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Abstract

Estimating the seabottom geophysical structure from the analysis of acoustic returns of an explosive

source (air-gun, sparker,...) has been used for a longtime as a routine survey technique. Recent

work showed the possibility of using well-suited numerical models to invert the acoustic field for

estimating detailed geoacoustic sediment properties. Common implementations used long synthetic

aperture arrays (up to 2 km and more) in order to resolve potential environmental ambiguities of

the acoustic field. Others, used vertical arrays of sensors covering a significant part of the water

column to identify the channel normal mode structure and thus gather information for the bottom

physical relevant properties. This paper investigates, with simulated data, the concept of using a

moderate aperture physical line array and a sound source simultaneously towed by a single ship

for inverting the bottom geoacoustic structure from the acoustic returns received on the array.

First, bottom parameter estimators are derived and their system sensitivity is investigated. In

particular, it is shown that such a system may be used to sense compressional and shear velocities

on the bottom first layers. Density and attenuations (both compressional and shear) have in general

small influence on the acoustic field structure and are therefore difficult to estimate. Increasing

the signal frequency bandwidth by incoherent module averaging has no significant influence on

sensitivity. Mismatch cases, mainly those related to array/source relative position, showed that

deviations of more than λ/3 in range and λ/5 in depth may give erroneous extremum location

and therefore biased final estimates. Second, two bottom parameter estimators are compared and

their performance tested on a typical shallow water environment. In order to solve the underlying

multiparameter inverse problem, global search optimization is used. In particular, it is shown

that the use of an adaptive genetic algorithm may, in conjunction with a well suited maximum

likelihood based parameter estimator, rapidly converge to the surface extremum. Inversion results

are in agreement with the predictions obtained from the sensitivity study. The mean relative error

at 10 dB signal-to-noise ratio is within 1% for the compressional velocity, while greater errors

are reported for the shear velocity. Comparison with recent results obtained with a radial basis

functions (RBF) inversion strategy showed similar performance. Finally, results obtained with a

156 m aperture towed array showed a good agreement between the inverted compressional velocities

and the ground truth measurements.
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I. Introduction

In the last years there has been an intense, and still growing, requirement for the usage of numeric

propagation models on underwater acoustics. This demand is mainly due both to the increase on

modelling capabilities of available codes and to the decrease on computation power cost. The avail-

ability of an accurate forward numerical model, allows, in principle, the inversion of the acoustic

field for the environmental parameters [1-3], source position [4-6], source signal deconvolution [7]

and receiver calibration [8]. These studies have revealed a number of new research topics such as

Ocean Acoustical Tomography (OAT) [1-3] and Matched Field Processing (MFP) [9]. Seabottom

parameter estimation by acoustic remote sensing is also evolving from classical profiling techniques

(sparker/air-gun) to complete physical model identification by applying methods that closely fol-

low MFP and OAT. Given the numerical model prediction for each environmental parameter set,

identifying real bottom parameters constrained to the array acoustic measurements, is known to be

an ill-conditioned inversion problem which analytical solution is unknown. Ill-conditioning strongly

depends on the non-linearity of the function to be inverted [10] and on the dimension of the param-

eter search space. Brute force inversion, by extensive forward modeling exploration of the whole

search space, has been widely used on matched-field processing for source localization. Using this

approach for geoacoustic data inversion would be computer time prohibitive due to the high di-

mension of the parameter space to be searched. Therefore, the alternative taken by several authors

combines a matched-field type of technique, which output is a multidimensional ambiguity surface,

with powerful search algorithms that allow a quicker convergence to the extremum of that surface

[11-15].

Previous studies used either a fixed source and a vertical array or a sound source being towed away

from a single receiver in order to create a synthetic aperture and resolve mode arrivals [16-17]. In

principle, a shipborn only system would allow easier deployment and lower cost for surveillance of

large areas. The present work is part of a larger project devoted to the development of a system

where the ship is towing both the source and the array, such that the source-receiver range is

constant. Such a system should specifically be designed for shallow water applications.

In particular, the present study is devoted to the investigation of the system limitations (array

aperture, source frequency, etc.) and of the global search algorithms performance. In order to obtain

an idea of the expected performance of the system and draw some conclusions on its operation,

this study presents the objective function sensitivity to variations of: array length, source depth,

receiver depth, source range, sensor noise, source frequency and frequency band. The canonical

case consists of a 64 hydrophone - 4 m spacing towed array at 100 m depth and an harmonic

100 Hz source also at 100 m depth and at 200 m range. Inversion results are presented using a

modified genetic algorithm (GA) based scheme that provides geoacoustic parameter estimates of

compressional and shear velocities on a typical shallow water environment. An example of field

data inversion with a 156 m aperture towed array concludes this study.
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II. Theoretical background

II.1 The data model

The deterministic sound pressure at the receiver location rl, zl is modeled as the solution of the

wave equation for a narrowband point source exciting a horizontally stratified range-independent

environment, that is the Green’s function inverse zero-order Hankel transform

pl(ωk, rl, zl, z0; γ) =

∫

∞

0

g(κ, ωk ; θl, γ, z0)J0(κrl)κdκ, (1)

where l denotes the lth array sensor, ωk is the kth frequency bin, z0 is the source depth and γ is

a vector containing all the pertinent environmental parameters under estimation. Thus, at time

snapshot n the L sensor array received acoustic pressure can be modelled as a multivariate complex

normally distributed random variable

yn(ωk, γT ) = bn(ωk)p(ωk, γT ) + εεεn(ωk), k = 1, . . . ,K (2)

where εεε is the sensor noise assumed to be zero mean and uncorrelated both in time and from

sensor to sensor. The scalar bn is a complex random variable N(0, σ2

b ) that accounts for the non-

deterministic amplitude variation at the receiver due to the environmental inhomogenities and

fluctuations that are not included in the sensor noise. Subscript T denotes the true value of the

environmental parameter under estimation.

II.2 The broadband conventional matched-filter

Function (1) being known for each given γ, the problem is to detect a known signal p(ωk, γ) in

white noise which optimal solution is given by the well known matched-filter. Let

ΦCMF(ωk, γ) = |y(ωk, γT )Hp(ωk, γ)|2, γ ∈ Γ (3)

be the matched-filter output based on model replica prediction p(ωk, γ) for search parameter γ

with Γ denoting the whole environmental parameter search space. Thus, the broadband optimal

estimator γ̂T of γT , given the model structure (1)-(2) is

γ̂CMF

T = arg max
γ

1

K

K
∑

k=1

|σ2

s(ωk)|2ΦCMF(ωk, γ), (4)

where σ2
s(ωk) is the source power at frequency ωk.
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II.3 Correlation of directional data

A common problem encountered when analysing geoacoustic data is the superposition of the direct

path source arrival with the bottom reflected data of interest. Since only the bottom reflected

arrivals are of interest for inversion purpose a possibility for separating those arrivals is by analysing

the data in the wavenumber space domain and filter out the direct path arrival [11]. For an

horizontal line array, the arrivals associated with the steepest vertical angles, which are those that

have a stronger interaction with the bottom, correspond to those arriving closer to broadside.

That approach implies a transformation of the acoustic data from the hydrophone space to the

wavenumber space which in some sens is expressed by the Green’s function expression. In practice,

since the acoustic pressure is a discrete function defined over a finite array aperture, it implies that

an estimate of the predicted Green’s function can be given by

ĝp(kj , ω, γ) =
eiπ/4

√

2πkj

L
∑

l=1

pl(ω, γ)e−ikjrl
√

rl, j = 1, . . . , Nw (5)

where the discretization over the wavenumber space has been arbitrarly performed over Nw equally

spaced points in [0, 2π/d], d being the array sensor spacing (assumed constant). A one-to-one

mapping from the wavenumber to the bearing space may be performed using kj = (2πf/c) cos(θj +

π/2) for θj ∈ [−90o,+90o]. With that definition -90o direction is aft (towards the source) and

+90o is endfire. A similar expression to (5) may be used for the received data Green’s function at

time-snapshot n giving ĝy,n(kj , ω, γT ). Obviously, when computing (5) there is a windowing spatial

effect that actually reduces the array resolution. Based on (5) and once a given bearing sector

θj ∈ [θl, θh] has been selected a possible objective function can be defined as

ΦWS−CMF(ωk, γ) = |
jh
∑

j=jl

ĝ∗y(θj , ωk, γT )ĝp(θj , ωk, γ)|2, (6)

and an incoherent broadband function can be defined as the average of (6) over the required

frequency band as

ΦWS−CMF(γ) =
1

kh − kl + 1

kh
∑

k=kl

ΦWS−CMF(ωk, γ), (7)

giving a final parameter estimate

γ̂WS−CMF

T = arg max
γ

ΦWS−CMF(γ). (8)

Expression (6) has been writen as time independent for a question of generality, where in practice

it is time-snapshot dependent. In practice time averaging is often performed over a “reasonable”

time window on which the acoustic field is assumed to be stationnary.
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II.4 Broadband maximum-likelihood matched-field

Given data model (2) and assuming that the sensor noise power is constant and equal to σ2
ε ,

at time snapshot n, the observation vector is normally distributed with mean bn(ωk)p(ωk, γT )

and covariance σ2
ε I. The problem can be stated as to determine the “best estimator”, γ̂T , of

γT given the data set {yn(ωk);n = 1, . . . , N ; k = 1, . . . ,K}. Thus, introducing a condensed

notation grouping all K narrow frequencies on a single broadband vector, at time snapshot n,

Yn = [yT
n (ω1),y

T
n (ω2), . . . ,y

T
n (ωK)]T , the data set is formed by {Yn;n = 1, . . . , N}. If the time

interval T used for calculating each individual Fourier transform is such that T >> τ0 where τ0 is

the correlation time of the most coherent signal or noise, the vector Yn has a near-block-diagonal

covariance matrix because the Fourier coefficients at different frequencies are asymptotically un-

correlated. Independently from the nature of the assumed data model the log-likelihood function

is given by

L(Y ) = −
N

∑

n=1

[(Yn − µµµn)HR−1

n (Yn − µµµn) + log det(πRn)], (9)

where H denotes Hilbert transpose, µµµn = E[Yn] and Rn = COV[Yn] which is, with the assumptions

above, a diagonal matrix. Plugging the mean and covariance expressions into (9) one easily obtains

L(Y ) = −
N

∑

n=1

K
∑

k=1

{ 1

σ2
ε (ωk)

‖ yn(ωk) − bn(ωk)p(ωk, γT ) ‖2 −L log[πσ2

ε (ωk)]}. (10)

Since p(ωk, γT ) is given by the model, for the search parameter γ, as p(ωk, γ), the only unknown

is the random component bn(ωk). An usual assumption is to introduce a least-squares estimate of

the signal, wich in that case is given simply by the projection of yn(ωk) onto the vector p(ωk, γ) as

b̂n(ωk) =
p(ωk, γ)Hyn(ωk)

‖ p(ωk, γ) ‖2
. (11)

Thus, introducing (11) into (10) one gets the estimator expression

γ̂BBML

T = arg min
γ

N
∑

n=1

K
∑

k=1

{ 1

σ2
ε (ωk)

‖ yn(ωk) − p(ωk, γ)Hyn(ωk)

‖ p(ωk, γ) ‖2
p(ωk, γ) ‖2}, (12)

and after some straightforward manipulations, and noting that the only n snapshot dependent

quantities are the observation vectors yn(ωk), one can rewrite (12) as

γ̂BBML

T = arg min
γ

K
∑

k=1

K

σ2
ε (ωk)

tr{[I − p(ωk, γ)p(ωk, γ)H

‖ p(ωk, γ) ‖2
]R̂(ωk)}, (13)

where the matrix R̂(ωk) is the data sample covariance matrix estimate at frequency ωk given by the

time snapshot average of the data outer products. The only unknown quantity is the noise power

over the required frequency band, σ2
ε (ωk); k = 1, . . . ,K. Assuming a flat noise, i.e., corresponding
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to white noise, the noise power can be assumed constant over the frequency band and pulled out

from the summation in (13).

III. Simulation results

III.1 Parameter sensitivity study

The environment used in the simulation study is shown on table 1. It is formed by an homogeneous

140 meter depth water layer, above a relatively soft bottom formed by two 5 meter thick layers and

a hard halfspace at 150 m depth. A computer code based on SAFARI-FIPP [18] has been developed

to implement the objective functions defined in chapter II and necessary looping for searching all

the environmental parameters. The system scenario includes a 64 hydrophone at 4 m spacing array

with a 100 Hz sound source both at 100 m depth and at 200 m range. Testing has been performed

mostly with the conventional matched-filter approach and in some cases comparisons have been

made with the other objective functions (WS-CMF and BBML). The signal-to-noise ratio was

computed according to

SNRdB = 10 log10

σ2

b/(k2 − k1 + 1)
∑k2

k=k1
|p(ωk, γT )|2

σ2
ε

. (14)

Depth P vel. S vel. P att. S att. Dens.

(m) (m/s) (m/s) (dB/λ) (dB/λ) (g/cm3)
0.0 1500 0.0 0.0 0.0 1

140.0 1550 130.0 0.1 1.7 1.49
145.0 1700 350.0 0.8 2.0 1.88
150.0 2500 900.0 0.01 0.01 2.4

Table 1: canonical environment

III.1.1 Array aperture: varying the array aperture from 63 m up to 2016 m produces an increase

on bottom parameters sensitivity. This increase is very steep for array apertures smaller than 250

m and then there is a saturation effect where a further increase of aperture does not give any

subtantial sensitivity gain (fig. 1). This behaviour tends to demonstrate that bottom parameters,

such as compressional and shear velocities, can be easily sensed with moderate aperture towed

arrays with a relatively small loss from the results that could be obtained with larger arrays.

III.1.2 Frequency: varying source frequency between 25 and 200 Hz changes the angle of incidence

and signal penetration into the bottom. An increase of frequency ameliorates the sensitivity to
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compressional parameters although that amelioration vanishes at deeper layers where lower fre-

quencies gave better results. Shear parameters showed a higher sensitivity at lower frequencies,

that provided also smoother curves (less minima/maxima) and, in principle, a higher potential for

unambigous inversion.
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Figure 1: array aperture test with the CMF function for compressional and shear velocity profiles.

First bottom layer on the top and deepest layer on the bottom. Array apertures of: 63 m (– solid),

126 m (-.- dash-dot), 252 m (- - - dashed), 504 m (.... dotted), 1008 m (+++) and 2016 m (o o o).

III.1.3 Bandwidth: varying the source bandwidth between 2 and 60 Hz showed that there is no

significant increase on sensitivity with, however, a higher smoothness of the objective function at

the expense of a much larger computational effort. Some broadband results are shown on figure 2.

III.1.4 Source-receiver positions: changing relative source-receiver depth changes the sensitivity

according to the higher or lower transfer of energy between source and receiver that is depending

on the mode excitation vs depth. That is highly dependent on the particular environment chosen for

testing. Changing source receiver range has a similar behaviour depending on the modal interference

pattern versus range. In both cases placing the source and the array at high energy transfer locations

improves sensitivity [19].

III.1.5 System parameters mismatch: as expected it has been found an higher dependence to depth

than to range mismatch. The accuracy to which sensor depth should be known has to be better

than a λ/5 while an accuracy of λ/3 will be enough for sensor range.
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Figure 2: signal-to-noise ratio and narrowband/broadband comparative performance for CMF (–

solid), WS-CMF (-.- dash-dot) and BBML (- - - dashed) objective functions without noise (a) and

(c) and at SNR=10 dB (b) and (d); narrowband (100 Hz) in (a) and (b) and 80-120 Hz bandwidth

in (c) and (d).

III.1.6 Signal-to-noise ratio: the narrowband and broadband performance of the algorithms has

been compared and the results are shown on figure 2. Due to the source receiver proximity, the

signal to noise ratio (SNR) is expected to be relatively high therefore only the SNR=∞, in (a) and

(c), and 10 dB, in (b) and (d), are shown. In both the broadband and narrowband cases, the BBML

estimator provided the better defined maxima at SNR=∞. In turn, at SNR=10 dB all estimators

showed similar performance. Continuing testing at lower SNR’s (not shown) CMF showed to be

the most robust keeping a constant performance down to -5 dB.

III.2 Genetic Algorithm inversion

The inversion of a highly nonlinear expression such as that relating the bottom physical parameters

and the acoustic data pressure on a complex shallow water environment requires the optimization

of a multidimensional ambiguity surface. The shape of the surface is, in general, virtually unknown

but suspected to have several local maxima, thus inhibiting the use of classical gradient based

search methods. Brute force inversion by forward search is a computationaly very intensive task

due to the dimensionality of the search space involved. Global search techniques being able both
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to avoid the exhaustive search of the whole space and to escape from local maxima are useful

in such problems. Among others, the so called Genetic Algorithms (GA), have been used for

this purpose and demonstrated significant potential [13]. The scope of the present paper is to

concentrate on the application rather then on the GA itself. The implementation used very closely

follows that proposed in [20], except for the selection of the “new” population at each iteration.

The basic algorithm described in [20] forms a “roulette” based scheme where each sample of the

“old” population has a chance of reproduction. This procedure, although maintaining a high

probability of escaping from local maxima, slows down convergence and was found in our case,

to lead to very long computation times for obtaining reasonable estimates. Instead, a procedure

allowing reproduction of the samples having a fitness above the population mean ensures a faster

convergence. In order to compensate for the risk of convergence to local maxima, the probability of

mutation has been increased above normally used values. This general strategy has been adopted

throughout and showed reasonably good results in all tests.
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Figure 3: Ambiguity surfaces with the canonical system configuration for the first and second

layer compressional velocities between 1500 and 2000 m/s for the CMF in (a), WS-CMF with

κ ∈ [0.2, 0.45] in (b) and BBML in (c).
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The system configuration setup is identical to the canonical system used in III.1. We would like

to remark that the GA search is applied to noisy data on a moderate aperture horizontal array;

this makes an important difference with respect to other simulative studies. In order to obtain a

visual idea of the relative behaviour of the methods described on chapter II, and some insight to

the GA search optimization procedure, figure 3 shows the objective functions obtained with the

CMF, WS-CMF and BBML estimators, respectively given by expressions (4), (8) and (13), for

the variation of the compressional velocities of the first two bottom layers between 1500 and 2000

m/s and an SNR of 10 dB. It can be noticed that the CMF and WS-CMF estimators gave very

similar objective functions although the data in play is different: omnnidirectional for the CMF and

bottom directed for the WS-CMF. This may be explained by noticing that in this case there is no

system mismatch nor interference and therefore even if some of the omnidirectional data is carrying

little bottom information it perfectly matches with the model prediction. A different result may

be obtained in presence of interfering sources and/or mismatch (real data). In the sequel we will

concentrate on the CMF and BBML estimators. In order to better evaluate the convergence of the

GA, figures 4 and 5 respectively show the population surface distribution for the CMF and BBML

estimators along iterations 0,1,2 and 3.
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Figure 4: GA population distribution for the CMF objective function at SNR=10 dB and iteration

number 0, 1, 2, and 3.

The population size has been set to 60 and mutation and crossing probabilities respectively set to

0.133 and 0.9. In this case, by comparing figures 4 and 5, it can be noticed that for the BBML the

concentration of the population around the maximum is much faster than for the CMF.
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Figure 5: GA population distribution for the BBML objective function at SNR=10 dB and iteration

number 0, 1, 2 and 3.

Figure 6 shows the mean compressional velocity estimates, over 10 independent runs, for the CMF

and BBML estimators for layer 1 in (a) and for layer 2 in (b).
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Figure 6: Compressional velocity estimate in (m/s) versus iteration number for layer 1 in (a) and

layer 2 in (b): CMF solid (–) and BBML (-.-) dashdot.
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The result obtained with the BBML estimator is both more accurate and more stable throught

the run than with the CMF estimator. However, it can be remarked that, with both estimators,

there is a persistent bias that does not disappears with increasing the number of iterations. This

observation may suggest that these estimators are not efficient. An alternative would be to take

into account the surface distribution at iterations i ≤ I to redistribute for iterations i ¿ I. One

possible way of doing this is by adapting the search interval after a given number of iterations

based on the concentration of points in a given area of the surface (preferred maximum). That

procedure was used, in this example, after 3 iterations, reducing the search space to the interval

that contained 95% of the population. At iteration 3 the population within the new interval was

used for generating the population at iteration 4. From figures 4 and 5 it can be easily understood

that this procedure will be much more effective with the BBML than with the CMF and the result

obtained is shown on figure 7.
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Figure 7: Compressional velocity estimate in (m/s) versus iteration number with interval reduction

after iteration 3 for layer 1 in (a) and layer 2 in (b): CMF solid (–) and BBML (-.-) dashdot.

The results of simultaneous inversion of the compressional and the shear velocity profiles (6 param-

eters) obtained with the BBML estimator are given in figure 8.
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Figure 8: BBML relative error for simultaneous compressional (a) and shear (b) velocity profile

estimation. Each * represents the result of a single run and the solid line is the mean relative error

computed over 10 independent runs.
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Figure 9: BBML relative error for simultaneous compressional (a) and shear (b) velocity profile

estimation with interval reduction at iterations 10 and 20. Each * represents the result of a single

run and the solid line is the mean relative error computed over 10 independent runs.

This example shows that the differences of sensitivity of the objective function to compressional
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and shear velocities results in this example in a compressional velocity mean relative error below

3% while the shear velocity mean relative error reaches 75% for the first layer. Incidentally, we

note that, among the six parameters to be estimated, the shear velocity of the first layer is the

one the has less influence on the acoustic field at the given frequency of 100 Hz (see fig. 1), i.e., it

is the most difficult to retrieve. However, the poor result for the shear velocity estimate could be

partially overcome while maintaining the same computational effort by reducing the search interval

at the 10th and 20th iteration (fig. 9). In this case the mean relative error is decreased to 1% or

less for the compressional velocities and to less then 40% for the shear velocity of the first layer,

and less than 5% for the shear velocity of the last layer. The price paid for that better result is

that any interval reduction criteria introduces a potential risk of missing the true parameter value.

III.3 Genetic algorithms versus RBF based inversion

The purpose of this section is to evaluate the results of the GA inversion with respect to other

global inversion methods. To this aim we have decided to compare, on the same physical situation,

the adaptive GA described in the previous section with a ”neural network-like” inversion scheme

based on the idea of global approximation of the inverse function with a series of Radial Basis

Functions (RBF). The RBF method does not belong to the class of global search strategies (as, for

instance, simulated annealing), that tend to exhibit the same merits and drawbacks of GA, and for

this reason it has been selected as a challenging comparison for the GA.

A complete description of the RBF-based inversion is beyond the scope of the present paper, and

the interested reader is referred to [21]. For our purposes here it is sufficient to say that the

RBF method relies on the idea of determining an approximation of the inverse function in the

form of a series expansion, where the basis functions take the form of gaussian or gaussian-like

functions. The coefficients of the series expansion are determined from a set of known input-output

relations (”training set”), generated, for instance, through forward model computations. In the

present situation, the ”input” is the acoustic field measured on the towed array, and the ouput is

the corresponding vector of seafloor parameters. If the training set is generated in such a way to

cover most of the significant physical situations, the resulting series expansion will be a smooth

approximation of the nonlinear inverse function on its global domain. The computational burden

of the RBF method is mainly in the generation of the training set, while the computation of the

solution from the measured data can be performed, once the series coefficients are identified, in real

time.

It is not straightforward to compare the results of the GA-based and of the RBF-based inversion.

For instance, RBF approximations must be evaluated in terms of ensemble errors over a set of

cases (”test set”) spread over the whole seafloor parameters domain, since we want to test the

approximating abilities on the large, and not just locally. On the other hand, GA are evaluated in

terms of independent runs on the same data set. Keeping this difference in mind, we report here
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the results obtained with the RBF inversion. A training set of 800 input-output cases has been

generated, by randomly selecting the bottom parameters in an interval equal to the search interval

set for the GA, and the series coefficients have been identified. Another set of 50 cases (not included

in the training set) has been generated, and the acoustic field has been fed to the RBF expansion,

that generated the corresponding seafloor parameters. As in the GA case, the seafloor parameters

of interest are the compressional and the shear velocities in the first three seafloor layers.
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Figure 10: relative errors in P-velocity (a) and S-velocity (b). Each * represents the result of a

single run and the solid line is the mean relative error computed over 50 independent runs.

In figure 10 we report the relative error obtained with the RBF method for each case in the test

set, and the mean relative error. It can be seen that the mean error in compressional velocity

retrieval varies between 1 and 3% (depending on the layer), while the shear velocity mean error is

of the order of 20-25% for all layers, with a couple of cases that exhibit very significant deviation

from the mean. The presence of these ”outliers” in the RBF results are generally an indication of

inadequacies in the training set.

Apart the outliers, if one compare these results with those of figure 9, one can see that the two

methods yield qualitatively similar results, with a slightly better performance of GA with respect

to compressional velocity and the third layer shear velocity, and a moderate preference towards
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RBF for the first layer shear velocity. In terms of computational burden, the RBF method required

800 runs of forward models, while the GA run required 1800 runs, i.e., there is a factor of about

two between the two approaches.

It is important to remark that, with this example, we are not trying to establish which is the

”best” method for seafloor parameters identification, but what kind of results and approximation

is reasonable to expect in the given experimental configuration, i.e., with a moderate aperture

towed array in shallow water at a given frequency (100 Hz in this case). Moreover, work is still in

progress to improve the performance of both the adaptive GA and the RBF-based scheme.
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Figure 11: modulus of acoustic pressure versus hydrophone number for 30 successive time snapshots

at 125 Hz.

IV. Real data inversion

IV.1 Sea trial and ground truth measurements

In this section genetic algorithm based methods were applied to the inversion of field data. The

data set of interest was recorded during the sea trial SAG1-94, in the Panteleria Bank, Strait of

Sicily, and consisted of 5 minutes of data starting at 10:48 am on the 4th of March 1994. During this

run, R/V ALLIANCE was towing both a 156 m aperture horizontal array and a sound source. The

array was composed of 40 hydrophones at 4 m spacing and was at approximately 50 m depth. The
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source was at 40 m depth and the range between the source and the first array hydrophone (closest

to the ship) was 535 m. The source was emmiting continous tones at 125 Hz. The environment

was characterized by an almost isovelocity sound speed profile at 1508 m/s in the 120 m depth

water column over a layered subbottom. Figure 11 shows a series of 30 successive time snapshots

taken during that experiment. Independent ground truth measurements were carried out during the

cruise including sparker surveys, bottom sampling and geophone data transmission [22] revealing

a bottom geoacoustic model structure as given in table 2. Note, that only part of the information

of table 2, the two upper layers, was actually measured during the cruise, the deeper layers in

particular, were derived from Hamilton’s regression curves based on historical knowledge of the

region.

Thickness P vel. S vel.

(m) (m/s) (m/s)
6.0 1550 230.0
8.0 1585 275.0

18.0 1610 290.0
≥ 18.0 1700 360.0

Table 2: ground truth sediment model

IV.2 GA data inversion

The genetic algorithm code was run with a population size of 24 samples and a total number of

forward model runs of 1500. The objective function chosen is the conventional matched-filter of

equation (3). For the purpose of the inversion, a hard basement characterized by a P-velocity of

2200 m/s and a S-velocity ≥ 900 m/s was placed below the third layer. The inversion was carried

out on the data shown on figure 11 in two steps. First, a single snapshot inversion was attempted for

the P-velocity and layer thicknesses while keeping constant all the other system and environmental

parameters. Second, using the estimated layer thicknesses the inversion was made for all other

pings and the results are shown in table 3.

Thickness P vel. Std. dev.

(m) (m/s) (m/s)
6.0 1590 50.5
16.0 1649 37.6
26.0 1800 99.5

Table 3: GA inverted sediment sound velocity profile

The standard deviations shown in table 3 were estimated from the successive inversions of 30 time
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pings, each of them worth approximately 3 secs. of data. It can be noted that, there is a fairly

good agreement between the true and the estimated parameters, both for the layer thickness and

compressional velocities especially for the first layer. For the deeper layers the estimated values are

slightly higher than those given by the Hamilton’s regression (table 2) which can also be seen as

under estimated for the existing carbonate sand sediment in this region.

V. Conclusion

This paper has demonstrated with simulated data that it is possible to retrieve sea bottom phys-

ical properties from the acoustic data received on a moderate aperture towed array in a shallow

water environment. The first part of the study shows that the objective function sensitivity to

sound speed variations is higher on the bottom top layers and increases with array length. An

increased sensitivity is generally accompanied by a cost function non-monotonic behavior creating

local extrema and making it hazardous to reach the global optimum. Density and attenuations

(both compressional and shear) have in general small influence on the acoustic field structure and

are therefore difficult to estimate. Increasing the signal frequency bandwidth by incoherent module

averaging has no significant influence on sensitivity. A cost function relaying on the conventional

matched filter has shown low sensitivity to sensor noise and has been extended to match directional

data from bottom arrivals at several frequencies. A technique for providing a maximum likelihood

broadband estimate of the peak location has been derived and showed a good performance at

high SNR. Mismatch cases, mainly those related to array/source relative position, showed that

deviations of more than λ/5 in depth and λ/3 in range may give erroneous extremum location

and therefore biased final estimates. The second part of the paper deals with the inversion of the

acoustic data using a modified genetic algorithm. It is shown that allowing the variation of the

search interval along iterations provided a more accurate final estimate. In our study a maximum-

likelihood based estimator is proposed and in a two-parameter case it showed to be able to more

rapidly converge to the global optimum than the conventional matched filter estimator. In the

simultaneous 6 parameters case at 10 dB SNR, the estimates obtained were within 1% of the true

values for compressional velocities, while the accuracy of the shear velocities estimate strongly de-

pends, as one may expect, on the sensitivity of the acoustic field to these parameters. Comparison

of the adaptive GA performance with an inversion scheme based on RBF series expansion yield

substantially similar results. Finally, it has been shown with field data that it is indeed possible to

retrieve detailed sediment compressional velocities using a 156 m aperture horizontal array within

a reasonable error from the assumed ground truth values.

References

[1] W.H. Munk and C. Wunsch ”Ocean acoustic tomography: a scheme for large scale monitoring”,

19



Deep Sea Res. 26A 123-161 (1979).

[2] B. Cornuelle, C. Wunsch, D. Behringer, T. Birdsall, M. Brown, R. Heinmiller, R. Knox, K.

Metzger, W. Munk, J. Spiesberger, R. Spindel, D. Webb and P. Worcester ”Tomographic maps of

the ocean meisoscale. Part I: pure acoustics”, J. Phys. Ocean. 15 133-152 (1985).

[3] B. Cornuelle, W. Munk and P. Worcester ”Ocean acoustic tomography from ships”, J. Geophys.

Res.” 94 6232-6250 (1989).

[4] H.P. Bucker, “Use of calculated sound fields and matched-field detection to locate sound sources

in shallow water”, J. Acoust. Soc. Am. 59, 368-373 (1976).

[5] R. Klemm, “Range and depth estimation by line arrays in shallow water”, Signal Processing 3,

333-344 (1981).

[6] A.B. Baggeroer, W.A. Kuperman and H. Schmidt, “Matched-field processing: source localization

in correlated noise as an optimum parameter estimation problem”, J. Acoust. Soc. Am. 83, 571-

587 (1988).

[7] James F. Smith and S. Finette, “Simulated annealing as a method of deconvolution for acoustic

transients measured on a vertical array”, J. Acoust. Soc. Am. 94(4), 2315-2325 (1993).

[8] J.Q.D. Tran and W. S. Hodgkiss, “Array surveying using matched-field processing”, J. Acoust.

Soc. Am. 94(5), 2851-2858 (1993).

[9] A.B. Baggeroer and W.A. Kuperman, “Matched field processing in underwater acoustics”, Proc.

NATO ASI, Madeira(Portugal), 83-122 (1992).

[10] S.D. Rajan, “Determination of geoacoustic parameters of the ocean bottom-data requirements”,

J. Acoust. Soc. Am. 92(4), 2126-2140 (1992).

[11] M.D. Collins and W.A. Kuperman, “Non-linear inversion for ocean-bottom properties”, J.

Acoust. Soc. Am. 92(5), 2770-2783 (1992).

[12] A. Turgut, “Simulated annealing and genetic algorithms in shear modulus inversion of shallow-

water sediments”, J. Acoust Soc. Am. 93, (4) Pt.2, 2aAO15 (1993).

[13] P. Gerstoft, “Inversion of seismoacoustic data using genetic algorithms and a posteriori prob-

ability distributions”, J. Acoust. Soc. Am. 95 (2), 770-782 (1994).

[14] W.A. Kuperman, M.D. Collins, H. Schmidt “A fast simulated annealing algorithm for the

inversion of marine sediment seismo-acoustic parameters”, in Shear Waves in Marine Sediments,

J.M. Hovem, M.D. Richardson and R.D. Stoll (eds.), Kluwer, 1991.

20



[15] P. Gerstoft and A. Caiti, “Acoustic estimation of bottom parameters: error bounds by local

global methods”, Proc. 2nd European Conf. in Underwater Acoustics, L. Bjorno (ed.), Copenhagen,

DK, 1994.

[16] J.F. Lynch, S.D. Rajan and G.V. Frisk “A comparison of broadband and narrow-band modal

inversion for bottom geoacoustic properties at a site near Corpus Christi, Texas”, J. Acoust. Soc.

Am. 89 648-665 (1991).

[17] G.V. Frisk “Inverse methods in ocean bottom acoustic”, in Oceanographic and geophysical

tomography, Y. Desaubies, A. Tarantola and J. Zinn-Justin (eds.), Elsevier, 1990.

[18] H. Schmidt “SAFARI: Seismo-Acoustic Fast Field Algorithm for Range Independent Environ-

ments”, La Spezia, Italy, SACLANTCEN SR-113 (1988).

[19] S. Jesus “A sensitivity study for full-field inversion of geo-acoustic data with a towed array in

shallow water”, in Proc. of Sec. European Coference on Underwater Acoustics, L. Bjorno (ed.),

Copenhagen June 1994, pp. 899-904.

[20] D.E. Goldberg “Genetic algorithms in search, optimization and machine learning”, Addison-

Wesley, 1988.

[21] A. Caiti, T. Parisini and R. Zoppoli, “Seafloor parameters estimation: approximating the in-

verse map through RBF networks”, in Full-field Inversion Methods in Ocean and Seismic Acoustics,

O. Diachok, A. Caiti, P. Gerstoft, H. Schmidt (eds.), Kluwer, to be published Spring 1995.

[22] A. Caiti, T. Akal and R.D.Stoll, “Estimation of shear wave velocity in shallow marine sedi-

ments”, IEEE J. Oceanic Engi., vol. 19, pp.58-72, 1994.

21


