
COOPERATIVE LEARNING AND PLANNINGFOR MULTIPLE ROBOTSSJOERD VAN DER ZWAAN, JOS�E A. A. MOREIRA, PEDRO U. LIMAInstituto de Sistemas e Rob�otia, Instituto Superior T�enio,Av. Roviso Pais, 1049-001 Lisboa, Portugal,Fax: +351-218418291, E-mail: fsjoerd,moreira,palg�isr.ist.utl.ptAbstrat. This paper deals with the the subjet of learning and planning forreal mobile robots, using Sutton's Dyna algorithm. The Dyna algorithm integratesreinforement learning, planning and reative exeution. In this paper we presentan extension of the Dyna algorithm whih inludes symmetri and ooperativelearning with multiple robots. We applied the extended version of the algorithm to apopulation of two real robots. Pratial problems assoiated with the implementationof the algorithm on a real setup are solved. Results obtained from simulations andreal experiments are presented and disussed.Key words: Reinforement Learning, Cooperative Robotis, Visual Traking, Dyna.1 INTRODUCTIONThe ontrol of a roboti system, espeially theplanning of tasks to be performed by the robotto ahieve a goal, is in most ases a very om-plex problem. Several methods have been devel-oped to address this problem, one of whih is rein-forement learning [5℄. This method reveals greatsimpliity, addressing large and omplex problemsusing a simple approah. The learning is done byevaluating the results of exeuting a given taskthrough suess and failure signals and their re-spetive rewards and penalties, allowing the sys-tem to plan a solution through a probabilisti de-ision method by evaluating the performane.In the last few years, Sutton [1℄ and his asso-iates have explored reinforement learning algo-rithms. One of the algorithms developed is theDyna algorithm, whih integrates learning fromexperienes in the real world and virtual experi-enes done on an internal world model with rea-tive exeution. The main advantage of this ap-proah is that the hypothetial experienes speedup the learning proess. In fat, the algorithmperforms an inremental form of planning that islosely related to dynami programming. Suhan approah helps to partially overome the fre-quently enountered limitations of reinforementlearning appliations to robotis due to the prob-lem large state spae. A drawbak of this ap-proah is that it assumes that the agent an aessthe world state at no ost and at every time. Thisis not always realisti in real robotis appliations,e.g. when reognizing the goal state and perform-

ing obstale detetion. These are diÆult tasks toahieve and ertainly not error-free.In [3℄, Weiser and Lima present an appliationof the Dyna algorithm to a real robot, in whihthey study the appliation of this kind of rein-forement learning algorithms to situations morerealisti then the simulations usually desribed inthe literature. The approah adopted onsists innavigating a mobile robot through a maze froman initial position to a �nal position. One on-lusion drawn is that with suh a setup, initiallearning rates are very low, resulting in time on-suming �rst trials. Also, the state representationby a grid of ells is not always suitable, espeiallywhen dealing with large state spaes.In this paper the Dyna algorithm is extendedto symmetri and ooperative learning with a pop-ulation of agents. With this extension, learningrates are speeded-up by exploring ooperation be-tween agents. The extension also explores symme-try in learning data whih allows an agent to om-bine learning data obtained when traveling froman initial state to a goal state and vie versa. Wepresent an appliation of the extended algorithm,using a real set-up with two robots.The Setion 2 outlines the Dyna algorithm andthen extends the algorithm to symmetri and o-operative learning. In setion 3, an experimentalsetup to apply the extended Dyna algorithm to aset of real robots is desribed. Setion 4 presentssome results obtained from a series of experimentsperformed with the extended algorithm. Finally,in Setion 5, onlusions are drawn and futurework is disussed.



2 THE EXTENDED ALGORITHM2.1 The Dyna algorithmThe Dyna algorithm [1℄,[2℄ is based on the oldidea that planning is like trial and error learn-ing from hypothetial experienes. Based on thisonept, an agent interats with the world, fromwhih it reeives a suess or failure signal asso-iated to a given state-ation pair. Together withthe suess signal, the agent reeives a reward.The Dyna arhiteture onsists of four primaryinterating omponents, the �rst of whih is thereal world and represents the task to be solved.The agent also maintains an internal world modelthat is updated with the information gathered byinterating with the real world. As an additionalfeature, the agent performs hypothetial experi-ments using the urrent world model, intermixedwith the interation with the real world. The thirdomponent is the agent poliy that assoiates a setof possible ations to eah state. Finally, the Dynaarhiteture inludes an evaluation funtion thatmaps states to values and is updated from the re-inforement signals reeived from the world aftereah ation. This is done aording to the sim-plest version of the temporal di�erene learningmethod [5℄. The algorithm uses this evaluation toupdate the poliy so that the agent is able to planthe orret sequene of ations to ahieve the goal.The poliy table has an entry wxa for every pair ofstate x and ation a, whih is updated (using theevaluation funtion) so as to strengthen or weakenthe tendeny to perform ation a in state x. A-tions are hosen randomly aording to a Boltz-mann probability distribution, so as to guaranteestohasti onvergene of the algorithm:pfa j xg = ewxaPationsj ewxj (1)A step is de�ned as the transition from one ellto a neighboring ell. The algorithm ombinesreal steps, that are performed by the agent in thereal world, with hypothetial steps that are exe-uted by the agent over its world model. Bothtypes of steps update the evaluation funtion andthe poliy map of the agent. A trial is de�ned asa sequene of real steps whih ahieves the goalstate starting at some initial state. For a detaileddesription of the Dyna algorithm we refer to [2℄.2.2 The symmetri problemBased on the above version of the Dyna algo-rithm, the agent needs to return to its initial posi-tion and start another trial eah time it reahes agoal state. Although this is a simple task in a om-puter simulation, in a real system it is neessary todevelop a proedure for returning the agent to the

initial position whih would imply some form ofbak-traing the agent steps to reah the goal po-sition. If we restrit our problem to a setting werethere is a symmetry problem between the path tothe goal and the return path, then we propose toextend the Dyna algorithm suh that the agent isable to ontinue learning when traveling from thegoal state to its initial position.For the Dyna algorithm to work in this sym-metri way, it is neessary to maintain two evalu-ation funtions (one to travel from the initial posi-tion to the goal and another on the way bak), soas to preserve the mehanism of bakwards prop-agation of the evaluation funtion values in eahstate. Symmetri information an be found in thepoliy map, whih indiates stepping diretions ineah state.The main idea behind the extension is that af-ter entering the goal state, it is possible to trans-form the urrent poliy suh that it direts theagent bak to the initial position instead of thegoal position. Considering the ase in whih thealgorithm is applied to solve a maze as in [1℄,where the state is desribed by the position ofthe agent in the maze given by a oordinate pair(i; j) with i � rows = 0; 1; :::; n � 1 and j �olumns = 0; 1; :::;m � 1 and where the set ofavailable ations in eah state is given by: ation2 (left; right; up; down), we propose the followingsheme to implement suh a transformation:For i = 0 : n� 1For j = 0 : m� 1If state (i; j) is not oupied by an obstaleThen:if ell (i; j � 1) has no obstalepoliy(i; j)left = w(i; j � 1)rightelsepoliy(i; j)left = w(i; j)leftif ell (i; j + 1) has no obstalepoliy(i; j)right = w(i; j + 1)leftelsepoliy(i; j)right = w(i; j)rightif ell (i+ 1; j) has no obstalepoliy(i; j)up = w(i+ 1; j)downelsepoliy(i; j)up = w(i; j)upif ell (i� 1; j) has no obstalepoliy(i; j)down = w(i� 1; j)upelsepoliy(i; j)down = w(i; j)downFor i = 0 : n� 1For j = 0 : m� 1w(i; j)left = poliy(i; j)leftw(i; j)right = poliy(i; j)rightw(i; j)up = poliy(i; j)upw(i; j)down = poliy(i; j)downWhere wxa is the entry of the poliy table for



the state-ation pair given by state x = (i; j) andation a and poliy(i; j)a is an auxiliary variableused to alulate the transformed values for wxa.The value of wxa is used to ompute the proba-bility of an agent in the state (i; j) to move in thediretion given by a, aording to (1). Note thatin a given state (i; j), the value of the poliy to-wards an obstale, known in the world model, isnot hanged by the transformation.For the agent to be able to add new informationto the poliy table when returning to the initialposition, it is neessary to attribute a reward tothe initial position and reset the reward in the goalposition. Using the seond evaluation map whenreturning to the initial position, it is now pos-sible to apply the lassial Dyna algorithm withthe transformed poliy and iterate until the agentreahes its initial position. At this point the poliymap is transformed again, a reward is attributedto the goal position and using the �rst evaluationfuntion, the algorithm now iterates again untilentering the goal state.The only problem that arises onerns the useof the two separate evaluations funtions. Whenthe agent steps bak to its initial position usingthe transformed poliy and the seond evaluationfuntion, a situation is reated in whih inreasedpoliy values appear in states for whih no in-reased evaluation exists. But taking into aountthe struture of the Dyna algorithm, the hypo-thetial and real steps that will be performed willmake the seond evaluation funtion onverge toa symmetri version of the �rst evaluation map.
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GFigure 1: Example of the poliy map before(left) and after (right) applying the transforma-tion; the arrows represent the diretion ontain-ing the largest poliy values; no arrow means thatall diretions have a zero or negative poliy value;the goal state is at (3,3) and the initial state at(0,0).2.3 Cooperative learning and planningAnother interesting extension for the Dyna al-gorithm is to have a population of small robotsrunning in parallel through the maze, with theobjetive of speeding up the learning algorithmand testing ooperative strategies. Extending theDyna algorithm for a ooperative set of agents

means information sharing between the agents. Inthe ase of ommuniating agents, it is also ne-essary to onsider the ommuniation hannel be-tween real agents as not ompletely reliable andnoisy. Taking into aount these onsiderations,we propose the following ooperation strategy:- Eah agent maintains its own internal worldmodel , evaluation funtion and poliy map.- Upon disovering a new obstale or goal, anagent transmits the position of that obstaleor goal to the rest of the population.- Upon taking a real transition between states,eah agent transmits the resultant poliy valueobtained for that spei� state-ation pairto the rest of the population. The reeiv-ing agents update the orresponding entryof their poliy map using the following ex-pression:w(i; j)ation = w(i; j)ation + value2Where value is the resulting poliy valuetransmitted by the agent that performed thetransition.The main idea behind ommuniating the pol-iy values is that sharing the information of thenew obtained poliy value for a given state-ationpair with the other agents will redue the searhspae of the other agents, thus aelerating thelearning proess. Note that although initially therewill be a disrepany between the evaluation andpoliy maps of the reeiving agents, the hypothet-ial experiments that are performed by eah agentwill redue the disrepany.Another advantage of this ooperation strategyis its robustness. Sine eah agent has its individ-ual world model, it an always perform individuallearning and planning. Then, if for some reasona ommuniation failure arises during an intervalof time, eah agent still is apable of ful�lling itsobjetives on a stand-alone basis.A disadvantage is that eah agent needs a sig-ni�ant omputational apability to exeute theDyna algorithm for whih it also needs some mem-ory to be able to represent the world model withorresponding poliy maps and evaluation fun-tions. An alternative is to assign some proessingtime and memory of a entral proessing unit toeah individual agent whih runs the individuallearning and planning modules in parallel. Thisway, the agents only reeive the ations and trans-mit the results of those ations to the entral unit.This approah will be further explored in the fol-lowing setion, whih deals with the implementa-tion of the extended algorithm on a real system.



2.4 Deadlok avoidaneWhen running the extended Dyna algorithmfor a population of ooperative agents that sharethe same goal, all individual poliies will onvergeto the same poliy due to the bakwards propaga-tion of the ommon reeived rewards. This reatessituations in whih the agents will plan transitionsto ommon states, leading to deadloks. A dead-lok ours whenever two or more agents preparea step in the real world to the same state or when-ever two or more agents are fae to fae and planto swap positions. To solve the deadlok situa-tions, we propose an alternative state transitionrule, triggered whenever a deadlok ours. A-ording to this rule , instead of onsulting its pol-iy, an agent selets a random ation with equalprobability from the set of available ations. If theation is exeutable, the agent makes the tran-sition without hanging the poliy of the orre-sponding state-ation pair and without updatingthe evaluation values of the orresponding state.3 EXPERIMENTAL SETUP3.1 Overall systemThis setion desribes the experimental setupused for testing the extended version of the Dynaalgorithm on real robots. The overall system, il-lustrated in Figure 2, onsists of two vision-basedteleoperated ellular robots [6℄ ontrolled via aamera loated at an elevated position suh thatthe amera-image overs the whole workspae ofthe robots.

Figure 2: Shematis of the overall system used.The robots have no on-board sensors and areontrolled by a entral proessing unit. For eahindividual robot, the entral omputer runs threemodules: the learning and planning algorithm, avisual traking module and a ontrol module. Thevisual traking module is responsible for robotpose estimation from the visual information pro-vided by the amera. The ontrol module on-trols the individual robot position and headingdiretion via a radio link. Eah module will be

desribed in more detail in the following subse-tions.3.2 Learning and planning for real robotsTo apply the extended version of the Dyna al-gorithm to real robots, the world is de�ned as agrid of square ells (states), projeted onto theground-plane. Obstales are simulated by blakells. In Figure 3, this real setup is illustrated.
Figure 3: Example of a real world setup; the mazeis super-imposed on the amera image.Initially eah individual robot has an internalrepresentation of the world (stored in the entralomputer), whih is empty. For eah robot stepin the real world, the learning and planning algo-rithm provides a referene input obtained from theorresponding robot poliy. To exeute the step,eah robot �rst heks the visual information pro-vided by the amera to determine if the refereneell is empty. Although the amera provides theentral omputer with visual information onern-ing the whole workspae of the robots, the indi-vidual robot does not aess this information. Inthis setup, on-board vision sensors are simulated,by allowing eah robot only to san for obstalesor other robots in the diretion of movement.Upon suessful exeution of a step in the realworld, the orresponding world model is updated.3.3 Visual sensing and trakingIn order to ontrol the trajetory of eah in-dividual robot, it is neessary to relate the robotposition on the ground-plane (in metri oordi-nates) to its position in the image-plane (given inpixel oordinates). Eah image point ~m will orre-spond uniquely to a ertain point on the ground-plane ~M , aording to a plane-to-plane projetivetransformation [7℄: ~m = ~Pp: ~M (2)The 3� 3 transformation matrix P depends onthe amera intrinsi parameters and the ameraposition relative to the world frame. One thetransformation matrix is estimated, it an be used



to onvert the oordinates from robots and obsta-les in the image plane to the ground-plane andvie versa.A traking system is developed whih estimateseah individual robot position and heading dire-tion over time from the sequene of amera im-ages. The video amera uses a RGB representa-tion, allowing olor detetion for robot segmenta-tion in the image-plane.The traking systems runs at a frequeny ofabout 5 Hz and performs robust estimation undervarious lightning onditions. Image proessing isdone loally in a small neighborhood of the atualrobot position.3.4 Robot ontrol systemThe ontrol system implemented on the en-tral omputer runs a ontrol algorithm for eahindividual robot, ontrolling its position and ori-entation towards a �nal position provided by thelearning and planning algorithm.The mobile platforms used have a di�erential-drive struture, where two DC-motors diretly drivethe left and right wheels independently.The ontrol strategy onsists in dynamiallyorienting the robot towards the �nal position, spe-i�ed by the enter position of the goal ell and pro-vided by the learning and planning module. Theontroller reeives the atual position and orien-tation sensed by the visual system and generatesappropriate motor ommands. Along the path,the robot will move at onstant ruise speed. Therobot position is ontrolled by an on/o� ontroller,generating a onstant ommon-mode voltage (re-sulting in a onstant linear veloity of the robot)whenever the robot is outside a prede�ned radiusenirling the �nal position. A PID-ontroller isused to ontrol the robot heading diretion, gener-ating di�erential voltages as a funtion of the errorin orientation. This di�erential signal is super-imposed on the ommon mode signal and sent toeah robot by a radio-link. The radio-link oper-ates at a rate of 1200 bps via serial-port ommu-niation with the entral omputer. At this rate,the entral unit reahes a ontrol frequeny up to21.8 Hz with a single robot and 1.36 Hz with 16robots.4 RESULTSIn this setion we ompare the performane ofthe symmetri single agent algorithm with the o-operative symmetri algorithm. Results are ob-tained from experiments with the real world setupas illustrated in Figure 3.The real-time experiments were performed us-ing the symmetri algorithm for a single robot(blue robot) and the ooperative symmetri al-

gorithm for a set of two robots (red and bluerobot). In the seond ase, the blue robot wasplaed in the initial position and the red robotwas plaed next to the blue robot. Neverthelessit ould be plaed anywhere in the world. Theparameter setting used for the Dyna algorithm is:� = 4; � = 0:1;  = 0:9. One hundred hypo-thetial steps were performed for eah real step.Evaluation values were initialized at zero.The performane measure used for omparisonis the number of steps per trial. In the originalDyna algorithm a trial is de�ned as a ompletepath from the initial position to the goal position.Sine with the symmetri algorithm the agent willalso learn when returning from the goal position tothe initial position, it is neessary to restate thede�nition of a trial so as to be able to ompareperformanes. De�ning a trial as a omplete pathbetween the initial position and goal position orvie versa, we used the average value between thenumber of steps obtained from stepping from theinitial position to the goal position and the num-ber of steps obtained from stepping bak from thegoal position to the initial position.Figure 4 displays the average number of stepsper trial obtained from two experiments with boththe symmetri and ooperative symmetri algo-rithm, where eah experiment runs �ve trials. Alsothe average number of deadloks that ourredwith the ooperative symmetri algorithm are dis-played.
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Figure 4: Results obtained from real experienes.The values indiated are average values obtainedfrom 5 experienes.Analyzing the obtained results it is possible toverify that the experiment with two robots willinitially onverge faster to the solution than theexperiment with a single robot. This is also il-lustrated in Figure 5, where the internal worldmodel and poliy of the blue robot upon enteringthe goal state for the �rst time is illustrated forboth the symmetri- and ooperative symmetrialgorithm. With the ooperative algorithm, the



blue robot poliy is muh more omplete due toinformation exhange with the red robot, whihalready has entered the goal state.
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GFigure 5: Internal world model and obtained pol-iy of the blue robot upon entering the goal statefor the �rst time; left: symmetri algorithm; right:ooperative symmetri algorithm.An important observation is that due to dead-lok situations, that our in the ooperative set-ting, the number of steps per trial will osillate,while in the ase of a single robot, the number ofsteps onverges to a minimum after three trials.It is important to realize that the osillation ofthe number of steps per trial for the ooperativesetting does not imply that the path planned bythe robots hanges. The inreased value of stepsis due to the extra steps needed to solve the dead-lok.5 CONCLUSIONS AND FUTUREWORKThe results obtained with the symmetri Dynaalgorithm show that the use of a ooperative setof agents allows the algorithm to reah the goalfaster, espeially in the �rst iteration where noknowledge of the world and of the goal positionis available. The possibility of distributing theagents over the world allows the algorithm to reahthe goal even faster, sine eah agent will explorea di�erent region of the searh spae and transmitthat information to all other agents.The development of a symmetri algorithm al-lows the agents to return to their initial positionwhile ontinuing to learn.A deeper experimental study using larger worldsis neessary to demonstrate more learly the per-formane of the ooperative extended algorithm.A theoretial study must be made to show thestohasti onvergene of this extended Dyna al-gorithm.Future planned improvements inlude the us-age of fully autonomous robots, without the needto use an overviewing amera and external pro-essing.
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