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1 INTRODUCTION

Travel time based inversion is a technique of Ocean Acoustic Tomography [1], which allows
to estimate a field of sound speed perturbation, δc, by inverting a system of linear equations,
relating travel time and δc, through the so-called observation matrix. Such matrix can be
calculated by representing the waveguide as a layered system, with δc being estimated at
each layer. For practical purposes, the parameterization of δc on a basis of orthogonal func-
tions can be more advantageous. For instance, the inversion developed in [2] introduces an
expansion of δc on a basis of two-dimensional plane waves, whose amplitudes are estimated
in order to map the temporal evolution of the environmental field in a complex bathymetry,
through the usage of several sources and a significant amount of receivers. Theoretical modes
can be used also as a basis for the estimation of δc(r, z) [3]. For a reduced amount of receivers
the vertical structure of the field can be expanded on the modes, while the range dependence
can be constrained using horizontal plane waves. Such choice of basis significantly reduces
the number of parameters to be estimated, but its reliability depends on plane wave propa-
gation along range, which is only a particular case.
Furthermore, travel time inversion requires the synchronization between the emitted and
received signals, so the instant of emission can be taken as the origin of the time axis for
the arrivals. Otherwise, the technique has to be modified in order to develop the inversion.
In the discussion presented in [4] relative-time inversion is developed, by expanding δc on a
basis of empirical modes, and optimizing the match between observed and modeled arrivals
within the search space of mode amplitudes. Although the validity of such approach depends
on the uniqueness of the solution, the corresponding estimates of depth-averaged tempera-
tures provided a good agreement with independent observations. The approach discussed in
this paper reconsiders the parameterization of δc on a basis of theoretical modes, without
imposing particular analytical constraints to their amplitudes, except that their variation is
sufficiently smooth along range. Thus, wave propagation is not restricted to plane waves.
Further, the system of equations is rewritten in order to relate modal amplitudes to relative
arrivals. The performance of this approach is discussed using environmental and acoustic
data from the INTIMATE’96 experiment [5].

2 THEORETICAL BACKGROUND

2.1 Travel time inversion

Within the context of acoustic tomography a travel time delay can be approximated as

∆τj = −
∫
ζj

δc

c2
0

dζ , (1)
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where ζj corresponds to the jth stable eigenray, c0 represents the background sound speed
field and δc(r, z) corresponds to the perturbation from c0, which can be expanded on a basis
of theoretical modes Ψm(z) as [5]:

δc(r, z) =
M∑

m=1

αm(r)
dc0

dz
Ψm(z) . (2)

Substituting Eq.(2) into Eq.(1) leads to the following expression:

∆τj = −
∫
ζj

M∑
m=1

αm(r)
1

c2
0

dc0

dz
Ψm(z) dζ . (3)

Discretizing along range r with K intervals, between the source and the receiver (r = 0 and
r = R, respectively), it follows that

∆τj = −
K∑

k=1

M∑
m=1

ζj(rk+1)∫
ζj(rk)

αm(r)
1

c2
0

dc0

dz
Ψm(z) dζ ≈

≈ −
K∑

k=1

M∑
m=1

αkm

ζj(rk+1)∫
ζj(rk)

1

c2
0

dc0

dz
Ψm(z) dζ = St

jα , (4)

where

α =



α1

α2
...

αk
...

αK


, αk =



αk1

αk2
...

αkm
...

αkM


, Sj =



Sj1

Sj2
...

Sjk
...

SjK


, Sjk =



Sjk1

Sjk2
...

Sjkm
...

SjkM


(5)

and

Sjkm = −
ζj(rk+1)∫
ζj(rk)

1

c2
0

dc0

dz
Ψm(z) dζ . (6)

Furthermore, for a set of T travel time delays

∆τ1 = St
1α

∆τ2 = St
2α

. . .
∆τT = St

Tα

(7)

one can obtain the following system of equations:

y = Qtα + n , (8)

where

y =


∆τ1

∆τ2
...

∆τT

 , Q =


S1

S2
...

ST

 , (9)
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and n stands for the contribution of noise from unknown sources. Therefore, the problem of
estimating the field δc(r, z) is reduced to the problem of estimating the modal amplitudes
αk, which are mapped into the vector α. Eq.(8) can be solved by calculating the generalized
inverse of the observation matrix Q [6].

2.2 Inversion with relative arrivals

In the absence of synchronization the arrival τj becomes contaminated with an unknown
time offset δtc, so the perturbation in travel time for any two different arrivals i and j, at a
single hydrophone, can be written as:

∆τi = St
iα + ni + δtc and ∆τj = St

jα + nj + δtc . (10)

Combining the two equations one can obtain the following relationship for the relative arrival
τj,i:

τj,i = Dt
j,iα + Nj,i , (11)

where τj,i = ∆τj − ∆τi, Dj,i = Sj − Si and Nj,i = nj − ni. Further, collecting all relative
arrivals into a single vector Y, one can introduce a non-synchronized travel time equivalent
of Eq.(8):

Y = Dtα + N , (12)

where

Y =



τ2,1

τ3,1
...

τT,1

τ3,2

τ4,2
...

τT,T−1


=



∆τ2 −∆τ1

∆τ3 −∆τ1
...

∆τT −∆τ1

∆τ3 −∆τ2

∆τ4 −∆τ2
...

∆τT −∆τT−1


, D =



S2 − S1

S3 − S1
...

ST − S1

S3 − S2

S4 − S2
...

ST − ST−1



and N =



N2,1

N3,1
...

NT,1

N3,2

N4,2
...

NT,T−1


=



n2 − n1

n3 − n1
...

nT − n1

n3 − n2

n4 − n2
...

nT − nT−1


.

(13)

Assuming a gaussian distribution of the components of Y the weighted inverse matrix of Dt,
Di, can be written as [6]:

Di = P−1DRY , (14)
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where P = DRY Dt, RY = σ2
αDDt + RN , σ2

α represents the variance of α, and RN corre-
sponds to the covariance matrix of N. For white uncorrelated noise n, with a variance σ2

n,
RN corresponds to

RN = σ2
n



2 1 1 . . . 1 1 0
1 2 1 . . . 1 0 1
1 1 2 . . . 0 1 1
...
0 1 1 . . . 1 1 2

 . (15)

Thus, the vector of modal amplitudes can be estimated as

α#
Y = DiY . (16)

The multi-hydrophone case, for N hydrophones, can be handled by concatenating the systems
of equations for the corresponding set of vectors Yn and matrices Dn (n = 1, 2, . . . , N) [3].

3 APPLICATION TO REAL DATA

Acoustic and environmental data from the INTIMATE’96 represented an important effort,
directed to the acoustic mapping of internal tides. Acoustic data, acquired with a set of
three hydrophones (at average depths of 35, 105 and 115 m), exhibit an excellent resolution
of independent arrivals, although combines the lack of synchronization between the emitted
and received signals, with a reduced amount of receiving hydrophones. Source depth was
90 m. Among the processed acoustic data it was chosen a particular set of T = 71 arrivals,
which could be validated with environmental data, acquired simultaneously at the position
of the source and at the hydrophones (see Fig.1). The environmental variation of the field
suggested the value σα = 0.5 m, while preliminary simulations indicated that σn = 1×10−3 s.
The choice of the number of modes, M , and the discretization in range, K, can not be done
independently of T. In principle, a large value of M corresponds to a more complete basis for
the expansion of δc on the set of theoretical modes. However, modes of higher orders can be
very difficult to resolve from acoustic data. On the other side, a low value of K can degrade
the approximation used in Eq.(4). In this sense it was decided that a reasonable compromise
was to consider M = 5 and K = 30. In order to control the presence of noise only the
smallest M ×K relative arrivals were used in the estimation of α. An additional problem
in the estimation was the fact that the matrix P was nearly singular, so the corresponding
estimates of δc calculated with P−1 were unrealistic. In order to deal with this issue it
was decided to calculate the inverse of P through a Singular Value Decomposition, using
the smallest amount of singular values that provided a realistically bounded field of δc (i.e.
|δc| < 2 m/s).
The corresponding estimates of δc(r, z) at the position of the acoustic source and at the
receiving hydrophones (i.e., estimates of δc in the first and last interval, respectively) are
shown in Fig.2. The estimate at the acoustic source exhibits a good agreement in both
phase and amplitude, while the estimate at the receiving hydrophones has been slightly
overestimated.
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4 CONCLUSIONS

The method presented in this paper represents a flexible approach to the general case of inver-
sion, whether one deals with complex variations of the environment and/or the bathymetry,
and when the emitted and received signals are not synchronized. Furthermore, when ap-
plied to real data from the INTIMATE’96 experiment, the method provided and accurate
amplitude and phase estimate of the sound speed field at the position of the acoustic source,
while the phase was correctly estimated at the position of the receiving hydrophones, with
the amplitude being slightly overestimated. Such overestimation is considered to be a direct
consequence of using a reduced amount of receivers. It is believed that a further improve-
ment of the method can be achieved by understanding better the statistical properties of
relative arrivals, so the presence of noise can be reduced in a more efficient way, rather than
using an small set of relative arrivals.
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Figure 1: Stable arrivals aligned along receiver depths: circles correspond to real arrivals,
while squares correspond to model arrivals. Real acoustic data is not synchronized.
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Figure 2: Extrapolated profiles near the acoustic source and the receiving hydrophones.
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