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ABSTRACT

The aim of this paper is to describe the analysis of a high resolution ECG recorded from the body surface. Standard signal
averaging techniques are improved by using a new time delay estimation method which leads to a better alignment accuracy
of P and T waves. A second method uses adaptive identification to achieve a beat by beat fine ECG estimation. Information

provided by the two methods allows a better interpretation of low and very low level signals.
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INTRODUCTION

Since Puech' and Scherlag® revealed the interest in
micropotentials in the study of heart disease
considerable work has been carried out by many
research groups. First results have been obtained by
direct heart catheterization; signals are of a low level
and a relatively high-frequency spectrum compared
to those of the standard ECG; classical gain values
(~ 1000) and bandwidth (10-100 Hz) of current
electrocardiographs do not allow micropotential
extraction.

The main progress in ECG analysis has been the
simultaneous proposal of Berbari ¢t al.®> Flowers et
al.* and Stopczyck et al.’ in 1973, who established
the basis of the high resolution ECG (HRECG).
The ECG signal is recorded by a highly sensitive
system from surface electrodes. Typical gain values
are between 3 x 10° and 5 x 10°. Frequency
range is increased to 500 Hz. These two features are
not enough to allow the analysis of low level signals,
which are buried in muscular, motion and electrical
noise.® For some low level cardiac potentials (e.g.
the His-Purkinje activity), a typical value of the
signal to noise ratio (SNR) is — 20 dB.

Signal averaging is the most popular and simplest
method of improving the SNR of repetitive signals
and the method has been used in HRECG with
some success’’. Its efficiency mainly depends on
signal alignment accuracy and shape constancy.
Furthermore, a signal estimate is given only after N
summations. N is generally large, typically 100 < N
< 300.

To avoid these disadvantages, recent researches
have been carried out to obtain a possible beat to

*Reprints from Dr S. Jesus, Saclant ASW Research Centre, Vle San
Bartolomeo 400-19026 La Spezia, Italy

© 1988 Butterworth & Co (Publishers) T td

beat estimation of the fine ECG structure’ . The
idea is to carry out signal averaging in space rather
than in time. Instead of summing N successive
cardiac complexes (recorded with one electrode), the
same cardiac complex recorded at N different
locations on body surface (by N different electrodes)
is summed. In this approach the noise is assumed to
be isotropic. This method is called the low noise
ECG (LNECG). Its weak points are the positioning
of the N electrodes: only a limited number of elec-
trodes can be used (up to 16). A low value of N limits
the SNR gain of the method and enforces stringent
constraints on acquisition systems'.

This paper deals with fine ECG analysis recorded
from body surface by high resolution systems
without any particular acquisition measures (e.g.
Faraday cage, battery isolation, patient training,
etc). The points of interest are the very low level
signals and the fine structure of low SNR classical
cardiac waves (P and T waves).

Two different approaches are investigated. First a
signal averaging approach where an attempt is made
to reduce jitter, caused by PR or ST interval varia-
tions, by direct P or T waves synchronization using
a novel time delay estimation method. Second, a
beat by beat estimation approach in order to avoid
inherent problems of normal signal averaging and
technical constraints of HR spatial ECG. The
method uses smoothing, filtering and adaptive iden-
tification algorithms to estimate the ECG low level
potentials on a beat by beat basis.

THEORY

Signal averaging

Signal averaging is highly dependent on the align-
ment accuracy of the signals to be averaged. ECG
averaging is performed by detecting QRS complex,
which has the highest SNR in the cardiac beat,
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thereby ensuring a stable synchronization to extract
low micropotentials occurring at a constant interval
from the QRS. This dependence on stable
synchronization and interval constancy enables the
method to extract potentials other than those near
QRS complex or physiologically linked to it.

The purpose is to improve synchronization
possibilities for other ECG waves having lower SNR
than the R waves (e.g. P and T waves). If
synchronization is sufficiently precise, the jitter
phenomenon influence is reduced when extracting
low potentials near (and linked to) P or T waves.
The new TDE method" is recalled.

Principle

Consider a real signal z,(f). Let

+ o

J z()dt = A (1)

be the surface of z;(f) and assume 4 # 0; let
Z() = (1/4) | z() dx )

be its normalized integral. The normalized integral
of the signal

%(t) = kzi(t - Dy) (3)
is related to Z(%¥) by

Zi(t) = Z,(t - Dy) 4
where k; and D;; are two constants. The method is

based on the following result: the delay D, between
z;(#) and z,(?) can be obtained by
+ o0
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Application

With noise y,(¢) and y;(¢) are dealt with instead of
z;(t) and z(?)

i) = zi(t) + v,()

%) = (8 + ()

I

(6)

where 0;(t) and 0;(f) are two additive noise
processes. Generally the noisy signals are replaced
by a positive function to avoid surface A becoming
zero. Furthermore, considering stationary noises,
the signals are assumed to be band limited so that
they are still integrable, an assumption that is not
very restrictive for the application considered here.
Dealing with repetitive signals which are positive in
a given interval, without losing any information one
can work with

2 ¥ () = max(x(t), 0)

In this case one can compute an estimator D of D;
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by applying relation (5). The uncertainty of D,J (
be reduced by noting that shifting ;(¢) by a kno
quantity 7

7) = 3t - Dy - 1)

one can calculate
b

Qr) = j [Y:() - Y(¢t - 7,)]dt

a

(D) = 3t -

for a series of 7 valuesajn; [l =1, L}; in (8) [a, b
the observation interval and Y,(¢) and Y;(t - 7,):
the normalized integrals of y,(f) and Jjr(t) resp
tively. The zero crossing of the regression line, of 1
form y = ar + @, of the Q(7)) versus 7, give
estimator of D,

Beat-to-beat estimation

In order to avoid signal averaging constraints and
obtain rapid information for immediate diagnosti
beat-to-beat ECG estimation is highly desirab
Until now, researches in this field have or
improved recording instrumentation capabilit
and increased procedure complexity.

Here a totally different approach is tried,
applying a particular family of adaptive identific
tion smoothing algorithms.

The problem is assumed to be the estimation of
deterministic unknown signal corrupted by
additive noise with a poor SNR (< 0 dB). In tt
case standard identification techniques give po
results’>. Furthermore, in this method an ARM
representation  associated with a stationari
assumption is generally used and the generati
process is excited by a continuous input.

In this approach these two assumptions are n
absolutely necessary. The deterministic signal to 1
extracted is modelled by the impulse response of
process represented in a state variable form starti
from unknown initial conditions. The algorith
generates a smooth adaptive joint estimate of tl
model parameters and the desired signal; only tl
model order is assumed to be known. The san
algorithm produces a smooth estimate of the initi
state at each iteration.

After convergence the signal reconstruction
obtained by a Kalman filter conditioned on tt
estimated parameters and the observation set.

Signal modelling
The deterministic signal is assumed to
represented by an ARMA model defined by

z2(k) = - ,é az(k — 1) + ,é bu(k - 1) (1(

where u(®) is the impulse input and the coefficien:
{a;} and {4;} characterize the system to be identifiec
Assuming that u(e) is an impulse arriving ju
before starting the observation one can consider th:
all the information due to u(®) is contained in a
initial state x, # 0 and rewritten equation (10), i



an equivalent state variable form''*

x(k + 1)

= Jx(k 0(k) z(k) x(0) = xy # O
- =JC;§(/2)+ (k) z(k)  x(0) (11)
where
0 0
1
J=1o
0 0. 1 0

C = (0,...,0, 1)
0‘(/6) _ (_ap(k),..., —al(k))

In this representation we assume that there is no
dynamic noise and that all the uncertainty is
modelled by an additive white Gaussian noise
process on the observation equation

(k) = 2(k) + 2(k)

Note that the estimation of the desired signal is

(k) = %,(k)

The problem is resumed to the estimation of 6(k) and
the state x(k). This problem is achieved in a joint
representation of equation (11) by forming the
following augmented state space model:

(J | 0!
——— ¢ =T a2
I

xk + 1) =

o) |
(k) =( C | O ) x(k) + u(k)
with

The -non linear problem of estimating x,(k) is
generally solved by the extended Kalman filter, but
in order to avoid the above mentioned problems we
use a different family of algorithms: the partitioned
algorithms originally due to Lainiotis".

Generalized partitioned algorithms (GPA)"
The main idea is to make a partition of the initial
augmented state in a nominal state and a remainder:

%(0) = %.(0) + x.,(0) (13)

the two separate vectors are assumed to be indepen-
dent and Gaussian. This partitioning allows one to
include the a prior: information that the user may
have about the process, in the nominal part, and
then iteratively estimate the remainder.

A particularly interesting partitioning of equation

(13) is

m&=ﬁ% n@=ﬁa (14)

In order to produce an adaptive algorithm a known
reference model is introduced and the algorithm
estimates only the deviation from this reference
model. The reference is generated by a nominal
Kalman filter, conditioned by a parameter vector
0* updated at each iteration.

The particular choice, equation (14), gives
separate smoothing equations to the initial state and
the parameters. This choice leads to a reduction of
computational complexity. Only a p X p matrix
inversion is necessary at each iteration.

Convergence is reached when

I|9j+1 - 9]" <e (15)
is fulfilled.

ECG DATA PROCESSING

ECG signals shown in this section have been
recorded at the Laboratoire de Cardiologie, H6pital
Pasteur, and presented in a short form in
reference’’. A high amplification recording device
(Pancardiographe, Biosignal) has been used. A gain
of about 10° and a bandpass filter of 0.5-300 Hz
were chosen. Data acquisition was made with a
sampling rate of 1 kHz and a 12 bits quantization for
an input level of =+ 10 V. Real ECG signals have
been recorded with a two-track magnetic tape
recorder; the two synchronous tracks contain a low
level ECG for QRS detection and synchronization
and a high level ECG for HRECG processing
(averaging or beat by beat estimation).

In order to reduce QRS detection error, the low
level ECG track was preprocessed with a digital
moving average bandpass filter as proposed in'.
The filter structure has been changed to avoid
introducing a time delay and loss of synchronization
between the two tracks. The filtered signal y(n) is
computed by the convolution relationship

W) = (hr % &) (n) (16)
Hn) = L hr(i)e(n - ) (17)

where ¢(n) is the input signal and hy(n) is the filter
impulse response given by

(n+ K+ 1)(K+1¢ - K<n<0
hen) = |(K+1 -n)/(K+1 1<n<K+1
0 otherwise (18)

Accordingto equation (18) the summation in equation
(17) is reduced to a finite number of terms. The
frequency response (which is the Fourier transform of
the impulse response) is then

3 1 sin’wf (K + 1)
Hr(f) = (K + 1) sin’ nf

(19)
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Figure 1 P wave processing at rest by signal averaging

five succesive P waves, mean signals after 20, 40, 60 anc
summations with, b, R and, ¢, P wave synchronization.

which shows a pure real transfer function wit
phase characteristic equal to zero for all frequen
to ensure no time delay. The cut off frequencies

1 1

T(K, + 1) Ja = T(K, + 1) '

Ja =
where K, and K, are the number of samples
averager one and two respectively, 7, is the san
ing interval. To remove base line variations

high frequency noise we choose K, = 300 .
K, = 6 which gives a band width BP
BP = f, — f, = 142 - 3.3 Hz (

Records were made from normal, healthy yot
people at rest and in the recovery phase follow
light exercise (cardiac frequency varying from 9(
60 beats min~').

Signal averaging
In each case comparison was made between t
different synchronizations:

1. R wave detection using standard level dou
threshold technique.

2. P (or T) wave triggering using our propo:
method.

Figure 1 shows an example of P wave (and P
segment) processing recorded at rest. Figure 2 shc
another example of P wave processing recorded
the same person, but in the recovery phase of a li
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Figure 2 P wave processing in the recovery phase of a ligh
exercise; a, five successive P waves, mean signals after 20,
40, 60, 80 and 100 summations with, b, R and, ¢, P wave
synchronization.

exercise. Figure 3 is an example of TP interva
averaging.

In Figure 1a there is a series of five noisy P wave
and their P-R interval. Figure 16 and ¢ shows the
mean signals of Figure la after 20, 40, 60 and 8(
summations in b with R wave synchronization anc
in ¢ with P wave synchronization using our method
Comparing these two figures, one can see that the I
wave mean shape is better conserved in ¢ than in &

Figure 2a shows a series of five noisy P wave:
recorded on the recovering phase after a light exer
cise. These P waves are averaged with R wave
synchronization (Figure 2b) and with P wave
synchronization (Figure 2¢). Again, one can note :
better P wave mean shape conservation in ¢ than ir
b. Moreover, low potentials before and after P car
be seen in b and are erased in a by the jitte
phenomenon due to PR variations.

Figure 3, shows the averaged TP interval obtainec
with three different synchronizations: R wave befort
TP (a), P wave after TP (b) and T wave before T1
(¢). This example shows how recurrent low poten:
tials (arrows on Figure 3¢) on TP interval, linked tc
T wave can be extracted only by triggering from 1
wave itself (¢) and not from R (a) or P wave (b).

J. Biomed. Eng. 1988, Vol. 10, January 2¢
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Figure 3 TP interval processing. Mean signals after 20
60 and 80 summations with synchronization in, a, R was
b, P wave and, ¢, T wave

Beat to beat estimation
This section illustrates the results of the beat by
{ s estimation algorithm (GPA) processing the sig;

1208
e | SMO shown in Figure 1(a) and Figure 2(a). Results
w0 | /3\ given in Figure 4 and 5 respectively.

Initialization was 6(0) = (0) and x(0) = 0. Mc
'.Z'W

order was chosen equal to two (p = 2), converge
SMO
SMO

- was reached after 5 or 6 iterations. Reconstruct
0
200
o

was made by a Kalman filter, initialized
#0/N)icony, Po(O/N)jcony and 8oy, values of
smootllled initial state estimate, its error covaria
matrix and the parameter vector after converger
A good reconstruction of the signals has b
accomplished.

DISCUSSION

T(ne)
T o)
Y
The authors have presented two differ
T o) approaches to the processing of high resolution Ef
signals; signal averaging and beat by beat estir
tion.

To improve signal averaging capabilities a n
Y, synchronization method was proposed that allow

T (med

T 248
stable triggering on low SNR signals. The rest

[ ) ) ) A presented show that the time delay estimat
[ ] 248 method provides: (1) a better P wave mean sha
b //—/M/ (2) the extraction of low potentials physiologic:

linked to P or T waves, (3) a sorting between 1
potential by successive synchronizing in R, P or
waves and (4) a good estimate of the probabil
distribution for PR or ST interval.

The second approach allows shape variabil

,.
. s

._
- B
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Figure 4 Beat by beat analysis: five successive P waves
[Figure 1a] after GPA processing

analysis and avoids the main problems attached to
signal averaging. The fine P wave structure could be
obtained on a beat by beat basis and shape changes
from one beat to another are more obvious. Never-
theless, low potentials cannot be distinguished from
noise and the beat by beat signal interpretation is
better achieved by comparison with the mean signal
obtained by averaging. In effect, comparing Figure
2(c) with Figure 5 one can note that some low poten-
tials extracted in the PR interval are present in some
but not all beats.

CONCLUSIONS

The results suggest that signal averaging is an objec-
tive method with the useful property of extracting
only signals lying at a constant time interval from a
known triggering point. Time interval constancy
generally implies a physiological link, which makes
medical interpretation easier. This property makes
signal averaging essential even if a beat by beat
estimation is practicable. Nevertheless, these two
approaches use different amounts of information
and give different amounts of information; in fact,
they are complementary. Finally, it should be noted
that beat by beat estimation is a new tool which may
take several years to be fully understood and used.

Figure 5 Beat by beat analysis: five successive P waves
[Figure 2a] after GPA processing
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