA.In the following de�nitions of the HLSA reinforcement scheme, the notationR(uj jxi) is reduced to a more compact Rij , where xi is a state of the environmentand uj is one of a primitive algorithm, primitive event or grammar production.Similarly Cij will stand for C(ujjxi) and pij for Prfujjxig.De�nition 5.4.1 The reinforcement scheme F cek of the Coordination-to-Execu-tion Translation Interface is de�ned for primitive event ek 2 E; k = 1; : : : ; neby the following equations:R̂ekij (nij + 1) = R̂ekij (nij) + 1nij + 1[yij(nij + 1)� R̂ekij (nij)] (5.18)Ĵ ekij (nij) = 1� R̂ekij (nij) + �Cekij (nij) (5.19)pekij (ni + 1) = pekij (ni) + 1ni + 1[�ekij (ni)� pekij (ni)] (5.20)pekij (0) > 0; nkXj=1 pekij (0) = 1; R̂ekij (0) = 0 (5:21)

76�ekij (ni) = 8><>: 1 if Ĵ ekij (nij) = minlfĴ ekil (nil)g0 if Ĵ ekij (nij) 6= minlfĴ ekil (nil)g (5:22)where i = 1; : : : ; d denotes states of the environment, j; l = 1; : : : ; nk denote alter-native algorithms for ek, and ni = Pnkj=1 nij .The reinforcement scheme of the top stage of the HLSA is similarly de�ned,with the important di�erence that the estimates of the cost function are propagatedby the cost and reliability propagation equations of the previous section.De�nition 5.4.2 The reinforcement scheme F ock of the Organization-to-Coor-dination Translation Interface is de�ned for the subset Rk � R of productionsof a stochastic grammar G with the same premise Bk, by the following equations:� Conditional reliability propagation equations (5.2), (5.5), 8r 2 Rk, 8x 2 X,with R replaced by its estimate R̂;� Conditional cost propagation equations (5.1), (5.3), (5.4), 8r 2 Rk, x =1; : : : ; d.In the propagation equations pRkir is now a function of time pRkir (n), updated by thereinforcement scheme:ĴRkir (nir) = 1� R̂Rkir (nir) + �CRkir (nir) (5.23)pRkir (ni + 1) = pRkir (ni) + 1ni + 1[�Rkir (ni)� pRkir (ni)] (5.24)pRkir (0) > 0; nkXj=1 pRkir (0) = 1: (5:25)�Rkir (ni) = 8><>: 1 if ĴRkir (nir) = minqfĴRkiq (niq)g0 if ĴRkir (nir) 6= minqfĴRkiq (niq)g (5:26)where i = 1; : : : ; d denotes states of the environment, r; q = 1; : : : ;mk denote alter-native productions in Rk and ni = Pmkj=1 nir.

77

learning

...

Organization-to-Coordination

Coordination-to-Execution

COORDINATION

EXECUTION

ORGANIZATION

^

^

^

λ

λ

OC

CE

primitive algorithms

primitive events

translation,
decision making

feedback,

STOCHASTIC GRAMMAR

DISPATCHER

coordinator 1 coordinator 2 coordinator n

actuators sensors

D
at

a
M

an
ag

er

monitoring

algorithms

task

SYSTEM

J(production)

J(event)

J(algorithm)

CONTROLLERS

HARDWARE AND
SOFTWARE

Translation Interface

Translation Interface
Bottom LSA

Top LSA

Figure 5.2: Diagram of the HGDIM-Environment loop.Figure 5.2 shows a block diagram of the closed loop HGDIM-Environmentunder the proposed de�nitions of Hierarchical Goal-Directed Intelligent Machineand corresponding reinforcement learning schemes.Theorem 5.4.1 Given a command and a state of the environment, the HLSA cor-responding to these command and state of the environment (de�ned by 5.2.1) andits Hierarchical Reinforcement Learning Scheme (de�ned by 5.4.2 and 5.4.1), areoptimal, i. e. the probability of selecting the optimal task and optimal primitivealgorithms converges to 1 w.p.1.The proof of the theorem may be found in Appendix B.

785.5 Feedback HierarchyWhen talking about feedback
ow inside the HLSA modeling the translationinterfaces of a HGDIM, two types of feedback must be distinguished:� Reinforcement feedback, consisting of success (1) and failure (0) signalsprovided by the monitoring algorithms;� State of the Environment feedback, consisting of a set of features char-acteristic of the current state of the environment, provided by the monitoringand/or other algorithms.Reinforcement feedback is used by the reinforcement scheme to estimate thecost function and from there the action probabilities.State of the Environment feedback is necessary to identify the current state ofthe environment and select the correct HLSA to be updated.In the previous sections of this chapter, the de�nitions of reliability, cost andaction probability are conditioned by the state of the environment. However, severalquestions arise regarding the de�nition of state of the environment at di�erent stagesand even within the same stage of the HLSA:� The HLSA faces an instance of the (well known to Arti�cial Intelligence re-searchers) frame problem: even though the environment may have severalstates, a change in the state of the environment may not represent an actualchange of the cost function for all LSAs at the bottom stage of the hierarchy.For example in Robotic systems, switching o� the lights may be critical for avision problem, but has no e�ect on control, path planning or other problems.This may suggest more e�cient ways of dealing with the combinatorial explo-sion of (algorithm, state of the environment) pairs, perhaps by letting eachprimitive event \decide" from the current features of the environment if, fromits point of view, there was a change in the state of the environment.

79� The state of the environment e�ectively \seen" by the top stage of the HLSAis a composition of the states of the environment \seen" by the bottom stage.For example, the state of the environment of a production may be obtainedfrom the current environmental states of the primitive events in the consequentof the production.The best way to handle these questions is not currently known. However, dueto its importance for this work, they were raised here to launch topics of futurework in HGDIM. In this thesis, the architecture proposed for the
ow of state of theenvironment feedback through the HGDIM is the following: at the bottom stageof the HLSA, the state of the environment is determined by each primitive eventbefore using reinforcement feedback. The decision about the current state of theenvironment pertains to each primitive event, and is typically obtained using PatternRecognition techniques. The set of current states of all primitive events is an inputfeature set for the Pattern Recognition techniques used by the top stage productionsubsets to determine its own environmental macro-state.Notice that the
ow reinforcement feedback is shown as part of Figure 5.2.5.6 Design MethodologyThe following is the proposed design methodology for the IM, based on thediscussion of the previous sections:1. De�ne the set of commands C = ci; i = 1; : : : ; nc;2. Design a stochastic grammarGi for each of the commands in the command set,representing the alternative tasks for each command. If there is some evidenceleading to the assignment of speci�c initial values of action probabilities toalternative productions of the grammar with the same premise, make them theinitial estimates. Otherwise, by Jaynes' Principle of MaximumEntropy, assign

80equal initial probabilities to all productions of the same subset Rik � Ri, suchthat they add up to 1;3. De�ne the set E of all primitive events, and its subsets Ei; i = 1; : : : ; ncfor each command, together with the measure of speci�cation error and thespeci�ed accuracy � for the problems represented by the events. Notice thatspeci�cations are made for the problem represented by each event, not for thealgorithms translating the event;4. Assign a set of alternative primitive algorithms to each of the primitive events;5. Determine the states of model of the environment, from the point of view ofevery primitive event. Then, determine the macro-states of the model of theenvironment, from the point of view of top stage production subsets;6. Assign costs to all (primitive algorithm, state of the environment) pairs. Thebottom-up cost propagation may be done at this step, since the cost is notestimated on-line. At the top stage, costs are assigned to (production subsets,macro-state of the environment) pairs;7. If there is an initial estimate of the reliability (e. g. model based[49, 56])for any primitive algorithm, use that initial value in the modi�ed reliabilityestimator (6.10) described in the next chapter. Otherwise assign to everyprimitive algorithm an initial reliability of 0:5 by Jaynes' Principle of Maxi-mum Entropy. All assignments must be made to (primitive algorithm, stateof the environment) pairs;8. If there is some evidence leading to the assignment of speci�c action proba-bilities to alternative algorithms translating an event, make them the initialestimates. Otherwise, again by Jaynes' Principle of Maximum Entropy, assign

81equal initial probabilities to all the algorithms translating an event, such thatthey add up to 1;9. Design a set of monitoring algorithms whose output are features that can beused by the primitive algorithms to determine its own success or failure. Thesefeatures can also be used to continuously update a World Model and determinethe current state of the environment from the point of view of the primitivealgorithm.The cost of every algorithm translating an event must be determined by thesame cost measure. However, in general, di�erent measures may be assigned todi�erent events. For example, if the cost of a vision related event is measured interms of the number of frames necessary to obtain a reliable estimate, the costof a motion event in terms of the rise-time of the response, and path planning interms of the number of knot-points generated, they can still be combined under thisde�nition to obtain the task or production cost. The normalized cost �C 2 [0; 1]must be used not only to balance cost and reliability in the cost function, but alsoto scale di�erent cost measures among events.5.7 Execution Algorithm1. For every primitive event, determine and store the estimate of the initial stateof the environment, initial reliability estimates and initial probabilities of se-lecting primitive algorithms;2. For every production subset, determine and store the estimate of the initialmacro-state of the environment, initial reliability estimates and initial proba-bilities of selecting productions;3. Wait for a command ci; i = 1; : : : ; nc;

824. Given the current macro-state of the environment, translate the commandby a task selected from the productions of the stochastic grammar for thatcommand by random decision, using the current production probabilities (Or-ganization-to-Coordination Translation Interface LSA);5. For each of the primitive events composing the task, do:(a) Given the current state of the environment, select one of the primitivealgorithms translating the event by random decision, using the currentprimitive algorithm probabilities (Coordination-to-Execution Trans-lation Interface LSA);(b) Execute the primitive algorithm selected in the previous step;(c) Check the output of the monitoring algorithm associated to the selectedalgorithm and update the reliability estimate of the algorithm using (5.18)and the conditional reliability estimate for the primitive event (5.2), giventhe current state of the environment. From these estimates and the cost,obtain the estimated cost functions (5.19) of the primitive event and itsalgorithms. Update the probabilities of the primitive algorithms trans-lating the event, using (5.20) and (5.22);6. Using Equation (5.5) update the reliability of productions having in the conse-quent the primitive events whose reliability was updated in the previous step.The current macro-state must be taken into account;7. From the production reliability estimates and the cost propagated by Equa-tions (5.3) and (5.4), build the estimated cost functions (5.23) of the grammarproductions. Update the production probabilities for each production subset,using (5.24) and (5.26);8. For every primitive event, update the estimate of the state of the environment;

839. For every production subset, update the estimate of the macro-state of theenvironment;10. Go to 3.5.8 Relationship with Previous WorkThis section shows the relationship between the proposed model of the HGDIMand past work in the area by Saridis and his associates.According to Saridis[70], Machine Planning is\the ordering of primitive events to form a task."While doing Machine Planning, if the number of primitive events is large, acombinatorial explosion of the number of di�erent possible sequences may happen.One way of reducing this explosion is to express at design time the naturalconstraints on events ordering by a grammar. This strategy consists of composing,rather than decomposing, the available information. A priori knowledge is expressedby a pre-designed set of primitive events and tasks which are known to be useful inthe context where the HGDIM will operate. The machine learns at execution timefrom experience the best choices among each of these entities.The stochastic grammar may be directly designed or learned o�-line fromexample tasks[54].Also according to Saridis[70], Machine Decision Making is\the process of selecting the sequence (task) with the largest probability of success."The task selection mechanism is implemented in this work by the Organi-zation-to-Coordination Translation Interface LSA. For each primitive eventcomposing the task, the Coordination-to-Execution Translation InterfaceLSA implements the primitive algorithm selection mechanism. However, the taskand primitive algorithms selected in steady state are not necessarily the most suc-cessful (most reliable), but the ones that minimize the cost function (4.7).

84Still according to Saridis[70], Machine Learning is\the feedback process of updating the action probabilities of the tasks and low levelalgorithms after they are applied."The reinforcement schemes de�ned by 5.4.1 and 5.4.2 implement this feedbackprocess for primitive algorithms and tasks, respectively.Previous work on the Analytic Theory of Intelligent Machines proposed solu-tions for planning, decision making and learning for individual levels of the IM, butnot a global solution such as the one introduced in this thesis.Moed and Saridis[54] proposed a Boltzmann Machine for Planning at the Or-ganization Level. Saridis[70] describes a slightly di�erent stochastic neural networkwhich has more similarities with the stochastic grammar used here. The nodes ofthe network are stochastic units corresponding to events and primitive events. Eachof them has a probability of being active (1) or inactive(0). When one of the unitsis clamped externally, meaning that the corresponding command was sent to themachine, the sequence of units which become active represents the task chosen totranslate the command. The weights associated to the bidirectional arcs connect-ing pairs of nodes are updated to re
ect the probability update of the grammarproductions.Wang and Saridis[92] proposed Petri Net Transducers (PNT) for the Coor-dination Level, described in chapter 2. Beard and Saridis[8] re�ned this solutionrecently. However, the main concept remains: each transition of the HierarchicalPetri Net underlying the PNT is translated by a primitive algorithm at the bottomlevel or by another Petri Net at the upper levels. The bottom level correspondsto the Coordination-to-Execution Translation Interface LSA of the HLSAdescribed in this work. Transitions of the PNT Coordinators represent primitiveevents. The transitions at upper levels correspond to the production subsets ofthe stochastic grammar or equivalently to non-terminals (events) of the grammar.

85These levels correspond to the Organization-to-Coordination Translation In-terface LSA of the HLSA. The equivalence works if the Dispatcher PNT reads atape with the events corresponding to the premises of production subsets triggeredby a given command. The Hierarchical PNT of the Coordination Level is responsiblefor the further decomposition of the events into primitive events and from those intoalgorithms, and also by the reinforcement learning of the translation mechanisms.5.9 SummaryThis chapter introduced the main contribution of this thesis, which is to repre-sent the feedback activity of Saridis' Hierarchical Goal-Directed Intelligent Machineby a Hierarchical Learning Stochastic Automaton. The di�erent types of feedbackinvolved in a HGDIM were also mentioned. A design methodology and a general Ex-ecution Algorithm were introduced. The relationship with previous work by Saridisand his associates was analyzed at the end of the chapter.

CHAPTER 6Convergence Rate and Convergence Acceleration for StochasticApproximationThe hierarchical reinforcement scheme de�ned in the previous chapter is based onstochastic approximation methods. The use of stochastic approximation has theadvantage of guaranteeing convergence w.p.1 to the optimal action. However, itsconvergence rate is slow.In this chapter the transient behavior of the LSA representing the bottomlevel of the HGDIM is analyzed (section 6.1) to help understanding how long doesit take to choose the optimal action most of the times, and what happens while itis not chosen. In section 6.2, two di�erent acceleration schemes documented in theliterature on stochastic approximation will be adapted to the formulation of thisthesis. Its advantages and disadvantages will be illustrated with some examples andthe tradeo�s between using one or more of these methods or having no accelerationat all will be discussed.In the sequel, the dependence on the state of the environment is not relevantand will be frequently ignored by dropping the corresponding index for simplicityof notation.6.1 Convergence RateTwo natural questions concerning the practicality of the proposed hierarchicalreinforcement scheme are:1. Even though the average over a large number of runs converges to the optimaltask, is there a risk that some individual run produces a sub-optimal task?86

872. How long will it take before the HGDIM selects the optimal tasks and primitivealgorithms most of the times?Before answering these questions, the meaning of sub-optimal task or sub-optimal primitive algorithm in this formulation must be emphasized: a sub-optimalprimitive algorithm (or task) is not necessarily one that may damage the machine orproduce very bad performance. According to the design methodology of section 5.6,the primitive algorithms are designed to meet some set of speci�cations. Due toincomplete modeling and other disturbances, they will not be 100 % reliable. Thesame can be said about the design of the stochastic grammar for each command.However, a sub-optimal algorithm and/or a sub-optimal task may achieve a reason-able performance each time they are selected and applied. It is implicitly assumedthat a HGDIM is built with the experience of knowing the best algorithms, andnot randomly selecting algorithms, expecting the machine to \teach" them how toimprove their performance. As such, even during the transient period, the behaviorof the machine should be acceptable. This methodology aims at providing a mea-sure to help compare di�erent design alternatives and to guarantee the convergenceto the optimal operation for a speci�c design with various alternatives. Given theabove, the speed of convergence of the learning process is not as important as inother applications.The answer to question 1 above is no, as long as one waits long enough. Tounderstand this statement, suppose p(n) is a sequence of random variables (in thiscase representing the evolution of the probability of the best action). The de�nitionof convergence of p(n) to 1 w.p.1 states[61]:Prf limn!1 p(n) = 1g = 1or, equivalently8�; � > 09n0(�; �) 3 Prf supn>n0 jp(n) � 1j < �g > 1� �

88That is, it is always possible to �nd a n0 such that in most of the runs p(n)will be in a neighborhood � of 1 for every n > n0. In general, when � ! 0 and�! 0, n0 !1. Hence, the optimal action will be chosen for all runs when n!1.To help answering the second question, the following Lemma will be proved�rst:Lemma 6.1.1 Consider the reliabilities R1; : : : ; Rm associated to m algorithms ca-pable of translating some primitive event. With no loss of generality, suppose thealgorithms are ordered by increasing values of reliability, i. e. um is the most reliablealgorithm, um�1 the second most reliable algorithm and so on. Let � = Rm�Rm�1.Assuming that Rm is unique, � > 0. If R̂i(ni) denotes the sample mean estimatorof Ri after ui is applied ni times, the following holds:PrfR̂m(nm) > R̂j(nj); j = 1; : : : ;m� 1g > mYi=1(1� 4Ri(1 �Ri)ni�2); 8i = 1; : : : ;m(6:1)Proof (partially derived in [79]): Let Ai be the probabilistic event correspond-ing to the successful application of algorithm ui to the environment. Then, yi is arandom variable such that yi = 8><>: 1 if Ai occurs0 otherwiseAnd the following equations hold:Prfyi = 1g = RiE[yi] = Rivar yi = Ri(1�Ri)The sample mean estimator of Ri is given byR̂i(ni) = 1ni niXk=1 yi(k)

89with mean and variance E[R̂i(ni)] = Rivar R̂i(ni) = Ri(1 �Ri)niUsing Chebyshev's inequality, the following holds for i = 1; : : : ;m:PrfjR̂i(ni)�Rij < �=2g � 1 � 4�2var R̂i(ni) = 1 � 4Ri(1 �Ri)ni�2 (6:2)This inequality presents a lower bound for the probability that each estimateR̂i(ni) is in the interval [Ri��=2; Ri+�=2]. By de�nition of �, a lower bound forthe probability that the reliability estimate of the optimal action has the greatestvalue among all reliability estimates is given byPrfR̂m(nm) > R̂j(nj); j = 1; : : : ;m� 1g > mYi=1PrfjR̂i(ni)�Rij < �=2gFrom this inequality and Equation (6.2), Equation (6.1) holds. 2A similar reasoning leads to an approximate measure of convergence speed forthe reliability estimates: the sample mean estimator converges in probability, by theweak law of large numbers[61], for all i = 1; : : : ;m:limki!1 PrfR̂i(ki) = Rig = 1or equivalently8�; � > 09nimin(�; �) <1 3 PrfjR̂i(ki)�Rij < �g > 1� �; 8ki > niminFor � = �=2, a lower bound is given by Chebyshev's inequality, for eachi = 1; : : : ;m: PrfjR̂i(nimin)�Rij < �=2g > 1 � 4Ri(1�Ri)nimin�2where � > 0 is again the di�erence between the actual reliabilities for the two bestactions.

90If � is given, nimin = 4Ri(1�Ri)��2 ; i = 1; : : : ;m (6:3)and, by Lemma 6.1.1:PrfR̂m(km) > R̂j(kj); j = 1; : : : ;m�1g > (1��)m = PLB 8ki > nimin; i = 1; : : : ;m(6:4)Hence, if a lower bound PLB is speci�ed for the probability that the reliabilityestimate of the optimal action has the greatest value among all reliability estimates,� can be obtained from Equation (6.4). Given �, the step nimin; i = 1; : : : ;m afterwhich the lower bound holds is given by Equation (6.3) for each of the estimates ofreliability. Notice that nimin is an upper bound for the actual nimin: the number ofsteps needed to reach exactly PLB is less than nimin, but no more than nimin stepsare needed to guarantee (6.4).According to the reinforcement scheme (3.6-3.9), when the number of algo-rithms capable of implementing a primitive event is m, the knowledge of nimin; i =1; : : : ;m gives approximate information about the step after which the probabil-ity of the optimal action being rewarded is lower bounded by PLB . In fact, ifnmin = Pmi=1 nimin, the probability of the optimal action being rewarded after thenminth probability update is lower bounded by (1 � �)m. Suppose PLB = 95%. Thismeans that in `more than 95' out of 100 runs, the estimate of the most reliableaction will in fact be larger than the other estimates. Hence, for these `more than95 runs', the optimal action will be rewarded by increasing its probability. For highPLBs, the optimal action will become the most probable in a few steps after nmin.This will be now illustrated with an example concerning a 2-actions LSA, forwhich m = 2 in equation (6.3) above. Given a desired lower bound PLB , nmin =n1min + n2min depends on the reliabilities R1 and R2 of the two actions and on thedi�erence between them, � = R2 �R1 (assume R2 > R1).

91R2 0.70 0.75 0.80 0.85 0.90 0.95 1.00nmin 897 848 780 692 585 458 312Table 6.1: nmin for a 2-actions LSA. � = 0:2 and PLB = 0.9� 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50nmin 10838 2885 1343 780 508 355 259 195 149 115Table 6.2: nmin for a 2-actions LSA. R2 = 0:8 and PLB = 0.9PLB was �xed at an arbitrary value of 0:9. For this value, Table 6.1 showsthe values nmin for a 2-actions LSA, when R2 increases from 0.7 to 1.0 in steps of0.05, given � = 0:2. Table 6.2 shows the values nmin for a 2-actions LSA, when �increases from 0.05 to 0.5 in steps of 0.5, given R2 = 0:8. There are in�nite possiblecombinations of PLB, R2 and �. The values shown in the example sweep a range oftypical values (see case studies). For other combinations, nmin is determined fromEquations (6.3) and (6.4) above.The results show that nmin decreases when R2 and � increase, i. e. the largerthe maximum reliability is, and/or the larger the di�erence between reliabilities is,the faster the LSA converges to the optimal decision. The in
uence of � dominates.Even though large nmin correspond to small �, it is important to keep in mind thatnmin is a loose upper-bound and the lower � is, the smaller is the error due toselecting the wrong action, as discussed above.Lemma 6.1.1 will now be used to investigate the time evolution of the meanvalue of action probabilities. The probability update equations are rewritten herefor the case of a single-state environment:pi(n+ 1) = pi(n) + 1n+ 1(�i(n)� pi(n)); i = 1; : : : ;m (6.5)

92�i(n) = 8><>: 1 if Ĵi(ni) = minkfĴk(nk)g0 if Ĵi(ni) 6= minkfĴk(nk)g ; n = mXi=1 niNotice Ĵi(ni) shares the above properties of R̂i(ni). Also, minimizing Ĵ corre-sponds to maximizing R̂ if the cost is zero, as will be assumed in the sequel. Thisdoes not imply any loss of generality, because the cost may be interpreted as a biasadded to the complement of reliability.Taking mean values of (6.5)E[pi(n+ 1)] = E[pi(n)] + 1n+ 1fE[�i(n)]� E[pi(n+ 1)]gand rearranging termsE[pi(n+ 1)] = nn+ 1E[pi(n)] + 1n+ 1E[�i(n)]Using the general solution of the di�erence equation describing a time-varyingdiscrete system[9], one obtainsE[pi(n + 1)] = (nYk=1 kk + 1)E[pi(1)] + n+1Xj=2(nYk=j kk + 1)1j E[�i(j � 1)]; n � 1where Qnk=n+1 kk+1 = 1 is assumed.Due to its particular structure, the solution can be simpli�ed toE[pi(n + 1)] = 1n+ 1fE[pi(1)] + nXj=1E[�i(j)]g (6:6)Now notice that, assuming all costs equal to zero to simplify the derivation:E[�i(n)] = PrfR̂i(ni) = maxk=1;:::;mfR̂k(nk)ggIf i = m, that is, focusing on the probability of the optimal action, and usingLemma 6.1.1:E[�m(n)] = PrfR̂m(nm) > R̂j(nj); j = 1; : : : ;m� 1g> mYi=1(1 � 4Ri(1 �Ri)ni�2) (6.7)

93where n = Pmj=1 nj.Hence, making (with no loss of generality) ni = n=m; 8i = 1; : : : ;m,E[�m(n)] > mYi=1(1� 4mRi(1 �Ri)n�2) (6:8)and E[pm(n+ 1)] > 1n + 1fE[pm(1)] + nXj=1 mYi=1(1� 4mRi(1 �Ri)j�2)g (6:9)Inequality (6.9) gives a lower bound of the actual time evolution of E[pm(n)].It is a loose lower bound, since the lower bound for E[�m(n)] is also loose. However,it gives a reasonable idea of what one may expect in the worst case.Again, a LSA with 2 actions will be used to illustrate these results. Figure 6.1shows plots of the lower bound of E[p2(n)] when R2 is incremented from 0.80 to 1.0in steps of 0:05. Figure 6.2 shows plots of the lower bound of E[p2(n)] when � isincremented from 0.05 to 0.3 in steps of 0.05. Again, the plots represent a smallsubset of the possible combinations, chosen due to its representativeness. E[�2(n)]was made 0 when Equation (6.8) gave a negative lower-bound. Initial probabilitiesp1(1); p2(1) were made equal to 1=2, by Jaynes' Principle of Maximum Entropy.6.2 Methods of Convergence Acceleration6.2.1 Fu's Acceleration SchemeOne common measure of the convergence rate of a Stochastic Approximationalgorithm is the mean square error E[(�̂(n)� �)2] between the estimate �̂(n) at stepn and the actual value �.An acceleration algorithm proposed by Fu and his associates[22] consists ofreplacing yij(nij + 1) in Equation (5.17) by1nij + 1 nij+1Xk=1 yij(k)

94
0 200 400 600 800 1000 1200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

LB
 of

 E
[p2

(n
)]

D=0.2 / 2 actions

r2=0.80
r2=0.85
r2=0.90
r2=0.95

r2=1.00

Figure 6.1: Lower bound of E[p2(n)], for di�erent R2 when � = D = 0:2.
0 200 400 600 800 1000 1200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

LB
 of

 E
[p2

(n
)]

r2=0.9 / 2 actions

D=0.05

D=0.10

D=0.15

D=0.20

D=0.25
D=0.30

Figure 6.2: Lower bound of E[p2(n)], for di�erent � = D when R2 = 0:9.

95This modi�ed algorithm converges w.p.1 and has a mean square error lowerthan the original algorithm[22]. Hence, convergence is accelerated and the evolutionof the estimates is smoother.6.2.2 Use of Initial Reliability EstimatesIf there is an apriori estimate of the sought quantity, the convergence rate maybe signi�cantly improved by using that estimate. However, the recursive version ofthe sample mean estimator of the reliability produces the same estimates as thenon-recursive version only when R̂(0) = 0 (see Equation (5.17)).An estimator which includes the apriori reliability estimate R̂(0) and a con�-dence factor W in that estimate is given by[20]R̂W (n) = 1n+W [nXk=1 y(k) +WR̂(0)]Its recursive version follows:R̂W (n+ 1) = R̂W (n) + 1n+ 1 +W [y(n+ 1) � R̂W (n)] (6:10)The estimator is asymptotically unbiasedlimn!1fE[R̂W (n)] = nn+WR + Wn+W R̂(0)g = Rand consistent limn!1fvar ~RW (n) = nR(1 �R) +W 2(R� R̂(0))2(n+W)2 g = 0where ~RW (n) = R̂W (n)�R, the estimation error.Furthermore, from the variance of the estimation error, it is possible to analyzethe convergence rate for di�erent W . Noticing thatn(n+W)2 = 1n � 2W +W 2=n(n+W)2

96the error variance can be rewritten asvar ~RW (n) = R(1 �R)n � 2W +W 2=n(n+W)2 R(1 �R) + W 2(n+W)2 (R � R̂(0))2= var ~R(n)� 2W +W 2=n(n+W)2 �2 + W 2(n+W)2 ~R2(0)where �2 = R(1 � R) > 0, ~R2(0) = (R � R̂(0))2 > 0 and var ~R(n) is the errorvariance for the sample mean estimator. De�ning the polynomial in W � 0P (W) = (~R2(0)n� �2)W 2 � 2n�2Wthe error variance can be further rewritten asvar ~RW (n) = var ~R(n) + P (W)n(n+W)2The behavior of the convergence rate can be studied by investigating the be-havior of P (W). For example, in the trivial case where the initial estimate R̂(0)equals the actual value R, ~R2(0) = 0 and P (W) < 0; 8W > 0 8n > 0. Hence, the es-timator R̂W (n) accelerates convergence in this case, because var ~RW (n) < var ~R(n).When R̂(0) 6= R di�erent situations exist, depending on the value ofW . P (W)has two roots: w1 = 0w2 = 2n�2~R2(0)n� �2Assuming n > �2~R2(0), so that w2 > 0, two situations must be considered. GivenR (which determines the value of �2) and R̂(0) (which determines the value of~R2(0)),� if the con�dence factor W > w2, P (W) > 0 and the convergence rate is slowerthan when the sample mean estimator is used;� if the con�dence factor w1 < W < w2, P (W) < 0 and the convergence rate isfaster than when the sample mean estimator is used;

97This acceleration method works well when ~R2(0) ' 0, as expected, becausethe range of W for which P (W) < 0 increases signi�cantly, meaning that one canput more con�dence in the initial estimate.To avoid the dependence of w2 on n, one may prefer to usew21 = limn!1 w2 = 2�2~R2(0)as the second root of P (W) and study the behavior of the polynomial as above, butnow the results will be valid only when n!1.The stochastic approximation algorithm using this acceleration method doesalso converge w.p.1. This is proved in Appendix B as part of the proof of Theo-rem 5.4.1.6.2.3 Comparison of Acceleration MethodsAll combinations of the acceleration methods discussed above were simulatedfor a 4-algorithms LSA and compared with the case where no acceleration wasused. The reliabilities simulated for the 4 algorithms were: R1 = 0:8; R2 =0:85; R3 = 0:9; R4 = 0:95. These values were chosen to illustrate a situationwhere convergence is slowed by the reasonably large number of algorithms and thesmall di�erences in reliability between them. All plots show the average of 50runs, with 400 iterations each. Whenever used, initial reliability estimates wereR̂1(0) = 0:9; R̂2(0) = 0:7; R̂3(0) = 0:75; R̂4(0) = 0:9. The con�dence factors usedwere W1 = 2; W2 = 0; W3 = 0; W4 = 20, meaning that some con�dence is puton the initial estimates of R1 and R4, and that the initial estimates for the otheralgorithms will not actually be used. Notice that w21 = 32 for algorithm u1 andw21 = 38 for u4, hence in both cases the convergence rate should improve whenn ! 1 (where n corresponds to iterations in the �gures), because W1 and W4 areboth smaller than w21.

98
0 50 100 150 200 250 300 350 400

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iterations

Pr
ob

ab
ilit

y

R^(0) = (1 1 1 1); W = (0 0 0 0)

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

iterations

1-
R^

R^(0) = (1 1 1 1); W = (0 0 0 0)

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iterations

Pr
ob

ab
ilit

y

R^(0) = (0.90 0.70 0.75 0.90); W = (2 0 0 20)

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

iterations

1-
R^

R^(0) = (0.90 0.70 0.75 0.90); W = (2 0 0 20)

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iterations

Pr
ob

ab
ilit

y

R^(0) = (1 1 1 1); Fu et all acceleration

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

iterations

1-
R^

R^(0) = (1 1 1 1); Fu et all acceleration

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iterations

Pr
ob

ab
ilit

y

R^(0) = (0.90 0.70 0.75 0.90); W = (2 0 0 20); Fu algorithm for R^

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

iterations

1-
R^

R^(0) = (0.90 0.70 0.75 0.90); W = (2 0 0 20); Fu algorithm for R^

Figure 6.3: Evolution of probabilities (left) and complement of relia-bility estimate (right) for a 4-algorithms LSA.

99The top of Figure 6.3 shows the case where no acceleration was used. Thesecond row of the same �gure shows the result of using initial estimates of reliabil-ity to accelerate the estimation of the complement of reliability. Even though theconvergence is slightly faster for the reliability estimation process, the probabilityconvergence is slower. This illustrates how di�cult it is to assign proper initial re-liabilities and con�dence factors. In the third row, only Fu's acceleration methodwas used. Both plots are smoother than in the previous examples, but convergenceof probabilities is still slow. Finally, the bottom of the �gure shows the best amongall combinations: when Fu's method and initial reliability estimates are used, con-vergence of both the complement of reliability estimates and the probabilities getssigni�cantly faster: this is the only case where the optimal algorithm is chosen withprobability 1 (for practical purposes) at the end of the 400 iterations.6.3 SummaryThe convergence rate of stochastic approximation algorithms was studied inthis chapter. Lower bounds for the evolution of the cost function estimates and theprocess of learning action probabilities were presented. Two acceleration algorithmswere adapted to the problem approached in this work and their performance wasinvestigated both analytically and by simulation.

CHAPTER 7Case StudiesIn this chapter, two case studies in di�erent control areas are presented, to illus-trate the application of the theory introduced in the thesis and to demonstrate its
exibility.Section 7.1 treats the operations management of a glass melting furnace. Asmall subset of the operations is simulated to introduce in a simple way the mainconcepts of the theory. Section 7.2 describes a realistic simulation of an intelligentrobotic system. This case study is richer in details and number of handled situations.7.1 Case Study 1 - Operations Management of a Glass Melting FurnaceThe operation and control of large scale industrial processes such as watertreatment, cement or glass processing is usually a hard task, because it involves sev-eral control loops (air, fuel, pressure, temperature) resulting in coupled multivariablesystems, with di�cult mathematical modeling. The solutions usually implementedare based on conventional controllers (e.g. PID), manually tuned or self-tuned foreach control loop. The systems are managed by experienced operators who modifythe set points for each loop with the objective of maximizing e�ciency, constrainedby speci�cations concerning production levels and �nal product quality. In recentyears, there has been a growing concern about pollutant production, and some con-trol strategies include its minimization as another goal.Process controllers based on expert system shells or fuzzy rules have emergedin the last years[28, 29, 35]. Advantages in terms of e�ciency and �nal productquality have been reported for several practical applications on di�erent processindustries. The main reason for these improvements lies in that the KnowledgeBased Systems used take into account not only overall performance improvement100

101(e.g., maximizing heat transfer to glass), but also the handling of exceptions. Forexample, if the heat transfer to the glass is maximized, but there is non melted glassin certain areas due to an improper temperature pro�le, the main goal of the systemmust temporarily change in order to deal with this problem, even though the goalof maximizing transferred heat is momentarily sacri�ced.These solutions, even though promising, su�er of the usual drawback associ-ated to Arti�cial Intelligence approaches: the lack of an analytical analysis capableof providing performance measures and a methodology of design. Hence it seemsinteresting to approach the problem using the methodology described in this work.7.1.1 Description of the ProblemThis section presents the results of modeling a subset of the Operations Man-agement of a Glass Melting Furnace as a HGDIM with the translation interfacesmodeled by a HLSA. Due to the current lack of reliable data concerning the per-formance of the algorithms, the problem is described with detail to illustrate theinvolved tradeo�s and empirically extrapolate data for the simulations. The model-ing issues raised here are typical not only of Glass Manufacturing but also of otherindustrial processes.The algorithms referenced in the case study were developed during the EECESPRIT-II project AIMBURN (\Advanced IntelligentMulti-Sensor System for Con-trol of Boilers and Furnaces")[2], where they were used under a di�erent approach,described in [40].A glass furnace usually includes 3 areas[63]:� Glass Melting Area;� Working Area;� Fining Area;

102The raw material (batch) is fed to the furnace and is transformed into moltenglass in the Glass Melting Area. The homogenization of the glass occurs in theWorking Area, and �nally its temperature is slowly lowered in the Fining Area,where the glass softly
ows to the furnace outlet.The main objective in the operation of Glass Melting Furnaces is to achievespeci�ed production levels and �nal glass quality while minimizing fuel consumption.The most important variable that has to be controlled such that speci�cations canbe met, is the temperature pro�le along the furnace. Di�erent temperature pro�leslead to di�erent amounts of heat
ux to the molten glass. Production level andglass quality are indirectly related to the amount and distribution of heat input.Maximization of thermal e�ciency, de�ned as the fraction of total energy input(fuel + air energy) transmitted to the glass, corresponds to the minimization ofinput fuel energy for a desired heat input to the molten glass.However, direct temperature control by manipulating fuel
ow and fuel tem-perature is not enough, because several factors can disturb the process and hencehave to be taken into account. Some examples of such disturbing factors are:� Inadequate batch composition leading to incorrect glass color. Air/fuel ratiomust then be re-tuned for the new conditions, and coloring materials may haveto be introduced;� Changes in molten glass level inside the furnace may introduce impurities inthe �nal glass, or prevent it from reaching the outlet zone of the furnace.Hence the batch input rate must be controlled by the glass level;� The air pressure inside the furnace lower than the outside pressure allows theleaking of outside cool air having as a result the decreasing of the temperature.Hence a pressure control loop is needed.� The reduction of pollutant emissions is usually accomplished by decreasing

103the excess-air level (amount of air added to the combustion air speci�ed bythe desired fuel
ow and air/fuel ratio). However, this decreases the heat
uxto the glass and increases the unburnt hydrocarbons leaving the furnace[12].The management of all these loops and disturbances is usually the responsibil-ity of trained operators who can control the process not only using the informationsupplied by the
ow, the temperature, the pressure, and the glass level meters, butalso visual information about
ame quality provided by video cameras. Given thatinformation, they may decide to change set-points and air/fuel ratios, or add col-orings, to assure regular functioning. Monitoring the location and motion of nonmelted materials which may be located in, or moving towards, forbidden regions ispossible through a video camera momentarily entering the furnace. A barrier of airbubblers is used to prevent the
ow of those aggregates of non melted material toreach the furnace outlet. The control of the bubblers air
ow can take into accountthe vision system information. The di�erential control provided to each furnaceburner can also be used to melt the aggregates. The AIMBURN project included aVision System that provided a set of features describing the non melted aggregates,the
ame and the status of burners and bubblers[90].The furnace considered in the AIMBURN project burns oil and is of the end-�red type. There are 6 burners, installed in the back wall, divided in 2 groupsof three, �red alternately each 20 minutes. Each of the 3 burners of a group canbe independently controlled. The expertise acquired during the project focused onregular operation and removal of non melted materials, the most important fuelsaving and �nal product quality factors.One possible design option for these two operations is to consider them astwo separate (not independent) goals. Hence, two commands are de�ned: RegularOperation and Remove Non Melted Materials. De�ning the removing of non meltedmaterials as a separate command was the option taken because it is an emergency

104operation that must be done as soon as it is detected, hence it can not wait forthe learning process to reach steady state. However, switching between RegularOperation and Remove Non Melted Materials can be accomplished without humanintervention, using the results provided by the vision system: after each task isapplied, geometric features of the non melted parts are checked for their proximityof the Fining Area and their dimensions. The features provided by processing theinside-furnace images are the area and mass center of the whole set of non meltedglass parts, a measure of its eccentricity in 2-D, and the radius in the longitudinaldirection of the furnace which measures the extent of the danger of reaching theneighborhood of the bubblers. This information is to be used later by the tasktranslating Remove Non Melted Materials, but at this point the command will beactivated only if the materials are too big and too close to the Fining Area.The simulations described in the next subsection concentrated on the com-mand Regular Operation. The regular operation of glass melting furnaces often facescontentious goals. For example, the goal of maximizing the heat Qg transferredfrom
ame and radiating walls to the molten glass, con
icts with the need to min-imize pollutant levels, expressed by the nitric oxide concentration ([NO]) insidethe furnace. Carvalho et al[12] used a mathematical model to study the e�ects ofcombustion excess-air level, air preheating, and fuel composition on the nitric oxideemissions of an industrial glass furnace. The authors concluded that decreasing theexcess-air level leads to a decrease of [NO], but also to a decrease of Qg. Preheatingthe combustion air increases Qg, but [NO] is also signi�cantly increased. Further-more, when the fuel used is a mixture of methane and nitrogen rather than puremethane, both [NO] and Qg decrease.To handle these con
icting goals, Farmer and Bryant[16] proposed a controlscheme to maximize thermal e�ciency, constrained by speci�cations on the maxi-mum allowed pollutant level. First, they estimated on-line an energy balance model

105relating the heat
ux to the glass Qg to the total energy input, due to fuel and air
ow and temperature. Then, they used this model to predict changes in thermale�ciency, due to changes in fuel and air
ow. The optimal controller maximizese�ciency by searching for the optimal fuel and air
ow set points, given the currentmodel and constraints on the allowed [NO].This strategy has its drawbacks:� experimental data shows[2, 11] that generally thermal e�ciency increases whenfuel
ow decreases. To increase the thermal e�ciency, this implies a decreasein Qg and an increase in minimum residence time of the molten glass insidethe furnace, thus leading to a production decrease;� allowed pollutant levels are �xed at design time and used as constraints, notas part of a global performance index.An alternative considered here is to have another control scheme to minimizepollutant levels, constrained by the desired production rate, or indirectly by thedesired Qg. Similarly to the other controller, a model of pollutant level formationis needed, to predict changes in [N0] due to changes in excess-air. Such a model isdescribed in [12].Following the linguistic formulation of task generation in HGDIMs each alter-native strategy described above corresponds to separate primitive events. Actually,for reasons made clear below, the two models estimators and the two di�erent op-timal controllers have to be separated. The primitive event set E is thus composedby 4 primitive events:� e1 �=estimate-energy-balance-model;� e2 �=estimate-pollutant-levels;� e3 �=max-thermal-e�ciency;

106� e4 �=min-pollutant-levels;Even though in the general case each primitive event may be translated bymore than one primitive algorithm (or by di�erent parameterizations of the samealgorithm), in the sequel only one primitive algorithm per primitive event is con-sidered for simplicity. As an example, the choice of the on-line search technique todetermine the optimal fuel and air
ow, would distinguish the algorithms translatinge3. In the real furnace all primitive algorithms read information from sensors insidethe furnace and modify the set points of PID control loops.e1 and e2 are estimation problems. A natural speci�cation for them is torequire the variance of the estimation errors to be less than some accuracy �1 and�2, respectively: var (Q̂g�Qg) < �1 and var (^[NO]� [NO]) < �2. The heat input tothe glass is estimated by a11 (the only algorithm translating e1) from the informationprovided by the crown, gas and stack temperature sensors. The pollutant levels areestimated by a21 from the current
ame characteristics, such as
ame length, andoxygen concentration[16]. Both algorithms will be assumed to be 100% reliable.The speci�cations for e3 and e4 re
ect the constraints in each case:� j ^[NO]� [NO]dj < �3. [NO]d is the desired concentration of nitric oxide;� jQ̂g �Qgdj < �4. Qgd is the desired concentration of heat input to the moltenglass.The air-fuel ratio is kept constant. When a31 increases the fuel
ow (and theair
ow, according to the air-fuel ratio), Qg increases and so does [NO]. Similarly,when a41 decreases the excess-air level, [NO] decreases, and so does Qg. The twoestimators e1 and e2 must always be activated prior to the application of any of theoptimal controllers. One of them provides the model used by the search algorithm,the other provides information to check the speci�cations.

107a31 and a41 are designed to meet the speci�cations for the respective events.However, the actual constraints come from indirect indices, such as minimumexcess-air, maximum crown temperatures and
ame length for e3, whose actual constraintis [NO]d. Thus, in general these algorithms will not be 100% reliable. The reliabilityof the algorithms can be checked on-line from the speci�ed Qgd and [NO]d, and theestimates provided by e1 and e2.The validation of mathematical models of glass furnaces is di�cult due tothe lack of reliable data. Furthermore, data concerning the performance of optimalcontrollers is scarce in the case of a31 or non-existent in the case of a41, which is intro-duced here. The tradeo� between minimizing pollutant emissions and maximizingheat
ux to the molten glass is clear from the results of running the mathemati-cal models for di�erent operating conditions[2, 11]. However, the reliability of theestimators and optimal controllers can only be empirically assigned. Similarly, itis natural that computational costs re
ect the CPU time spent by the estimatorsand search algorithms, but this will strongly depend on the actual algorithms, notde�ned here.Given these considerations, the case study focus on the convergence of theHLSA to the most reliable decisions, assuming zero costs for all primitive algo-rithms. Furthermore, a change in fuel composition is simulated in the middle ofthe experiment. The change is simulated by switching the state of the environment.State 0 corresponds to a pure methane fuel, while in state 1 the fuel is a mixture ofmethane and nitrogen. Following the results of Carvalho et al[12] both [NO] and Qgare expected to decrease from state 0 to state 1. Hence, it is reasonable to expectthat the reliability of a31 will increase, because its constraint on the concentrationof nitric oxide will be easier to meet. The reliability of a41 will decrease, because itsconstraint on the heat
ux to the molten glass is harder to satisfy.Alternative tasks di�er by the decision of maximizing thermal e�ciency or

108
0 50 100 150 200 250 300 350 400 450 500

0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

ab
ilit

y
Productions 0 (-), 1 (--) Probabilities

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

iterations

1-
R

+
C

Productions 0 (-), 1 (--) Cost Functions

Figure 7.1: Results of case study 1.minimizing pollutant level. The stochastic regular grammar for the command is:G = (VT ; VN , R, P, S)VN = f S gVT = fe1; e2; e3; e4gR = f12 S ! e1 e2 e312 S ! e1 e2 e4 gThe numbers to the left of the productions are the initial production proba-bilities.7.1.2 ResultsFigure 7.1 shows the average over 50 sample functions of the stochastic pro-cess corresponding to the evolution of action probabilities (top) and cost functions(bottom) of the 2 productions composing the stochastic grammar for the case study.

109event e1 e2 e3 e4R0j 1.00 1.00 0.60 0.70R1j 1.00 1.00 0.80 0.55C0j = C1j 0 0 0 0Table 7.1: Reliabilities and costs assigned to the primitive algorithmstranslating the primitive event set E.Each sample function consisted of 500 task runs (iterations in the �gure). The stateof the environment switches from state 0 (pure methane fuel) to state 1 (methane +nitrogen fuel) at iteration 200, but state 0 remains the estimated state for the IM.This was done to test the adaptiveness of the learning scheme.The rates of successes for the di�erent algorithms were simulated by a MonteCarlo method from the actual reliabilities assigned to each algorithm. No physicalmodel was run. Reliabilities were assigned qualitatively, based on the above dis-cussion. a41 was assumed to be initially more reliable than a31. After state of theenvironment changes, the reliability of a41 decreases and the reliability of a31 increases,such that it becomes more reliable than a41. Costs and reliabilities are tabulated inTable 7.1.A recursive sample mean algorithm with forgetting factor was used to improvethe adaptiveness of cost function and probability estimates. No proof of convergenceexists for this algorithm, which resembles the stochastic approximation algorithmdescribed before, but gives more weight to recent samples than to old samples. Itsgeneral expression isR̂(n) = 1n+W nXi=1 �n�i(i� (i� 1)�)y(i) + WR̂(0)n+W (7:1)where y 2 f0; 1g is the reinforcement signal and the forgetting factor 0 < � � 1 isusually made close to 1, so that only the most recent samples are used to computethe mean without being too sensitive to small data changes. W is the con�dence

110factor on the initial estimate R̂(0) (see chapter 6). No acceleration method wasused, and R̂(0) = 0, hence the con�dence factor was only included in the expressionfor completeness and future reference.The recursive version of Equation (7.1) isR̂(n+1) = �R̂(n)+ 1n+ 1 +W f[n(1��)+1]y(n+1)��R̂(n)g+(1��) WR̂(0)n+ 1 +W(7:2)Notice that Equation (7.2) is the same as Equation (5.17) when � = 1 andW = 0.The recursive version was used for the estimation of algorithm reliabilitiesand production probabilities. The forgetting factors used were � = 0:97; 0:98respectively.The plots show that in state 0, the HLSA converges to the most reliable task,e1e2e4. After the change to state 1, task e1e2e3 becomes the most reliable, and theprobability of production 0 becomes greater than the probability of production 1.Convergence is slower after the change in the environment, due to the memory ofthe stochastic approximation algorithms.7.2 Case Study 2 - An Intelligent Robotic SystemThe coordination of vision and motion algorithms is one of the typical problemsin Intelligent Robotic Systems. This is the subject of the case study described inthis section.7.2.1 Description of the ProblemThe workspace setup for Case Study 2 is depicted in �gure 7.2.A manipulator PUMA 560 has to grasp a cylindrical strut whose 3D pose(position + orientation) is roughly known. There is a pair of cameras in the ceiling,overviewing the working space of the manipulator and used by a stereo vision system

111
Yc Xc

Zc

Zw

Xw

Zt

XtFigure 7.2: Workspace setup for Case Study 2.to determine more accurately the 3D pose of the object. The manipulator hasposition, velocity and force sensors. The scene is well illuminated but from time totime lights go o�, deteriorating the accuracy of vision algorithms. The environmenthas 2 states, one corresponding to lights on (state 0) and the other to lights o�(state 1).The only command available is c =Grab-Strut.The event set is composed by 5 events, E = fe1; e2; e3; e4; e5g, where� e1 �=move manipulator;

112� e2 �=grasp object with compliance;� e3 �=locate object;� e4 �=plan trajectory;� e5 �=grasp object hard;Event e1 represents the motion of the manipulator tip along a pre-plannedtrajectory in joint space. It must not precede e4. Two Computed Torque algorithmsdistinguished by their gains (Kp;Kv) (see Appendix A) are capable of implementinge1, given the desired joints position, velocity and acceleration provided by e4. Thespeci�cation for e1 requires that the quadratic error between the desired and theactual �nal positions (time tf) of the manipulator tip in cartesian space, do notexceed the accuracy �1 speci�ed for the event:(x(tf)� xd(tf))2 + (y(tf)� yd(tf))2 + (z(tf)� zd(tf))2 < �1Event e2 assumes that the tip (tool) of the manipulator is close enough to theobject to be grasped and the gripper is opened. Motion driven by some desired forcetakes the tool to the object. If the pose errors are small, they will be accommodatedby the translating algorithms. Then, the force along pre-speci�ed direction(s) willbe checked at each step. If the sensed force remains within the desired accuracyinterval [fd� �2; fd+ �2] (where fd is the desired force along that direction) during areasonable number of steps, before a pre-speci�ed limit number of steps is reached,the gripper will be closed to grasp the object. If either the pose errors are too largewhen the tool contacts with the strut and/or the desired force is not obtained beforethe limit number of steps, a failure will be reported.Even though Position Accommodation Control (see section 4.4.2) is used byall algorithms translating e2 to accomplish compliance control of the manipulator,di�erent parameterizations of the required impedance (similar to a mass, spring and

113damper system) result in di�erent algorithms with di�erent costs and reliabilities(see Appendix A).Event e3 determines the pose of an object using stereo vision algorithms. Theuncertainty on pose determination by stereo vision is mainly due to matcher er-rors when determining which image pixels in the two cameras correspond to thesame point in the observed scene. This may be due both to spot noise and pixelresolution[36, 51], and leads to disparity errors which a�ect the 3D pose estima-tion. The results obtained for the open loop and closed loop algorithms describedin section 4.4.3 were used in the simulation of the two algorithms translating e3(see Appendix A). In a real-world implementation, each of the algorithms woulddetermine the strut end-points in each of the images to match them and computethe 3D pose of the strut.Changing the state of the environment deeply a�ects the two algorithms.Switching the lights o� increases spot noise which a�ects the estimation (by anyof the algorithms) of the strut end-points in each of the images , as it was shown insection 4.4.2. This will increase disparity errors and consequently pose estimationerrors.Figuring out a convenient speci�cation for a sensing event such as e3 is usuallyhard and application-dependent, because the algorithms do not know any desiredset point, in the sense of the speci�cations for e1 or e2. In this case, the measureused was the di�erence in estimated depth for both ends of the strut. It is assumedthat the strut lies in a plane parallel to the camera plane, even though its distancefrom the latter is not known. Hence, depth should be the same for both extremes.The speci�cation requires the depth di�erence to be below an accuracy �3 whichequals the depth resolution of the stereo system.Event e4 plans a trajectory in joint space whose end-points are the joint-spacevectors corresponding to the initial and �nal pose required for the manipulator

114event e1 e2 e3 e4 e5algorithm a11 a12 a21 a22 a23 a24 a31 a32 a41 a51cost 0.55 0.44 0.18 0.14 0.16 0.22 0.35 0.35 0.00 0.3Table 7.2: Primitive events, primitive algorithms and assigned costs.tip when moving from a standby position to the grasping position. A minimum-jerk trajectory generator introduced by Kyriakopoulos and Saridis[32] is the onlyalgorithm used. It generates the desired joints acceleration, velocity and position ata number of pre-speci�ed points along the trajectory by a method which minimizesthe jerk, or third derivative of joint position.Event e5 is a non-compliant version of e2. All compliance will be passive, i.e., a result of the manipulator mechanical compliance. The manipulator is position-controlled only. There is neither a desired force nor any checking of the actualforce. Speci�cations concern the capability of the manipulator tool to comply witherrors in pose estimation. This capability is however much smaller than for e2 (seeAppendix A).A realistic simulation of the algorithms presented here was developed. Thedetails are given in Appendix A.Table 7.2 shows the costs of the primitive algorithms for the di�erent primitiveevents. Notice that speci�cations are made for each event, not for each algorithm.Cost does not change with the state of the environment. Appendix A explains howthe costs for the various primitive algorithms were obtained, based on the results ofSection 4.4.During the simulation, the reliabilities of the algorithms were estimated basedon the rewards resulting from successes of their application over the environment.The HLSA de�ned by 5.2.1 and the hierarchical reinforcement scheme (De�nitions5.4.1 and 5.4.2) were used to simulate the HGDIM.

115To grab the strut, the systemmust �rst estimate the strut pose. Then, it plansa path from the current pose of the manipulator tip to the neighborhood of thestrut pose, and moves along that path. Finally, the manipulator slowly approachesthe strut and tries to grasp it. Alternative tasks di�er by the inclusion or not ofcompliance and by using or not using stereo vision to re�ne the a priori knowledgeof the strut pose. The stochastic regular grammar for the command is:G = (VT ; VN , R, P, S)VN = f S, A, B gVT = fe1; e2; e3; e4; e5gR = f0.5 S ! e3 A0.5 S ! A1.0 A ! e4 e1 B0.5 B ! e20.5 B ! e5 gThe numbers to the left of the productions are the initial production proba-bilities, that is P (0), assigned by Jaynes' Principle of Maximum Entropy.Productions such as S ! A, with no terminal symbols in its right-hand side,are assigned zero cost and 0.5 reliability (see section 5.3).7.2.2 ResultsThe simulation described in the previous section was run for several di�erentsituations in order to point out the main concepts and tradeo�s of the proposedexecution and design methodologies, and also to suggest future work.All results shown are the average over 50 sample functions of some stochasticprocess, such as the evolution of action probabilities or cost function, except whennoted.

116event e1 e2 e3 e4 e5algorithm a11 a12 a21 a22 a23 a24 a31 a32 a41 a51R̂(0) 0.77 0.90 0.80 0.80 0.50 0.50 0.85 0.93 1.00 0.75W 10 10 10 10 10 10 50 50 0 20Table 7.3: Primitive events, primitive algorithms, initial reliabilityestimates and corresponding con�dence factors.Each sample function consists of 150 task runs (iterations in the �gure), exceptwhen noted. The production and algorithm probabilities are updated after a taskis applied. The initial state of the environment is always state 0 (lights on).Figures 7.3-7.8 show the evolution of action probabilities and cost functionsassociated to the main events and productions when the environment is assumed tohave only one state { state 0 (lights on). Fu's acceleration technique together withinitial reliability estimates were used to obtain the results shown in Figures 7.3, 7.5and 7.7. The initial reliabilities and con�dence factors are tabulated in Table 7.3.The values were picked as approximations of the actual values, from the experienceacquired after several simulation runs. No acceleration techniques were used in theother cases. Notice that when the con�dence factor W = 0, R̂(0) = 1:00, becausein the actual implementation the complement of reliability is estimated, not thereliability itself.In all cases the probability of the best action eventually converges to 1:00.However, for events e1 and e2 the evolution is slow, due to the close reliabilityvalues for the algorithms involved. This initial di�culty of the learning algorithmis enhanced in Figure 7.9, where the decrease of the entropies for the two events isslow when compared with the entropy decrease rate of e3.The e�ect of using acceleration techniques is clear: only the probability of thebest algorithm for event e2 does not reach a close neighborhood of 1:00, but even inthis case the acceleration helps a fast distinction between the two best algorithms

117and the other two.From the stochastic grammar for the problem and the results shown for theproduction probabilities, it may be noticed that task e3 e4 e1 e2 is the optimal task.This corresponds to using stereo for pose estimation and compliance for the graspingsubtask, as expected. Figure 7.10 shows that task entropy decreases with learning.Figures 7.11- 7.13 show an example of adaptation of the IM to an unacknowl-edged change in the state of the environment. In this case each �gure shows only onesample of the stochastic processes. The state of the environment switches from state0 (lights on) to state 1 (lights o�) at iteration 150, but state 0 remains the estimatedstate for the IM. The simulation consisted of 600 task applications. No accelera-tion method was used. To improve adaptiveness, Equation (7.2) was used for theestimation of algorithm reliabilities and probabilities, and production probabilities.The forgetting factors used were � = 0:97; 0:98; 0:98 respectively.After the state switching, production 0 is no longer the best production, sincethe performance of the stereo algorithms deteriorates under poor lighting conditions,and the initial rough estimate of the strut pose is preferred. In this run, the IMlearned the change.At a �rst glance, the state switching should only a�ect event e3 and conse-quently productions 0 and 1. However, �gure 7.12 shows that the cost function ofevent e2 does also change. Even though this change is not re
ected in the evolutionof algorithm probabilities (which is messy in this example just because of the closevalues of the di�erent reliabilities), the increase in the cost function shows the exis-tence of a dependence between events. In the example, the reliability of the graspingevents decreases due to the decrease in the quality of the object pose estimates whenlights go o�. The cost function of event e5 does not change, only because production4 is not applied since very early.An interesting issue here is the comparison between the direct reinforcement

118of task probability with the indirect reinforcement resulting from the propagationof the cost function. The latter is the method described elsewhere in the thesis,while the former consists of using sensor information (e. g., a cross-�re sensor whenthe goal is to grasp an object) to directly determine the success or failure of a taskand provide the appropriate reinforcement signal to the top level generalized LSA,whose reinforcement scheme will in this case be equal to the bottom level LSAreinforcement scheme (see De�nition 5.4.1).The advantage of the direct reinforcement method is a more realistic estimateof the task cost function, since the propagation equations for the reliability assumeindependent events, which is not always true, as it was evident in the adaptiveexample just shown. However, the interaction between the two independent LSAsin the direct reinforcement case has not been studied yet, thus convergence can notbe guaranteed. Of course, if there is no way of directly checking the success orfailure of a task, only the indirect reinforcement method can be used.The evolution of production probabilities and cost functions when direct taskreinforcement is used is plotted in Figure 7.14. Comparing with the indirect rein-forcement method (Figure 7.7), two main di�erences are noticeable:� The cost functions steady state values are larger when direct reinforcement isapplied. Since the same algorithm costs and cost propagation equations wereused, this means that the actual task reliability is smaller than the task reli-ability obtained by propagating the event reliabilities. The evolution of eventestimated reliabilities when direct task reinforcement was used (not shown) isvery similar to the indirect reinforcement case, as expected.� Production 1 probability is initially larger then production 0 probability forthe direct reinforcement case, while production 0 has always larger probabil-ity in the indirect case. In the latter, cost and reliability of production 1are initially assigned to 0 and 0.5, remaining equal to these values along the

119simulation. Using the direct task reinforcement method, the complement ofreliability for both productions is learned along time. The initial estimateof the complement of reliability for both productions is equal to zero. Thecosts are 0.35 for production 0 and 0 for production 1. Hence the initial costfunction of production 1 is smaller than that of production 0 in the directreinforcement case, and larger in the indirect reinforcement case.The main drawback associated to direct task reinforcement is that there is noproof of its convergence. However, these experiments suggest the method convergesand obtains more accurate estimates of production cost function and probabilities.7.3 SummaryTwo case studies were presented where the proposed formalism is appliedthe Operations Management of a Glass Furnace and an Intelligent Robotic Systemrequiring coordination among vision and motion control. The results show the con-vergence of the reinforcement schemes at the di�erent levels of the IM hierarchy.Di�erent tradeo�s concerning direct versus indirect task reinforcement, convergencespeed and adaptiveness to changes in the state of the environment were also ana-lyzed.The overall entropy decrease with learning was also shown in Case Study 2.

120
0 50 100 150

0.2

0.3

0.4

0.5

0.6

0.7

iterations

Pr
ob

Event e1 (a1 (-), a2 (--))

0 50 100 150
0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

Event e3 (a1 (-), a2 (--)

0 50 100 150
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

st

0 50 100 150
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

stFigure 7.3: Evolution of probabilities and cost functions for algorithmstranslating events e1 and e3.
0 50 100 150

0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

Event e1 (a1 (-), a2 (--))

0 50 100 150
0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

Event e3 (a1 (-), a2 (--)

0 50 100 150
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

st

0 50 100 150
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

stFigure 7.4: Evolution of probabilities and cost functions for algorithmstranslating events e1 and e3, when acceleration method isused.

121
0 50 100 150

0

0.2

0.4

0.6

0.8

iterations

Pr
ob

Event e2 (a1 (-), a2 (--), a3 (..), a4 (-.))

0 50 100 150
0

0.5

1

1.5

2

iterations

Pr
ob

Event e5 (a1 (-))

0 50 100 150
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

st

0 50 100 150
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

stFigure 7.5: Evolution of probabilities and cost functions for algorithmstranslating events e2 and e5.
0 50 100 150

0

0.2

0.4

0.6

0.8

iterations

Pr
ob

Event e2 (a1 (-), a2 (--), a3 (..), a4 (-.))

0 50 100 150
0

0.5

1

1.5

2

iterations

Pr
ob

Event e5 (a1 (-))

0 50 100 150
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

st

0 50 100 150
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

stFigure 7.6: Evolution of probabilities and cost functions for algorithmstranslating events e2 and e5, when acceleration method isused.

122
0 50 100 150

0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

Productions 0 (-) & 1 (--)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

Productions 3 (-) & 4 (--)

0 50 100 150
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

st

0 50 100 150
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

stFigure 7.7: Evolution of probabilities and cost functions for produc-tions 0,1,3 and 4.
0 50 100 150

0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

Productions 0 (-) & 1 (--)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

Productions 3 (-) & 4 (--)

0 50 100 150
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

st

0 50 100 150
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

stFigure 7.8: Evolution of probabilities and cost functions for produc-tions 0,1,3 and 4, when acceleration method is used.

123
0 50 100 150

1.1

1.2

1.3

1.4

1.5

1.6

iterations

En
tro

py

e1

0 50 100 150
1.5

2

2.5

iterations

En
tro

py

e2

0 50 100 150
0.4

0.6

0.8

1

iterations

En
tro

py

e3

0 50 100 150
0.6

0.7

0.8

0.9

1

iterations

En
tro

py

e5

Figure 7.9: Evolution of entropies of events e1, e2, e3 and e5.
0 50 100 150

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

iterations

En
tro

py

Task e3 e4 e1 e2

Figure 7.10: Evolution of entropy for task e3 e4 e1 e2.

124
0 200 400 600

0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

Event e1 (a1 (-), a2 (--))

0 200 400 600
0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

Event e3 (a1 (-), a2 (--)

0 200 400 600
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

st

0 200 400 600
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

stFigure 7.11: Evolution of probabilities and cost functions for algorithmstranslating events e1 and e3, with a change in the state ofthe environment.
0 200 400 600

0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

Event e2 (a1 (-), a2 (--), a3 (..), a4 (-.))

0 200 400 600
0

0.5

1

1.5

2

iterations

Pr
ob

Event e5 (a1 (-))

0 200 400 600
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

st

0 200 400 600
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

stFigure 7.12: Evolution of probabilities and cost functions for algorithmstranslating events e2 and e5, with a change in the state ofthe environment.

125
0 200 400 600

0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

Productions 0 (-) & 1 (--)

0 200 400 600
0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

Productions 3 (-) & 4 (--)

0 200 400 600
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

st

0 200 400 600
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

stFigure 7.13: Evolution of probabilities and cost functions for produc-tions 0,1,3 and 4, with a change in the state of the envi-ronment.
0 50 100 150

0.3

0.4

0.5

0.6

0.7

iterations

Pr
ob

Productions 0 (-) & 1 (--)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

iterations

Pr
ob

Productions 3 (-) & 4 (--)

0 50 100 150
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

st

0 50 100 150
0

0.5

1

1.5

2

iterations

1-
Re

lia
b

+
Co

stFigure 7.14: Evolution of probabilities and cost functions for produc-tions 0,1,3 and 4, with direct task reinforcement.

CHAPTER 8Conclusions and Future WorkThe translation interfaces of a Hierarchical Goal-Oriented Intelligent Machine, basedon the 3-level architecture proposed by Saridis[67], have been modeled as a 2-stageHierarchical Learning Stochastic Automaton (HLSA). The model takes into accountthe feedback from the environment where the HGDIM operates, using that feedbackto learn the optimal task among those capable of translating a command sent to themachine and the optimal primitive algorithms among those capable of translating theprimitive events composing a task. An optimal action has been de�ned as the action(task or primitive algorithm) which minimizes a cost function recursively updatedthrough feedback. The cost function of an action has two terms: one is the cost ofapplying the action, and the other is the complement of the reliability of the action.Reliability of an algorithm has been de�ned as the probability that the algorithmmeets a set of speci�cations, while cost of an algorithm is a general measure ofthe resources needed by the algorithm to accomplish that reliability. Resources mayinclude, but are not limited to, CPU time, memory, number of processors or numberof FLOPs.This approach uni�es the solution of the Decision Making and Learning prob-lems in Intelligent Machines at all levels of a HGDIM, as the optimization of a globalcost function. The cost function is general enough to be applied to di�erent algo-rithm types, a common requirement to Intelligent Machines. Furthermore, it allowsthe comparison between di�erently designed HGDIMs, given a (set of) goal(s).Learning is based on a hierarchical version of Fu's Generalized Learning Sto-chastic Automaton: at each step, the cost function estimate is updated at the bottomlevel by a Stochastic Approximation Algorithm. The current estimates of the costfunction for all the algorithms translating a primitive event are used by another126

127Stochastic Approximation Algorithm to update the algorithm subjective probabil-ities. Then, those estimates are propagated bottom-up by a set of equations toobtain event and task reliabilities. The latter are used by still another StochasticApproximation Algorithm to update the task subjective probabilities.Decision Making is accomplished similarly at the two stages of the HLSA:� Commands are translated into tasks by random selection among the currenttask subjective probabilities;� Primitive events are translated into primitive algorithms by random selectionamong the current subjective probabilities of primitive algorithms.It was shown in Chapter 5 that the translation from commands to tasks is im-plemented by a stochastic grammar. Hence, the probabilities of selecting alternativeproductions of the grammar, not the probabilities of selecting tasks, are actuallyupdated.The reinforcement scheme proposed for the HLSA has been proven to selectthe optimal actions at the two levels with probability 1 when the number of iterationstends to in�nity.8.1 ContributionsThe contributions of this work are the following:� A coherent analytical measure of algorithm cost and reliability. This mea-sure can be improved on-line through feedback or used for o�-line design ofHGDIMs.� A new measure of performance for HGDIMs, represented by a global costfunction which combines cost and reliability;

128� An original hierarchical version of Fu's generalized LSA: the Hierarchical Re-inforcement Learning Scheme which uses feedback from the environment torecursively improve the estimate of the HGDIM cost function;� The original modeling of a HGDIM by a HLSA that uses the HierarchicalReinforcement Learning Scheme;� The introduction of a Design Methodology for a HGDIM, based on the HLSAmodel;� An original analytical study of the convergence rate of Fu's generalized LSA;� A study of algorithms for acceleration of stochastic approximation in the con-text of this work;� The simulation of two case studies describing the application of the formalismto two di�erent areas of Intelligent Control: intelligent process control and in-telligent robotic systems. The latter includes a realistic simulation of a PUMAmanipulator, a stereo vision system and compliance control.8.2 Future WorkThe following are topics of future work aiming to extend the results describedin this thesis:� The implementation of the case studies using real setups;� Further investigation of the behavior of a HGDIM in the presence of non-stationary environments. This should include the study of learning algorithmscapable of adapting to changes in state of the environment without needingone LSA per state;

129� Further investigation of methods to accelerate convergence speed of Stochas-tic Approximation algorithms. There are other methods described in the lit-erature (e.g. Kesten's algorithm[27], or 2nd order stochastic approximationalgorithms[66]) and other combinations of the methods presented in this workare possible, such as extending the acceleration to the probability update al-gorithm. The 2nd order stochastic approximation algorithm consists of usingthe covariance matrix of the estimated vector of parameters instead of the 1n+1gain used in this work. This is equivalent in the estimation of the reliabilities(scalar case), but the convergence rate of the probability update algorithmmay be increased by one order of magnitude (thus the name 2nd order).� Analytical study of convergence when task probabilities are directly reinforcedby the learning scheme, as shown in chapter 7;� Study and proposal of new architectures for State of the Environment Feed-back (see section 5.5). These may include a quanti�cation of the uncertaintyinvolved in modeling a stochastic environment by a �nite number of states (forexample a Markov chain);� Study of reliability \indirect learning" methods which use existent reliabilitymodels and update some of their parameter estimates, such as covariancematrices, instead of directly updating the reliability estimate.� The generalization of stochastic regular grammars used here to stochasticcontext-free or even context-sensitive grammars. This will permit dealing withmore complex systems, requiring the derivation of tasks with higher level ofsophistication.

1308.3 ConclusionThis thesis represents a step towards a comprehensive analytical theory ofIntelligent Controllers and Intelligent Systems, o�ering a framework for design andperformance analysis of HGDIMs and showing its successful application to realisticsimulations of systems as diverse as a Glass Melting Furnace and an IntelligentRobotic System.

LITERATURE CITED[1] Y. S. Abu-Mostafa. Complexity of random problems. In Complexity inInformation Theory. Springer-Verlag, 1986.[2] AIMBURN. Final report of E.E.C. ESPRIT project 2192 - AdvancedIntelligent Multi-Sensor System for Control of Boilers and Furnaces, 1992. M.Heitor, editor.[3] J. S. Albus. Outline for a Theory of Intelligence. IEEE Transactions onSystems, Man, and Cybernetics, 21(3), may/june 1991.[4] B. Armstrong, O. Khatib, and J. Burdick. The explicit dynamic model andinertial parameters of the puma 560 arm. In Proceedings of 1986 IEEEInternational Conference on Robotics and Automation, pages 510{518, 1986.[5] N. Baba. New Topics in Learning Automata Theory and Applications.Lecture Notes in Control and Information Science, Springer-Verlag, 1985.[6] D. Ballard and C. Brown. Computer Vision. Prentice Hall, 1982.[7] A. G. Barto and P. Anandan. Pattern-recognizing stochastic learningautomata. IEEE Transactions on Systems, Man and Cybernetics,SMC-15(3):360{375, 1985.[8] R. Beard and G. N. Saridis. A cost measure for e�cient scheduling inIntelligent Machines. In Proceedings of 8th International Symposium onIntelligent Control, Aug 1993.[9] W. L. Brogan. Modern Control Theory. Prentice Hall, 1991. 3rd Edition.[10] R. A. Brooks. A robust layered control system for a mobile robot. IEEEJournal of Robotics and Automation, RA-2(1), 1986.[11] M. G. Carvalho and M. Nogueira. Glass quality evaluation via 3-dmathematical modeling of glass melting furnaces. In Proc. E. S. G.Conference on the Fundamentals of the Glass Manufacturing Process, Sep1991. She�eld, UK.[12] M. G. Carvalho, V. S. Semiao, and P. J. Coelho. Modelling and optimizationof the NO formation in an industrial glass furnace. Journal of Engineering forIndustry - Trans. ASME, 114:514{523, Nov 1992.[13] J. J. Craig. Introduction to Robotics. Addison-Wesley, 1985.131

132[14] A. Desrochers, editor. Intelligent Robotic Systems for Space Exploration.Kluwer Publishers, 1992.[15] A. Dvoretzky. On Stochastic Approximation. In Proc. of 3rd BerkeleySymposium of Math. Stat. and Prob., volume 1. University of California Press,Los Angeles, 1956.[16] E. D. Farmer and G. F. Bryant. The design of integrated control schemes forthe glass-making industry. In Proc. 7th Annual ESPRIT CIM/EuropeConference, May 1991. Turin.[17] K. S. Fu. Learning Control, Systems - review and outlook. IEEETransactions on Automatic Control, AC-15(2), 1970.[18] K. S. Fu and T. L. Booth. Grammatical inference: Introduction and survey {part II. IEEE Transactions on Systems, Man and Cybernetics, SMC-5(4),1975.[19] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee. Robotics: Control, Sensing,Vision and Intelligence. McGraw Hill, 1987.[20] K. S. Fu and J. M. Mendel. Adaptive, Learning and Pattern RecognitionSystems: Theory and Applications. Academic Press, 1970.[21] K. S. Fu and Z. J. Nikoli�c. On some reinforcement techniques and theirrelation to the stochastic approximation. IEEE Transactions on AutomaticControl, AC-11(2):756{758, 1966.[22] K. S. Fu, Z. J. Nikoli�c, Y. T. Chien, and W. G. Wee. On the stochasticapproximation and related learning techniques. Technical Report TR-EE66-6,Purdue University - School of Electrical Engineering, Lafayette, Indiana, 1966.[23] J. H. Graham and G. N. Saridis. Linguistic decision structures for hierarchicalsystems. IEEE Transactions on Systems, Man and Cybernetics,SMC-12:323{333, 1982.[24] N. Hogan. Impedance control: an approach to manipulation: parts 1,2,3.Journal of Dynamic Systems, Measurement and Control, 107:1{24, March1985.[25] K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop. Neural networksfor control systems - a survey. Automatica, 28(6):2083{1112, 1992.[26] E. T. Jaynes. Information theory and statistical mechanics. Physical Review,106(4), 1957.[27] H. Kesten. Accelerated stochastic approximation methods. Ann. Math. Stat.,29(1), 1958.

133[28] P. J. King and E. H. Mandani. The application of fuzzy control systems toindustrial processes. Automatica, 13:235{242, 1977.[29] R. E. King and F. C. Karonis. Multi-level expert control of a large-scaleindustrial process. Fuzzy Computing, pages 323{339, 1988.[30] A. N. Kolmogorov. Combinatorial foundations of Information Theory and thecalculus of probability. Russian Mathematical Surveys, 38(4):29{40, 1983.[31] B. C. Kuo. Automatic Control Systems. Prentice Hall, 1987.[32] K. Kyriakopoulos and G. N. Saridis. Minimum jerk path generation. InProceedings of 1988 IEEE International Conference on Robotics andAutomation, pages 364{369, 1988.[33] S. Lakshmivarahan and M. A. L. Thathachar. Bayesian learning andreinforcement schemes for stochastic automata. In Proceedings ofInternational Conference on Cybernetics and Society, 1972.[34] S. Lakshmivarahan and M. A. L. Thathachar. Absolutely expedient learningalgorithms for stochastic automata. IEEE Transactions on Systems, Man andCybernetics, SMC-3, May 1973.[35] P. M. Larsen. Industrial Applications of Fuzzy Logic. 1988.[36] S. Lee and Y. Kay. An Accurate Estimation of 3-D Position and Orientationof a Moving Object for Robot Stereo Vision: Kalman Filter Approach. InProceedings of 1990 IEEE International Conference on Robotics andAutomation, pages 414{419, 1990.[37] D. R. Lefebvre and G. N. Saridis. A computer architecture for IntelligentMachines. In Proceedings of 1992 IEEE International Conference on Roboticsand Automation, may 1992.[38] F. L. Lewis. Optimal Estimation. John Wiley and Sons, 1986.[39] M. Li and P. Vit�anyi. Kolmogorov Complexity and its applications. InHandbook of Theoretical Computer Science, pages 187{254. North-HollandAmsterdam, 1990.[40] P. Lima, P. Oliveira, C. Ferreira, and J. Sentieiro. The architecture of aknowledge based controller for the operation of glass melting furnaces. InWorkshop on Computer Software Structures Integrating AI/KBS Systems inProcess Control, may 1991.[41] P. U. Lima and R. Beard. Using neural networks and Dyna algorithm forintegrated planning, reacting and learning in systems. Technical ReportCIRSSE-122, Center for Intelligent Robotic Systems for Space Exploration(CIRSSE), Rensselaer Polytechnic Institute, Troy, NY 12180-3590, 1992.

134[42] P. U. Lima and G. N. Saridis. Measuring Complexity of Intelligent Machines.In Proceedings of 1993 IEEE Int. Conf. Robotics and Automat., may 1993.[43] P. U. Lima and G. N. Saridis. Hierarchical reinforcement learning anddecision making for Intelligent Machines. In Proceedings of 1994 IEEE Int.Conf. Robotics and Automation, May 1994.[44] P. U. Lima and G. N. Saridis. Intelligent process control based on hierarchicalreinforcement learning. In Proc. of 2nd. IEEE Mediterranean Symp. on NewDirections in Control & Automation, June 1994.[45] P. U. Lima and G. N. Saridis. Performance improvement of AutonomousUnderwater Vehicles based on hierachical reinforcement learning. InProceedings of 1st ISR Workshop on Autonomous Underwater Vehicles.Kluwer, 1994.[46] P. U. Lima and G. N. Saridis. A performance measure for IntelligentMachines based on complexity and reliability. In Proceedings of SY.RO.CO94, September 1994.[47] Long-Ji Lin. Self-improving reactive agents: Case studies of reinforcementlearning frameworks. In Proceedings of International Conference Simulationof Adaptive Behavior. Cambridge,MA:The MIT Press, 1991.[48] G. L. Luo and G. N. Saridis. Optimal/PID formulation for control of roboticmanipulators. IEEE Journal of Robotics and Automation, 1(3), December1985.[49] J. McInroy and G. Saridis. Techniques for selecting pose algorithms. to bepublished in Automatica, 1994.[50] J. E. McInroy and G. N. Saridis. Reliability analysis in Intelligent Machines.IEEE Transactions on Systems, Man and Cybernetics, 20(4), 1990.[51] J. E. McInroy and G. N. Saridis. Entropy searches for robotic reliabilityassessment. In Proceedings of 1993 IEEE Int. Conf. Robotic Automat., May1993.[52] R. W. McLaren. A Stochastic Automaton model for the synthesis of LearningSystems. IEEE Transactions on Systems Science and Cybernetics,SSC-2:109{114, 1966.[53] A. Meystel. Autonomous Mobile Robots. World Scienti�c, 1991.[54] M. C. Moed and G. N. Saridis. A Boltzmann machine for the organization ofintelligent machines. IEEE Transactions on Systems, Man and Cybernetics,SMC-4(4):323{334, sep 1990.

135[55] J. Musto and G. N. Saridis. An entropy-based reliability assessment techniquefor intelligent machines. In Proceedings of 8th International Symposium onIntelligent Control, Aug 1993.[56] J. C. Musto. A entropy-based reliability analysis for Intelligent Machines.Technical Report CIRSSE-132, Center for Intelligent Robotic Systems forSpace Exploration (CIRSSE), Rensselaer Polytechnic Institute, Troy, NY12180-3590, 1992.[57] K. S. Narendra and K. Parthasarathy. Identi�cation and control for dynamicsystems using neural networks. IEEE Transactions on Neural Networks,1(1):4{27, 1990.[58] K. S. Narendra and M. A. L. Thathachar. Learning Automata - a survey.IEEE Transactions on Systems, Man and Cybernetics, SMC-4(4), 1974.[59] K. S. Narendra and M. A. L. Thathachar. Learning Automata - anIntroduction. Prentice Hall, 1989.[60] Z. J. Nikoli�c and K. S. Fu. An algorithm for learning without externalsupervision and its application to learning control systems. IEEETransactions on Automatic Control, AC-11(13), 1966.[61] A. Papoulis. Probability, Random Variables and Stochastic Processes.NY:McGraw-Hill, 1965.[62] R. P. Paul. Robot Manipulators: Mathematics, Programming and Control.MIT Press, 1981.[63] A. G. Pincus. Melting Furnace Operation in the Glass Industry. Books forIndustry and Glass Industry Magazine, 1980.[64] S. Ross. A First Course in Probability. Macmillan Publ. Co., 1988. 3rd.Edition.[65] Michael Ryan. Implementation of robotic force control with positionaccommodation. Master's thesis, Rensselaer Polytechnic Institute, Troy, NY12180-3590, 1992.[66] G. N. Saridis. Self-Organizing Control of Stochastic Systems. Marcel Dekker,Inc, 1977.[67] G. N. Saridis. Toward the realization of intelligent controls. IEEEProceedings, 67(8), 1979.[68] G. N. Saridis. Entropy formulation for optimal and adaptive control. IEEETransactions on Automatic Control, 33(8):713{721, 1988.

136[69] G. N. Saridis. Analytic formulation of the IPDI for Intelligent Machines.Automatica, 25(3):461{467, 1989.[70] G. N. Saridis. Architectures for Intelligent Machines. Technical ReportCIRSSE-58, Center for Intelligent Robotic Systems for Space Exploration(CIRSSE), Rensselaer Polytechnic Institute, Troy, NY 12180-3590, 1991.[71] G. N. Saridis and J. H. Graham. Linguistic decision schemata for intelligentrobots. Automatica, pages 121{126, 1984.[72] G. N. Saridis and Harry E. Stephanou. A hierarchical approach to the controlof a prosthetic arm. IEEE Transactions on Systems, Man and Cybernetics,SMC-7(6):407{420, 1977.[73] G. N. Saridis and K. P. Valavanis. Analytical design of Intelligent Machines.Automatica, 24:123{133, 1988.[74] R. S. Sutton. Learning to predict by the methods of Temporal Di�erences.Machine Learning, 3:9{44, 1988.[75] R. S. Sutton. First results with Dyna, an integrated architecture for learning,planning and reacting. In Neural Networks for Control. The MIT Press, 1990.[76] R. S. Sutton, A. G. Barto, and R. J. Williams. Reinforcement learning indirect adaptive optimal control. IEEE Control Systems Magazine,12(2):19{22, 1992.[77] Technical Committee on Intelligent Control. Report of task force onIntelligent Control, IEEE Control Systems Society. IEEE Control SystemsMagazine, 14(3), June 1994. P. Antsaklis, editor.[78] M. A. L. Thathachar and K. R. Ramakrishnan. A hierarchical system ofLearning Automata. IEEE Transactions on Systems, Man and Cybernetics,SMC-11(3), 1981.[79] M. A. L. Thathachar and P. S. Sastry. A new approach to the design ofreinforcement schemes for Learning Automata. IEEE Transactions onSystems, Man and Cybernetics, SMC-15(1):168{175, 1985.[80] J. Traub. Introduction to Information-Based Complexity. In Complexity inInformation Theory, pages 62{76. Springer-Verlag, 1986.[81] J. Traub, G. Wasilkowsky, and H. Wo�zniakowsky. Information-BasedComplexity. Academic Press, Inc., 1988.[82] J. Traub and H. Wo�zniakowsky. A General Theory of Optimal Algorithms.Academic Press, Inc., 1980.

137[83] M. L. Tsetlin. On the behavior of Finite Automata in random media.Avtomatika i Telemekhanika, 22(10), 1961.[84] J. N. Tsitsiklis. Complexity-theoretic aspects of problems in control theory.Keynote speech in 31st IEEE Conference on Decision and Control, Dec 1992.[85] Ya. Z. Tsypkin. Foundations of the Theory of Learning Systems. AcademicPress, 1973. Translation by Z. J. Nikoli�c.[86] Ya. Z. Tsypkin and A. S. Poznyak. Learning Automata. Journal ofCybernetics and Information Science, 1(1), 1977.[87] Unimation Robotics. Unimate PUMA Robot, April 1980. Text 398H1A, Vol.1.[88] K. P. Valavanis and G. N. Saridis. Intelligent Robotic Systems. KluwierPublishers, 1992.[89] V. I. Varshavskii and I. P. Vorontsova. On the behavior of Finite Automatawith stochastic structure. Avtomatika i Telemekhanika, 24(3), 1963.[90] J. A. Victor, J. P. Costeira, J. A. Tom�e, and J. J. Sentieiro. A computer visionsystem for the characterization and classi�cation of
ames in glass furnaces.IEEE Trans. on Industry Applications, 29(3):470{479, May-June 1993.[91] M. D. Waltz and K. S. Fu. A heuristic approach to reinforcement learningcontrol systems. IEEE Transactions on Automatic Control,AC-10(4):390{398, 1965.[92] F. Y. Wang. A Coordinatory Theory for Intelligent Machines. PhD thesis,Rensselaer Polytechnic Institute, Troy, NY 12180-3590, 1990.[93] Fei-Yue Wang and G. N. Saridis. A coordination theory for IntelligentMachines. Automatica, 26(5):833{844, 1990.[94] Lofti A. Zadeh. Outline of a new approach to the analysis of complex systemsand decision processes. IEEE Transactions on Systems, Man, andCybernetics, 3(1), jan 1973.[95] G. Zames. On the metric complexity of causal linear systems, �-entropy and�-dimension for continuous time. IEEE Transactions on Automatic Control,AC-24(4):220{230, 1979.

APPENDIX ASimulation of Case Study 2 - Intelligent Robotic SystemThis appendix describes the implementation details of case study 2 (IntelligentRobotic System) simulation. The description covers the setup of the workspace,algorithm implementation and cost determination for the main events, world modelstructure and software issues regarding the communication between the IntelligentMachine and the environment, separately simulated. The simulation was designedto balance accuracy and realism with reasonable computational load and develop-ment time. The details given here will help guiding a future implementation of thecase study.A.1 Setup of the WorkspaceA general picture of the simulated workspace is depicted in Figure 7.2. Alsoshown are the camera coordinate frame, world coordinate frame and table coordinateframe. The origin of the strut coordinate frame, not shown, is located in the middletop of the strut. Xs lies along the length of the strut and Zs points downwards. ThePUMA coordinate frames are those used in [4]. The world coordinate frame coincideswith coordinate frame 1 when the PUMA is in the zero position (see Figure 7.2).The origin of the camera coordinate frame is located halfway between the origins ofthe two image plane coordinate frames, at a distance � along Z (see Figure A.2).The strut is on a table located inside the workspace of the PUMA 560 (seeFigures A.1 and A.2. Actual dimensions were taken from [87]). Strut and PUMAgripper dimensions are shown in Figure A.3.The two cameras are positioned above the workspace, and their image coordi-nate frames are perfectly aligned, di�ering only in the origin of their coordinates bya distance called baseline (B). The image planes are also parallel to the table top.138

139
+

0

right camera

S = 0.5m

320

left camera

0.864 mFigure A.1: Above view of the workspace showing PUMA 560 operat-ing envelope.
x

= 16mmλ

Xc
Zc

H = 2m
0.864 m

S = 0.5mFigure A.2: Lateral view of the workspace showing PUMA 560 oper-ating envelope.

140
Sensor

Force-Torque

w=15mm

l=30mm

h = 15mm

d = 0.2236 m
r=13mmFigure A.3: Gripper and strut dimensions.The camera produces images of 512 by 512 pixels. The pixel width pw and focallength � are given: pw = 10�m (A.1)� = 16mm (A.2)The vertical distance H between the top of the table and the image plane wasdimensioned based on the the camera parameters and such that the whole top ofthe square table can seen by the cameras (see �gures for meaning of symbols):H � �S512pw = 1:5625mHence, H was made equal to 2 meters.The baseline distance is determined from the desired precision for depth esti-mates �Z in the camera coordinate frame by the equationj�Zj = H2�B j��jwhere � is the disparity along X, or the di�erence between the pixel coordinates inthe two cameras corresponding to the same 3D point in the camera frame, and ��its (�nite) precision. Assuming �� = 1pixel = 10�m and �Z = 5mm, B = 0:5m.

141Some important homogeneous transformation matrices representing relativeposes of coordinate frames follow. The subscripts and superscripts used are s forstrut, t for table, w for world and c for camera. Twc denotes the pose of the cameracoordinate frame with respect to the world frame.Twt = 0BBBBBBBBB@ 1 0 0 0:30 1 0 �0:30 0 1 �0:460 0 0 1 1CCCCCCCCCA (A.3)T ts = 0BBBBBBBBB@ 0:45 0:89 0 0:150:89 �0:45 0 0:30 0 �1 0:030 0 0 1 1CCCCCCCCCA (A.4)Tws = 0BBBBBBBBB@ 0:45 0:89 0 0:450:89 �0:45 0 00 0 �1 �0:430 0 0 1 1CCCCCCCCCA (A.5)Twc = 0BBBBBBBBB@ 1 0 0 0:550 �1 0 �0:050 0 �1 1:540 0 0 1 1CCCCCCCCCA (A.6)(A.7)A.2 Software Issues and Structure of World ModelThe HLSA model of the IM was written in C, including all necessary datastructures and user interface. Each of the events was written as a separate Matlabm-�le. The world model is initialized by another m-�le, and includes object di-mensions, modi�ed Denavit-Hartenberg description of the PUMA manipulator[13],

142initial zero position of manipulator, transformation between coordinate frames, ini-tial rough estimate of strut pose (obtained by adding noise to the joint positionscorresponding to the actual pose), nominal image coordinates of the strut extremesin the two cameras, orientation and position clearance of the manipulator tool. Thecommunication between C and Matlab used the Computational Engine Servicesprovided by version 4.1 of Matlab.Each m-�le representing an event has approximately the same structure:function header - function [pr]=eventname(algnumber), where pr represents thereturned success or failure signal, and algnumber is the number designatingthe algorithm selected to translate the event.global variables - declared as global varname[s]. All global variables are sharedamong m-�les and are declared as global inside the module which initializesthe world model. They include the current state of the environment, desiredpose of manipulator tip and current pose of manipulator tip. The set of globalvariables represent the world model. All events can update and access theworld model using them.function body - generally divided in if : : : then modules corresponding to the dif-ferent combinations of current state of the environment and selected algorithm.In some cases, the behavior of the algorithm does not depend on the currentstate of the environment, hence no conditional tests to check the state of theenvironment are necessary. Each submodule must include the assignment ofa success or failure value to the variable pr.A.3 Events Simulatione3: locate objectObjective: Assign to the global variable Ttip�nal the estimated pose of the

143strut coordinate frame. If event e3 is not invoked (production 1 is selected), thedefault value assigned to Ttip�nal is the rough estimate of the strut pose.Speci�cations: If jẐc1� Ẑc2j < 5mm, report success; otherwise, report failure.Ẑci ; i = 1; 2 is the estimated Z coordinate of the strut in the camera coordinateframe (see below). Recall that the distance from the strut to the camera frame isnot known, but it is assumed that the strut lies in plane parallel to the image planesof the two cameras.Algorithms: Two di�erent algorithms may be selected: the open loop (a31)and closed loop (a32) algorithms in chapter 4. Both estimate the coordinates of thestrut extreme points (P l;ri = (X l;ri Y l;ri Z l;ri)T i = 1; 2) in the left camera l and rightcamera r. The pin-hole parallel stereo model[36] is used to obtain the transformationbetween image plane coordinates in the two cameras and 3D coordinates in thecamera coordinate frame:Xci = BX l;ri�i (A.8)Y ci = B(Y li + Y ri)2�i (A.9)Zci = B��i ; i = 1; 2; �i = Y li � Y ri (A.10)The open loop and closed loop algorithms are not actually implemented, buttheir performance in the presence of spot noise and �nite pixel resolution is simu-lated, according to the results in section 4.4.3.5 and [51].The general algorithm for this event, distinguished by selected algorithm andstate of the environment at step 2, is:1. Add noise with uniform distribution in the interval [�pw=2; pw=2] to the nom-inal image coordinates of the strut extremes in the two cameras, for open loopalgorithm only. This simulates errors due to pixel resolution, unexistent in theclosed loop algorithm.

1442. To simulate estimate errors due to spot noise, add or subtract (with probability0.5) 1 pixel to the image coordinates obtained in step 1. On the average, dothis:� for a31, 20% of the runs when lights are on and 40% of the runs whenlights are o�;� for a32, 5% of the runs when lights are on and 30% of the runs when lightsare o�;3. Determine the position estimate of the strut extremes P̂ ci = (X̂ci Ŷ ci Ẑci)T ; i =1; 2 from Equations (A.8-A.10), and P̂ ti = T tc P̂ ci .4. Check speci�cations. Make Ẑ t1 = Ẑ t2 = (Ẑ t1 + Ẑ t2)=2.5. Determine d̂ = q(X̂ t1 � X̂ t2)2 + (Ŷ t1 � Ŷ t2)2�̂ = arctan(Ŷ t2 � Ŷ t1X̂ t2 � X̂ t1)6. T̂ ts = TRANS(P̂ t1) ROT(Xt; �) ROT(Zs;��̂) TRANS((d̂=2 0 0))where TRANS and ROT are the homogeneous translation and rotation ma-trices described in [19].7. Ttip�nal T̂ws = Twt T̂ tsCost: If the cost is made proportional to the number of frames averaged toobtain the image processed by the algorithms, and if both algorithms use the samenumber of averaged frames, both will have the same cost (see Table 7.2).

145e1: move manipulatorObjective: Move the manipulator from its zero position to a point in space10cm above the strut location estimated by e3. Hence, the �nal desired pose of themanipulator gripper is given byTRANS((0 0 0:1)) Ttip�nal. Speci�cations: Given the desired �nal position (xd(tf) yd(tf) zd(tf)) and theactual �nal position of the manipulator (x(tf) y(tf) z(tf)), if(x(tf)� xd(tf))2 + (y(tf)� yd(tf))2 + (z(tf)� zd(tf))2 < 10�mreport success; otherwise report failure.Algorithms: There are two algorithms to translate this event. Both arecontrollers based on the Computed Torque Method (see section 4.4.1). The choiceof gains kp and kv distinguishes them:Algorithm kp kv wn �a11 100 10 10 0.5a12 100 8 10 0.4Algorithm a12 is more underdamped and after some overshoot reaches the �nalvalue faster. Since only the �nal position is checked and not the deviations from thenominal trajectory, a12 is expected to be more reliable than a11.The PUMA dynamics was simulated based on the equations and estimatedModi�ed Denavit-Hartenberg parameters for the PUMA 560 in [4]. The inverse kine-matics came from notes written by Ken Kreutz-Delgado while at JPL in Pasadena,California. The software used was written by S. Murphy and D. Swift at CIRSSE-RPI. Uncertainty is due to three factors:

146� The controller uses a time-invariant and diagonalized Mass matrix;� Except for gravity, non-linear terms are not subtracted in the control law;� Noise with variance 10�5 was added to the actual joint positions.Reliability is also in
uenced by the velocity of the manipulator tip. In thesimulation, this velocity was made equal to 0:6ms�1, which is less than the nominalmaximum velocity (1ms�1) [87].Cost: Using Equation (4.35), the normalized cost �C of the two algorithmswas de�ned as (i = 1; 2):�C(a1i) = C(a1i)C(a11) + C(a12)= KpiKvi�2p +Kvi�2v((Kp1Kv1 +Kp2Kv2)�2p + (Kv1 +Kv2)�2v)Replacing �2p = 10�5 and �2v = 0 and the gains from the above table, the costsin Table 7.2 are obtained.e2: grasp object with compliance and e5: grasp object hardObjective: Movemanipulator from current pose to Ttip�nal and grasp object.e2 uses force control and e5 uses position control.Speci�cations: e5 must pass two clearance tests: the position clearance testand the orientation clearance test, in this order. e2 must pass a further test: ifjfzd � �fz(N2)j < 0:1N report success; otherwise report failure. fzd is the desiredforce and �fz(N2) is the sample mean of actual force sensed from step N2� 10 to N2of the simulation (see below). A failure is reported if any of the above tests fails.Algorithms: In the simulation of e2, the Position Accommodation Controllerdescribed in section 4.4.2 is used. The manipulator tip is required to behave asa Mass, Spring and Damper (MSD) system. The integrators in Figure 4.1 were

147
+

-

- -

+

+

-1 -1

+
+

+
+

K

B q

1

J

fd
Ts Ts

∆z

q

Ke

fnFigure A.4: Discrete Mass, Spring and Damper block diagram.replaced by a �rst-order rectangular integration to obtain the implemented discreteversion in Figure A.4.In the �gure, Ts is the sampling time of the trajectory generator. The timeoutreferenced in section 4.4.2 is the parameter N2 above. In the simulation, N2 = 100and Ts = 25ms, which allows a maximum traverse time of 2:5s for a path length of10cm. This can be considered �ne motion (velocity is much less than the maximumvelocity of the manipulator tip), and errors of the manipulator position controllerwere disregarded, so the PUMA dynamics did not have to be simulated in this case.The �gure also shows noise added to the force sensor. This noise was simulated asa zero mean gaussian random number generator with variance 0.01.Algorithm B K Nc Nsa21 50 10 25 24a22 30 10 19 40a23 30 50 21 40a24 50 50 30 24Table A.1: Parameterization and performance of e2 primitive algo-rithms.

148
2 2

POSITION CLEARANCE

Y6

Z6

2r

l

Ys

Xs

Ymax = l/2 - r∆

α

2

ORIENTATION CLEARANCE

α

w

l

b

2r

∆θzmax

= asin (w/b)α

= l + w b

zmax∆θ

∆Ymax

= acos (2r/b) - Figure A.5: Position and Orientation Clearances.4 algorithms were considered to translate e2, consisting of all combinations oftwo di�erent values for the parameters K and B. The discrete MSD system wasinitially simulated with no force noise, to determine the number of steps Nc takenfrom the initial position to the point where the tip contacts with the strut, and thenumber of steps Ns taken from contact to the point where the sensed force comeswithin 5% of the desired force. All values are tabulated in Table A.1.The position and orientation clearances are illustrated in Figure A.5. Giventhe strut and gripper dimensions in Figure A.3, the clearance values are:position: �Ymax = 2mmorientation: ��zmax = 12:6oThe clearance tests are made in two steps:1. Given Twc and Tws , the homogeneous transformation matrices representing re-spectively the current pose of the manipulator tip and the strut pose, �T =

149(Twc)�1Tws is determined. If the orientation errors are small, �T is given by:�T = 0BBBBBBBBB@ �R �P0 0 0 1 1CCCCCCCCCAwhere �P = (�x �y �z)T represents the position error vector and�R = 0BBBBB@ 1 ���z ��y��z 1 ���x���y ��x 1 1CCCCCArepresents the rotation error[62], where ��x; ��y; ��z are the di�erential rota-tion errors about X; Y and Z, respectively.2. To simulate compliance, extra position and orientation clearances are allowedto all four algorithms. The percentages of clearance increase depend on theparameter K and are tabulated below:Algorithm K �pc �oca21, a22 10 20 % 50 %a23, a24 50 10 % 30 %Depending on the algorithm selected, �Ymax and ��zmax are increased bythe corresponding percentage, and compared with �y and ��z to check actualclearance.Event e5 is translated by only one algorithm. Only position is controlled.The number of steps until contact Nc was designed such that the movement isslower than when e2 algorithms are applied: Nc(a51) = 40. The extra position and

150clearance percentage are smaller than for e2 algorithms, to re
ect the existence ofpassive compliance only: �pc = 0%, �oc = 20%.Cost: The number of steps until contact Nc of the four e2 algorithms and thee5 algorithm are put together to obtain normalized costs for the 5 algorithms:�C(a2;5i) = Nc(a2;5i)P4j=1Nc(a2j) +Nc(a51)Replacing Nc by the above values, the costs in Table 7.2 are obtained.

APPENDIX BProof of Theorem 5.4.1To help proving the Theorem, the following proposition will be proven �rst:Proposition B.1 If C 2 <; C � 0 is a constant, �(ni+1) = 1ni+1+C in (3.6), J isgiven by (4.7) and its estimate by (5.19) or (5.23), Fu's generalized LSA is optimal.Proof: For the proposition to be true, the necessary and su�cient condition(3.10) of Theorem 3.1.1 must be satis�ed. First, assume that the LSA has m actions,and that (with no loss of generality) the optimal action is um. xi is the state of theenvironment. Furthermore, the costs will be assumed zero, also with no loss ofgenerality. In fact, a cost di�erent from zero may be interpreted as a bias of theactual reliability. From (5.22) or (5.26)E[�ij(ni)jy(1); : : : ; y(nij)] = PrfĴij(nij) = minq fĴiq(niq)gg= PrfR̂ij(nij) = maxq fR̂iq(niq)gg (B.1)From Lemma 6.1.1 it can be derived that, for sub-optimal actions ujPrfR̂ij(nij) > R̂im(nim); j = 1; : : : ;m� 1g < 1 � mYj=1(1� 4Rij(1�Rij)nij�2)Noticing that ni = Pmj=1 nij , one can assume (with no loss of generality) thatnij = ni=m. Denoting terms in negative integer powers of n byO � 1nk �, the followingequality is obtained:mYj=1(1� 4Rij(1�Rij)nij�2) = 1� 4mni�2 mXj=1Rij(1�Rij) + mXk=2O 1nki !Hence,PrfR̂ij(nij) > R̂im(nim); 8j = 1; : : : ; m� 1g < 4mni�2 mXj=1Rij(1�Rij) + mXk=2O 1nki !� m2ni�2 + mXk=2O 1nki ! (B.2)151

152where the last inequality results from the fact that 0 � Rij � 1.To obtain a reasonable approximation of PrfR̂ij(nij) = maxqfR̂iq(niq)gg inEquation (B.1) above, one may admit that the probability of the reliability estimatefor a sub-optimal action being greater than the reliability estimate for the optimalaction is approximately the same as the probability of the reliability estimate for asub-optimal action having the maximum value among all reliability estimates:PrfR̂ij(nij) > R̂im(nim); j = 1; : : : ;m� 1g ' PrfR̂ij(nij) = maxq fR̂iq(niqggGiven this approximation, Equation (B.1), inequality (B.2), and the expression�(ni + 1) above, 1Xni=1�(ni + 1)E[�ij(ni)jy(1); : : : ; y(nij)] <1Xni=1(m2ni(ni + 1 + C)�2 + mXk=2O 1nki (ni + 1 + C)!)The summation on the right of the inequality above converges, hence thecondition of Theorem 3.1.1 is satis�ed and the Proposition proved. 2By Proposition B.1, every LSA of the Coordination-to-Execution Trans-lation Level is optimal, that is when the number of times a task (and consequentlythe composing primitive events and algorithms) is applied tends to in�nity, theprobability of selecting the optimal primitive algorithms for each of the primitiveevents converges to 1 w.p.1. This is valid also for the acceleration scheme describedin section 6.2.2, when C = W .To prove the optimality of theOrganization-to-Coordination TranslationLevel level LSA, it su�ces to show that Proposition B.1 applies to the LSA repre-senting one of the subset of productions Rk of grammar G for the given command.First take production r 2 Rk, and recall the de�nitions of production andprimitive event reliability R̂ir(ni) = Yek2Er R̂(ek; nijxi)

153R̂(ek; nijxi) = nkXj=1 pijR̂kij(nij) 8ek 2 ESince, by Proposition B.1Prf limni!1 pim(ni) = 1g = 1and by the Strong Law of Large NumbersPrf limnij!1 R̂kij(nij) = Rkijg = 1 8j = 1; : : : ;mthere exists some Ni for whichR̂(ekjxi) ' R̂kim(nim); 8ni > Ni 8ek 2 Eassuming, for simplicity, that all primitive events are translated by an equal numberof primitive algorithms m.Hence, R̂ir(ni) ' Yek2Er R̂kim(nim); 8ni > NiFrom the independence of the random variables R̂kim(nim) and recalling thatE[R̂kim(nim)] = Rkim:var R̂ir(ni) = E[R̂2ir(ni)]� (E[R̂ir(ni)])2= E[Yek2Er(R̂kim(nim))2]� (E[Yek2Er R̂kim])2= Yek2Er E[(R̂kim(nim))2]� Yek2Er(Rkim)2and noticing that E[(R̂kim(nim))2] = (Rkim)2 + Rkim(1�Rkim)nimone �nally obtains, making nim = ni=mvar R̂ir(ni) = jErjXl=1 O 1nli!

154and an argument similar to that used to prove the convergence of each of the bottomlevel LSAs applies, using Proposition B.1 and productions as actions of the LSA.Recall that the main argument for the proof was the fact thatvar R̂ij = Rij(1�Rij)nij = O 1nij! ; 8j = 1; : : : ;mHence, if the reinforcement scheme picks the optimal production for everysubset of the set of productions of G, it does actually pick the optimal task for thecommand, given the current state of the environment, and the Theorem is proved.2

