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Abstract. This paper presents a localisation strategy for a mobile robot using a Laser Range Scanner. A three module
recursive algorithm was developed. One module uses feature matching to compute the robot localisation without any prior
posture estimate. The other module, based on local data matching,  provides enhanced posture estimation given an initial
posture and the third module is a likelihood test to verify the correction and accuracy of the algorithms’ solutions.

1. Introduction

In many operation environments, one of the first tasks a mobile robot must accomplish is to
localise itself relative to some external reference. The sensors used for localisation have evolved
along with the advance of mobile robotics. From odometry and ultrasounds to video images or GPS,
new sensors, more accurate and sophisticated, have emerged. Among them, the Laser Range devices
are increasingly popular given their high accuracy, resolution and speed of acquisition.

Although the acquisition devices differ in their construction and operation, the data output from
Laser Range Scanners is similar for nearly all range scanner sensors: a set of discrete points, usual-
ly in one common 2D plane, measured radially from the sensor. The difference between the various
localisation methods is the type of external reference (the map) and the data processing algorithm.

This paper presents a novel strategy to perform localisation using a Laser Range Scanner without
any prior estimate of the mobile robot posture, defined by position in the ground plane (x,y) and
orientation, θθθθ. It is based on a three module algorithm, each module processing the data differently.
This approach overcomes most problems of individual algorithms, increases robustness while
keeping the development and analysis fairly simple, due to its modular nature.

The paper is organised as follows: Section 2 describes the RESOLV project, for which this
algorithm was developed. Section 3 summarises some localisation algorithms using laser range
scanners developed in recent years. Section 4 presents the first module of the proposed solution, the
Frame Localisation algorithm, to be used in case no a priori posture estimate is available. Section 5
presents the second module, the Likelihood Test, which is an error estimate rule. Section 6 presents
the Approximate Localisation algorithm, to be used if an initial posture estimate is available.
Sections 4 to 6 are illustrated with experimental data of a real essay main stages. Section 7
describes the interactions between the three modules. Finally, in Section 8, some conclusions are
taken, along with comments on known issues and directions for further research.

2. The RESOLV project

The RESOLV-REconstruction using Scanned Laser and Video project’s goal is to create a 3D
reconstruction of a real environment using laser range images and video images to be shown and
operated through the Internet, [Leevers et al, 98], [RESOLV, Web]. The 3D models, similar to
Figure 1c are represented in VRML language and are available via a Internet browser.
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The main sensor for RESOLV is represented in Figure 1b: it consists of a video camera and a laser
camera with a rotating mirror on the front, both mounted on top of a Pan & Tilt motorised unit. This
compound sensor is connected to a computer which generates the reconstructed 3D models. This
computer also hosts the Internet server, providing access to the 3D models and system operation via
the Internet. In order to reconstruct a complex scene the system must be positioned at different
spots to resolve occlusions and increase the quality of the representation by approaching the scene
features. At first, the equipment was mounted on a manually pushed trolley, but it was soon real-
ised that a mobile robot was the perfect candidate for the task, since automatic motion was required.

The mobile robot is used to transport the RESOLV equipment from between successive
acquisition points and the compound system, shown in Figure 1a, was termed AEST - Autonomous
Environment Sensor for Telepresence. The AEST includes odometers for in-motion localisation and
ultrasound sensors for obstacle detection and avoidance.

The sensors for Localisation were constrained to the ones already embedded on the system.
Moreover, the reconstructed 3D models are based on 3D spatial information computed from Laser
Range data, leading to the natural solution of using the Laser Range Scanner for localisation
purposes. Localisation data is used for navigation, correcting the odometry cumulative errors and
for 3D reconstruction, when a newly acquired scene referred to the new posture is merged with the
already reconstructed world model.

(a) (b) (c)

Figure 1 - (a) RESOLV system, (b) sensing device, (c) sample 3D reconstructed environment [Butterfield et al, 97]

The Localisation algorithm for RESOLV was required to produce a (x,y,θθθθ) posture estimate on
planar indoor environments, with and without an initial estimate of the AEST posture. The map is
only partially known - the goal of a RESOLV mission is to build up the environment model - and it is
updated at each iteration. The map elements are the 3D surfaces extracted from the laser range
data. The Localisation solution should act as a subsidiary element of the 3D reconstruction process
described in [Leevers et al, 98] and [Sequeira, Ng, Butterfield et al, 98], thus it should use its maps
and acquisition tools. Moreover, it must be fully functional in the manually operated trolley where
odometry is unavailable. The localisation is performed while the AEST is still, and it should produce
an estimate with less than 5 cm position error and 0.02 rad (≈1º) heading error, because of
reconstruction requirements. These requirements are met by the proposed algorithm.

3. Related research

Several Laser Range systems have been developed for indoor localisation, under different world
models and applications. Some solutions are briefly described below and compared with the
RESOLV solution.

Some methods use the laser range data associated with other sensors, usually odometry, to
compute incremental updates on the robot posture. Such is the case presented in [Dubrawski and
Semiatkowska, 98], where significant features, such as straight lines, are extracted in different
moments and the displacement between them is used to compute the robot’s movement. This
solution, although very robust, is insufficient for RESOLV since it requires an initial estimate and
also the presence of odometry which is not available in RESOLV manual trolley.

A class of solutions assume the map is known beforehand; for instance, in [Crowley et al, 98] a
subset of points in the map are associated to a numerical pattern (“Principal Components of Range



Data”) extracted from the range profile at each of those points. A space is created upon these data
and the posture estimate from a particular range scan is mapped into the space. A Kalman-Bucy
filter is used to extract the most likely solution. This solution is inadequate for RESOLV because it
requires a closed and fully described environment and also a set-up phase.
 In [Vestli, 95] a method closer to RESOLV’s is proposed. The laser data is transformed into a set
of straight lines or circle arcs, which are combined to resemble natural landmarks, such as corners.
If the robot displacement is approximately known, a feature extracted from the range data should
lie in the vicinity of the correspondent feature on the map. Once the two features are matched the
robot posture is known. In RESOLV’s solution the range data is also transformed in a set of lines,
albeit in a different manner, but since the map is previously unknown, the system must find its own
“landmarks” and decide how to associate extracted landmarks to landmarks on the map.

A method inspired in the previous one is described in [Arras, Vestli, 98]. Straight lines, extracted
from the rage data, are combined to form natural landmarks. Laser intensity is also measured to
enhance the statistical representation of data and to complement or replace natural landmarks by
artificial landmarks such as reflective adhesive bands. In RESOLV’s solution the laser intensity is
also used to enhance range data analysis but artificial landmarks are unavailable.

Briefly, RESOLV’s solution differences are: it requires no initial posture estimate, thus odometry
is a supplement, whereas it is necessary for other methods; it includes two complementary
algorithms, enhancing its overall performance and minimising each algorithm’s pitfalls, and, last
but not the least, requires only a small fraction of the environment to be properly mapped.

In [Weckesser, Dillmann, 97] a solution for 3D mapping is presented. This work is fairly related to
RESOLV’s goals, although the paradigm is different: it uses a 3 camera video system as an
acquisition tool. Surface boundaries are its distinctive features and range data is translated into a
similar description. To perform localisation the lines extracted from the range scan are compared to
the lines in the world model and a Mahalanobis distance criterion is used to find a match. This
solution complies to the constraints of RESOLV system, except for the acquisition sensors. However,
it should be interesting to try adapting it to RESOLV.

4. Frame Localisation Algorithm [FrameLoc]

The localisation data acquisition is based on a horizontal laser scan, which generates a 2D
sequence of points centred around the AEST (Figure 2a). In turn, the reconstructed 3D model may
be reduced to a sequence of 2D curves expressed in the world (inertial) reference, if the 3D surface
representation is intersected by an horizontal plane (Figure 2b). Clearly, if the plane intersection is
made at the laser scan height, one can assume the range data (Figure 2a) is similar to the 2D curves
set extracted from the 3D model, albeit in a different form and with a different coordinate system.

Figure 2 - (a) Sample laser scan with the AEST reference  (b) 2D Map from reconstructed 3D model



If the two data sets are expressed in a common form it is possible to compare them and find
matching elements. Then, to solve the localisation problem, it is necessary to compute the transform
relating  the range scan coordinates to the 2D map coordinates.

To achieve a common representation, the Frame Localisation Algorithm (FrameLoc) introduces
geometrical entities, termed frames, whilst the Approximate Localisation Algorithm (ApproxLoc)
transforms the map data into a “simulated laser scan”. This later algorithm is described in Section 6.

The FrameLoc first step is to extract parametric curves from the laser scan. The most often used
are line segments, although it is also possible to use other parametric curves, biquadratics for
instance. However, the current implementation is restricted to lines since most of the elements in
the 3D models are planar surfaces. FrameLoc uses the planar surfaces available in the range scan
and reconstructed scene while ignoring all non-planar surfaces.

The line extraction procedure is an auxiliary pre-processing phase and is beyond the scope of this
paper. Nevertheless, it is worth saying that the line extraction is based on recursive iterative least
squares and relies also on the reflectance analysis of the laser data. The line extraction for the 2D
map is very simple because the original 3D model surfaces are already expressed by its parameters.

Once the 2D curves are extracted in the range data and in the map data, they are sorted by
decreasing size and stored in two lists: the scan list and the map list. The elements in each list are
then combined to form new geometric entities termed frames. A frame is defined by two non-parallel
curves (usually lines) called axis1 and the point where the two axis, or their extensions meet, called
origin(Figure 3a). A frame has two types of parameters: five local parameters (Figure 3a), which
are independent of the coordinates their axis are expressed in, and three global parameters relating
the frame origin to the axis’ coordinate system (Figure 3b).

(a)

start1, start2: from
the origin to the begin-
ning of axis 1 and 2,

end1, end2: from
the origin to the end
of axis 1 and 2,

θθθθ: frame inner angle
(b)

x, y, hd: frame ori-
gin x,y,heading-
coordinates
expressed in its
reference: the world
for the map frames
and the AEST for
the scan frames

Figure 3 - (a) Frame Local Parameters, (b) Frame Global Parameters

The five local parameters are: the distance from beginning of axis and end of axis to the origin,
starti and endi for both axis (i=1,2) and the axis’ inner angle θθθθ. Extending FrameLoc to curves
would require the curve coefficients to be added to the frame local parameters. The three global
parameters enclose the information relating the frame to its coordinate system: given the position
and heading of the frame origin (x, y, hd) and the set of local parameters it is possible to restore the
axis in their original posture.

The first elements in the scan list are combined to produce the scan frame list and a similar
procedure on the first elements of the map list generates the map frame list.

To test whether a scan frame corresponds to a specific map frame (Figure 4), only their local
parameters are compared. Two frames constitute a possible match pair, if (1) is verified2,

Figure 4 - Frame match
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1 In case biquadratics are used, the axis direction is defined by the chord joining the two endpoints.
2 Since the axis indexing is arbitrary, a symmetric test is required in case axis 1 on a frame matches axis 2 on the other.



where δ is a heuristic limit to the angle difference. Using the canonical coordinate transform
equation (2) applied to the frames global parameters, a candidate solution for the AEST posture
( , , )x yR R Rθ 3 is found.
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Figure 5 - Some possible postures

The frame matching procedure is applied iteratively to the elements on the frame lists, beginning
with the longer frames, which are more significant, until a coherent pattern is apparent. In the
process, isolated  false hits are found due to environment symmetry (Figure 5) while the true hits
concentrate in one common neighbourhood (around A and B in Figure 5). To compute the most likely
solutions a weight clustering procedure is used, fusing all solutions in a single neighbourhood into
one posture and discarding isolated postures, which are clearly false hits. The weight criterion is
based on the product of scan axis sizes, because frames with long balanced axis are more likely to be
properly defined than frames based in lines defined by a reduced number of points.

With the exception of very odd or symmetric environments or insufficient data, the algorithm
converges swiftly to a reduced set of candidate clusters. The sorted lists implementation is crucial to
restrain the algorithm’s exponential nature. This is why the lines are sorted by decreasing size,
frames generation begins with the top elements of the line lists and frames lists are also sorted by
decreasing size. For instance, the current example was based on 107 scan lines and 38 map lines
and 16 frames were sufficient to compute the solution. Moreover, the algorithm is iterative in the
sense that, if a given number of frames is insufficient to compute a likely solution, new frames may
be added to the frame lists and matched against existing or new ones and the new posture
candidates added to the existing ones without losing any of the existing data.

The FrameLoc final result is a short list of postures, sorted by decreasing weight. Most often, the
first element is the correct posture and takes more than 50% of the total weight. The clustering
procedure is very stringent, therefore clusters A and B in Figure 5, although only 8 cm apart, are
not merged. This option favours homogeneous clusters with small variance, at the expense of a
longer list of postures and diluted weights. Even though FrameLoc correct solution is less clear, the
Likelihood Test, described next, will access very accurately the quality of each possible posture.

5. Likelihood Test

The solutions computed by FrameLoc and ApproxLoc (described in Section 6) are based on subsets
of the range scan and 2D map data. To access the quality of each candidate posture a thorough
match is required, between the whole laser scan (Figure 2a) and the 2D map (Figure 2b) extracted
from the reconstructed 3D model.

The first step is to express both profiles in a common form. For each candidate posture ( , , )x yR R Rθ ,
a simulated laser scan profile is evaluated using the 2D map assuming the AEST is located at
( , , )x yR R Rθ . This simulated scan technique will be used also for ApproxLoc.

                                                     
3 xR, yR and θR represent the AEST posture vector expressed in the world reference.



The simulated laser scan must replicate the main characteristics of the real laser scan, i.e., it is
centred on the AEST and taken at the sensor head distance from the ground, it has the same
angular width and number of points. However, the simulated laser scan doesn’t consider the
detailed sensor characteristics, namely sizeable footprint, reflectance, angle of incidence and surface
transitions, since these approximations have a minor influence in the range error pattern. The
range error of the laser sensors used in RESOLV project follow a normal distribution with zero
mean and 1 to 3 cm variance [Sequeira, 96]4. Thus, an histogram on the distance error (the modulus
of the range error) is restricted to non-negative values and should resemble the normal curve with
twice the amplitude. This histogram may be regarded as the laser scanner “signature”.

Once the real laser data and the 2D map data are expressed as “scans” it is possible to compute
their point-to-point difference and store the results in a histogram. This measure establishes a
likelihood criterion relating the two scans. If the posture estimate ( , , )x yR R Rθ  were exact, the
difference between the real scan and the simulated scan was due only to the laser errors and to the
inaccuracies in the simulated scan model. Drawing an histogram with the point-to-point distances
should reveal an error pattern similar to the laser scanner signature.

The point to point distance measurement must account for invalid points that may exist in both
“scans”. The points in the simulated scan are invalid when it encompasses void areas in the
reconstructed map. The real scan profile has some invalid points too, which are mainly due to
specular reflections, device errors, time-outs and poor reflectance. All invalid points are removed
and replaced by a flag. Only the pairs with both valid points are considered for the histogram.

After these preliminary steps, the distance histogram is computed: for each pair of valid points
the Cartesian distance is computed and stored in 1 cm slots, up to a limit. Above that, all points are
grouped in one common slot. If the likelihood measure falls below a given threshold the test fails
(e.g., less than 50% pairs below 10 cm for Frame Localisation and less than 90% pairs below 5 cm for
Approximate Localisation).

An example is shown to illustrate the characteristics of the Likelihood pattern. This experiment
was made in an 12x6 meter laboratory room, with a 280º range scan sampled at 1800 points. The
two solutions presented in Figure 5 correspond to the clusters A=(2.296m, 2.381m, 0.022rad (1.24º))
and B=(2.217m, 2.366m, 0.019rad (1.1º)) computed by FrameLoc5.

The graphics in Figure 6 show the distance distribution classified in 1 cm slots from 0 to 19 cm
and a final class above 19 cm. In Figure 6a the two lines represent the Likelihood of the solution
computed by FrameLoc. Solution A is better, although B is already acceptable: 76.5% pairs are
closer than 10 cm. The Approximate Localisation introduced in Section 6 (Figure 6b), updates A and
B to A’=(2.285m, 2.371m, 1.25º) and B’=(2.285m, 2.371m, 1.35º) respectively. Comparing the two
images it is clear how a slight posture update “pushes” most of the instances in the histogram to the
left, increasing the Likelihood measure.

FrameLoc results

distance:    < 5 cm     < 10 cm
A:               84.5%       92.5%
B:               47.5%       76.5%

ApproxLoc results

distance:    < 5 cm     < 10 cm
A’:               86.5%      96.9%
B’:               87.3%      96.5%

(a) (b)

 Figure 6 - (a) Likelihood after Frame Localisation Algorithm, (b) Likelihood after Approximate Localisation Algorithm

                                                     
4 The AEST may be equipped with different Laser Scanners, hence the interval. This test used a 2 cm variance scanner.
5 This case highlights the sensivity of the Likelihood Test, which is able to discriminate two postures only (8
cm,0.002rad(0.14º)) apart  and reacts to a small correction such as A to A’ ( 1.5 cm, 1.7x10-4rad (0.01º)).



Up to around 4 cm, i.e. twice the range error variance, a good histogram, such as A, is close to the
laser signature. A poorer solution, such as B, presents a reduced Likelihood measure, which can be
enhanced by ApproxLoc up to the signature curve (from B to B’). From 4 cm to 19 cm, the histogram
on Figure 6a accounts for the instances that may be fitted closer by the ApproxLoc. The last section
includes the pairs farther from the sensor, and therefore very sensitive to angular errors. It also
includes the residual pairs that do not match at all, because of sensor or map errors. The graph on
Figure 6b shows the results after ApproxLoc. It is apparent that A’ and B’ are very close to the Laser
Scanner signature, except for the residual pairs above 19 cm and a minor peak at 8 cm, due to map
inaccuracies.

6. Approximate Localisation Algorithm [ApproxLoc]

The Approximate Localisation Algorithm (ApproxLoc) requires an initial posture estimate,
( , , )x yI I Iθ . This posture is used to compute a simulated laser scan, according to the method defined
for the Likelihood test. The initial values are provided either by FrameLoc or by the AEST
navigation system as described in [Castro et al, 98].

The operation principle of ApproxLoc is again based on a correspondence between pairs of points
in the range scan and the simulated scan. Each point is defined by (x,y) coordinates; the range scan
is  centred on the AEST, whilst the simulated scan is centred on the initial posture estimate. Most
often, the coordinates in the simulated scan do not match exactly their counterparts in the range
scan, because of a posture estimation error. The update transform from the simulated range scan
reference (SimSc) to the actual AEST posture can be computed using (2), rewritten as (3). This sys-
tem has two equations and three unknowns, ( , , )x yP P Pθ . To obtain a third equation one could try to
extract the orientation of a line segment instead of using single points. However, this process is very
sensitive to errors; the solution taken was to consider n points simultaneously, as described by (4)
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Assuming the angular correction θP is small, it is possible to linearise the system around θP=0 (5).
Replacing the terms in θP as in (5) and rearranging (4) in order to the unknowns, ( , , )x yP P Pθ  yields

two new matrices: M, the coefficient matrix (6a) and ∆∆∆∆, the difference matrix (6b).
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The overdetermined system linearised after (4) may be solved with Singular Value Decomposition
in the form of (7), where the coefficients of MT∆∆∆∆ and MTM are defined in (8a) and (8b), respectively.
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In (8a) and (8b) all sums are from 1 to the number of points, n. It is now clear that (7) represents
a (3x3) linear system which can be solved by standard Gauss elimination. The result, ( , , )x yP P Pθ , is
the transform parameters relating the actual AEST posture where the range scan was taken, to the
initial posture estimate, ( , , )x yI I Iθ , where the simulated laser scan was taken.

The AEST posture is updated according to (9),
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The difficult issue in ApproxLoc is to detect n pairs of points (n≥2), where the exact counterparts
in both “scans” can be established with a high degree of confidence. To detect these natural
landmarks, a sliding window encompassing up to 10 points is swept along the real laser scan and
the simulated scan, looking for consistent change of direction and/or surface discontinuities.

The search starts in the simulated scan since it has no noise, making the contour patterns easier
to follow. When a landmark is detected at index k, a similar feature is searched in the range scan at
the vicinity of k, for instance from k-5 to k+5. If the initial estimate is accurate enough and the 2D
map extracted from the reconstructed 3D model includes enough landmarks within the scan width,
a sufficient number of landmarks are detected (Figure 7a). Otherwise, the search fails, such as in
(Figure 7b); in this particular case there are too few landmarks because the reconstructed model
perceived from the top of the scene is very incomplete (Figure 2b). In such cases, detecting more
landmarks would require a relaxed confidence criterion.

Figure 7 - Natural landmark detection (a) success: four pairs are found (b) failure: one pair is found while two are required

If the correspondence between landmarks in the simulated and range scans was perfect, one ite-
ration of ApproxLoc would suffice to find the best estimate possible. Unfortunately, this is seldom
the case and the algorithm is called iteratively, using the resulting posture of one iteration to
initialise the next iteration. The posture computed at each iteration is submitted to the Likelihood
Test to follow the evolution of the Likelihood measure. Usually, ApproxLoc converges to the final
solution, i.e., the Likelihood histogram stabilises, within three to five iterations.



7. Operation Flow

The Localisation operation flow depends on the presence of odometry data. If an initial posture
estimate from odometry is available, then ApproxLoc is called. Otherwise, FrameLoc must be called
to compute a first estimate for the AEST posture which is fed into ApproxLoc.

The simple operation sequence 1 2 3 4) ) ) ) FrameLoc LklTest ApproxLoc LklTest→ → → , solves the
vast majority of cases. However, some difficulties subsist especially while the map is very sparse or
if the scan resolution or accuracy is diminished. Moreover, calling FrameLoc is seldom necessary
when odometry is available. Thus, a loop structure (Figure 8) was created for efficiency, accuracy
and robustness sake.

The start point of the Localisation cycle depends on the presence of odometry. If there is no
odometry data the process starts at Frame Localisation, otherwise the posture estimate read from
the odometers is used to compute the Simulated Scan, which is entered in the ApproxLoc, together
with the real Range Scan. The resulting posture estimate is sent to the Likelihood Test to check if
the two scans match. In case of success the algorithm ends, otherwise, FrameLoc is called.

Figure 8 Compound algorithm operation flow

FrameLoc operation is based on the environment 3D model and the 2D laser range scan only,
thus, it is irrelevant whether ApproxLoc has been called before. The results from FrameLoc are a
list of possible postures which are passed, one by one, to the Simulated Scan generator and then to
Likelihood Test. The approved postures are sent to ApproxLoc, while the others are discarded.

To avoid an endless loop after ApproxLoc, a flag indicates if FrameLoc has already been called; in
that case the algorithm ends with failure. In future extensions a more sophisticated control loop
would be inserted at this stage.

It is interesting to notice that a single range scan is used for all the operation loop. However, if
the algorithm fails, it is possible to repeat it taking a scan at a different height. This is a likely
extension to the compound algorithm and will be discussed in the next section.

8. Conclusions, known issues and extensions

This paper presents a novel approach for indoor localisation using Laser Range Scanner. It
requires only a partial map and no initial localisation estimate. Because one single algorithm would
fail to operate properly in some conditions, two complementary algorithms were developed. The
presented solution proved adequate for 3D model reconstruction, because it ignores large unknown
areas, keeping its “anchor” on the available reconstructed 3D model. Accuracy requirements were
exceeded and (2 cm, 0.01 rad (0.6º)) maximum errors are expectable  in standard conditions.

The algorithm uses computer resources with modesty. There are no large arrays, only compre-
hensive object lists. Since all repetitive tasks include tests and processing of linear equations and
systems of reduced dimension, the algorithms are swift. The only computation intensive task is the
line extraction algorithm (not described) even though it was developed in an efficient iterative form.

However, some pitfalls subsist. One major cause of concern is the akin nature of the localisation
sensor and the map acquisition sensor. If the Laser Scanner fails to detect a mirror and maps a
second scene behind the mirror, it is quite likely that the localisation will repeat the error. Strictly



speaking, this is not a localisation error since the model includes the virtual scene. Nevertheless, it
is an undesirable feature. The line extraction algorithm (not described) includes some statistical
analysis using laser reflectance data to overcome this problem, in particular for mirrored windows.
Also, if some surfaces in the scene are too dark, smooth or very detailed, the 3D reconstruction
program will fail to extract these surfaces, leading to void areas in the 3D model. However, if there
is a sufficient number of well defined surfaces the algorithm will “anchor” to them for localisation.

A subtler problem arises on non-horizontal floors. The 2D map extracted from the 3D model is
independent of the AEST location iff the plane intersection is parallel to the ground. So, unless the
AEST is equipped with an inclinometer of any type, it is restricted to piece-wise horizontal floors.

Finally, problems arise in highly symmetric environments, such as square or round rooms or long
corridors with evenly spaced doors, which occur more often. If the corridor length is greater than the
Laser Scan operating range, the algorithm will find more than one equally likely solution separated
by the distance which correspond to the corridor’s repeating feature period.

The algorithm presented may be extended in several ways. One natural extension is the
generalisation of the frame elements to biquadratic curves. On another direction, it is also desirable
to include a richer control structure in the loop, such as automatically choosing the scan height,
repeating localisation at different heights and matching the results, etc.

The major extension to the algorithm is to compute the localisation while the AEST is moving.
The author is convinced that this task will require a new approach, using a narrow laser scan,
anchoring the localisation to a few carefully selected landmarks.
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