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Abstract—This work considers the problem of locating a
single source given a set of squared noisy range difference
measurements to a set of points (anchors) whose positions are
known. In the sequel, the localization problem is solved in
the Least-Squares (LS) sense by writing the source position in
polar/spherical coordinates. This representation transforms the
original nonconvex/multimodal cost function into the quotient of
two quadratic forms, whose maximization is more tractable than
the original problem. A solution technique based on the bisection
algorithm and Karush-Kuhn Tucker (KKT) conditions is pro-
posed for the resulting optimization problem. Simulation results
indicate that the proposed method has similar accuracy to state-
of-the-art optimization-based localization algorithms in its class,
and the simple algorithmic structure and computational efficiency
makes it appealing for applications with strong computational
constraints, e.g., in the context of wireless sensor networks.

Index Terms—Squared range difference-based source localiza-
tion, TDOA, least squares, Karush-Khun Tucker conditions.

I. INTRODUCTION

The problem of locating a source that emits some type of
characteristic signal has been widely studied over the past
few decades, both for military and industrial applications. In
practice, sources can be localized using the time of arrival
(TOA), time difference of arrival (TDOA), angle of arrival
(AOA), received signal strength (RSS) or combinations of
those. In the TOA approach, the source and the sensors need
to be synchronized (or operate cooperatively in transponder
mode to measure round-trip times), so that a common time
reference is available to measure absolute propagation delays.
In a wireless rich scattering environment, RSS measurements
can be highly volatile and noisy. Angular information is
frequently used in several localization applications, but the
required directive antennas are costly. Due to these difficulties,
this work addresses the TDOA measurement model, for which
only the differences of measured arrival times between sensing
nodes are required.

Classical TDOA-based self-localization in navigation appli-
cations can be realized by intersecting a set of hyperbolas that
are the contour lines of constant (measured) range differences
between various beacons and the reference. Because of errors
in TDOA measurements, these hyperbolas will not intersect
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at a single point, which leads to mathematically inconsistent
localization equations. A common goal is to find an estimate
of the source location that minimizes those inconsistencies.

In the literature, there are mainly four approaches to solve
the nonlinear system of equations defining the hyperbolic
localization problem [1], [2].

The first traditional approach is the reorganization of the
nonlinear terms and introduction of additional variables to
attain linear equations that can be solved in closed form by
LS [3]. While computationally simpler than iterative methods,
Maximum Likelihood (ML) or otherwise, the reorganized
linear equations are only suitable in practice for sufficiently
small measurement noise.

The second approach is based on the nonlinear LS frame-
work where Taylor-series expansion is used for linearization
and the solution is obtained iteratively [4]. When TDOA
measurements are corrupted by Gaussian noise, the global
minimum of the objective function corresponds to the ML
location estimate, which has proven asymptotic consistency
and efficiency. Although optimum estimation performance
can be attained, this method requires a sufficiently precise
initialization.

Recently, various Semidefinite Relaxation (SDR) methods,
each with its own advantages and drawbacks, were proposed to
solve different variations of the hyperbolic localization prob-
lem. An approximate ML formulation of TDOA localization
is presented in [5], based on an effective relaxation method to
transform the original nonconvex optimization problem into a
convex one. However, for accurate results all pairwise TDOA
measurements between pairs of nodes have to be exhaustively
incorporated into a cost function for minimization, which
potentially leads to high computational complexity.

An approximate and iterative localization method that can
be implemented in a distributed manner is introduced in [6].
It is based on the popular approach of Projection Onto Con-
vex Sets (POCS), modified to accommodate the unbounded
hyperbolic sets that arise in TDOA localization. Numerical
simulations show that hyperbolic POCS has several desirable
features, such as the ability to accurately locate sources outside
of the convex hull spanned by the sensors.

In the present work, an exact and globally convergent LS
technique denoted Bisection-KKT (BKKT) is proposed for the
source localization problem using the square of noisy range
difference measurements. Although the problem is nonconvex,
we recast it into a more tractable form through a novel
technique that switches from Cartesian to polar/spherical co-
ordinates. Unlike relaxation-based methods, the actual source
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coordinates are retained as optimization variables, and since
other approximations are not required we refer to this approach
as exact. The method has low computational complexity and
several numerical examples show that it is very accurate, even
surpassing (albeit slightly) state-of-the-art algorithms based
on similar cost functions. Note that algorithms which use
plain, rather than squared, range differences might provide
better accuracy at the expense of additional computational
complexity and/or increased sensitivity to initialization.

This paper is organized as follows. Section II formulates
the problem of source localization based on squared TDOAs,
discusses solution techniques, and introduces the proposed
approach. Simulation results are presented in Section III to
evaluate the location estimation performance of the proposed
estimator by comparing it with other existing methods and
a simple grid search. Finally, conclusions are drawn in Sec-
tion IV.

Throughout, vectors and matrices are denoted by boldface
lowercase and uppercase letters, respectively. The i-th compo-
nent of a vector x is written as xi. The superscript T denotes
the transpose of the given real vector or matrix.

II. PROBLEM FORMULATION

Let x ∈ Rn be the unknown source position, ai ∈ Rn,
i = 1, . . . ,m be known sensor positions (anchors) and assume
there exists an additional reference sensor (sensor 0) located
at the origin. The noiseless range difference between sensor i
and the reference is given by

di = ‖x− ai‖ − ‖x‖, for i = 1, . . . ,m. (1)

For given di, ai, the set of possible locations x satisfying (1)
is a hyperbola with foci ai and 0.

In the presence of noise-induced inconsistencies a natural
choice is to minimize the sum of residuals between measured
range differences and those predicted by a hypothesized source
location. However, the source localization problem can also be
solved by picking the source location as the minimizer of a
so-called equation error, i.e., the minimizer of the difference
between functions of the measured range differences and those
hypothesized for a given source location [7]. This still leads
to exact solutions with the proposed formulation. Specifically,
the modified residual is

‖x− ai‖2 − (di + ‖x‖)2 = −2aTi x− 2di‖x‖ − d2i + ‖ai‖2

yielding the following LS criterion for the source position [8]:

minimize
x

m∑
i=1

(−2aTi x− 2‖x‖di + gi)
2, (2)

where gi = ‖ai‖2 − d2i . Expanding (2) and dropping constant
terms, it can be represented more compactly as

minimize
x

xTAx + fT ‖x‖x + sTx + e‖x‖ (3)

where

A =

m∑
i=1

(4aia
T
i + 4d2i I), f =

m∑
i=1

8diai, (4)

e =

m∑
i=1

−4digi, s =

m∑
i=1

−4aigi. (5)

Expressing the source location in terms of its range and
bearing, i.e., {x = ru : r > 0 and ‖u‖ = 1}, (3) can be
written as the following constrained optimization problem:

minimize
r,u

f(r,u) = r2(uTAu + fTu) + r(sTu + e)

subject to r > 0, ‖u‖ = 1.
(6)

For a given u, (6) is a quadratic cost function whose uncon-
strained optimal solution with respect to r is readily found in
closed form from the first order stationary condition

∇rf(r,u) = 2ruTAu + 2rfTu + sTu + e = 0

and

r∗ = − e+ sTu

2(uTAu + fTu)
. (7)

From A and f in (4) the denominator of (7) is readily shown to
equal to 8

∑m
i=1(aTi x+di)

2 > 0. Moreover, because a solution
x∗ to the original problem (2) exists its polar decomposition
x∗ = r∗u∗ will solve (6) and make the numerator of (7)
negative. Substituting the optimal r into (6) leads to

p∗ =
maximize

u

(e+ sTu)2

4(uTAu + fTu)

subject to ‖u‖ = 1, e+ sTu < 0.

(8)

Problem (8) can be solved in two ways:

A. Direct Search Method

When n = 2 or n = 3 a straightforward (and practi-
cal) approach to solve (8) is to perform a 1D or 2D grid
search for a near-optimal u. For instance, in 2D vector u is
parametrized as [cos θ sin θ]T , where θ ∈ (0, 2π] and for 3D,
u = [sin θ cosψ sin θ sinψ cos θ]T , where θ ∈ (0, π] and
ψ ∈ (0, 2π]. It is a simple method and if the search is fine
enough, it finds a good approximation to the source location.
It is possible to bound the Lipschitz constant of the objective
function to be evaluated, from which a sufficiently coarse grid
that adequately brackets its maximum can be derived [9]. One
may then resort to a zoom-in procedure to attain the desired
accuracy.

B. Bisection Method

Before showing the application of the bisection method to
(8), we define an interval that is known to contain the optimal
value of (8) and where the bisection search is done.

Problem (8) can be equivalently stated as

maximize
u,v

(e+ sTu)2

4(vTAv + fTv)

subject to ‖u‖ = 1, e+ sTu < 0,

‖v‖ = 1, e+ sTv < 0,

u = v,

(9)

and the last equality constraint is dropped to obtain a relaxed
form

maximize
u,v

(e+ sTu)2

4(vTAv + fTv)

subject to ‖u‖ = 1, e+ sTu < 0,

‖v‖ = 1, e+ sTv < 0.

(10)
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Optimization problem (10) can be expanded into two problems
to separately maximize the numerator and minimize the de-
nominator. The ratio of their optimum values gives the upper
bound of the interval, p̄. For the lower bound, p, 0 or −p̄ might
be chosen.

The bisection method checks if p∗ ≥ t at the midpoint
of the interval, t = (p̄ + p)/2, and updates the interval at
each iteration until its length is below a given threshold. The
feasibility problem is

find u

subject to (e+sTu)2

4(uTAu+fTu)
≥ t,

‖u‖ = 1, e+ sTu < 0.

(11)

Equivalently,

find u
subject to uTMu + 2bTu + δ ≤ 0,

‖u‖ = 1, e+ sTu < 0,
(12)

where M = 4tA − ssT , 2b = 4tf − 2es and δ = −e2.
However, this is equivalent to checking if the optimal value
of the following optimization problem is less than 0 or not

minimize
u

uTMu + 2bTu + δ

subject to ‖u‖ = 1, e+ sTu < 0.
(13)

Problem (13) is a variation of the trust region subproblem,
for which optimality conditions and approaches to obtain the
global minimizer are known [10]. An efficient method will be
introduced to exactly solve (13) using KKT conditions in the
sequel.

Since M is a symmetric matrix, it is decomposed as M =
QDQT , with diagonal D and QQT = QTQ = I, to re-
express (13) as

minimize
v

vTDv + 2cTv + δ

subject to ‖v‖ = 1, e+ sTQv < 0,
(14)

where v = QTu and c = QTb.
For any optimization problem with differentiable objective

and constraint functions for which strong duality holds, any
set of primal and dual optimal points must satisfy the KKT
conditions [11]. The Lagrangian of (14) with dual variables λ
and γ is defined as

L(v, λ, γ) = vTDv+2cTv+δ+λ(vTv−1)+γ(e+sTQv).
(15)

The KKT conditions

∇vL(v∗, λ∗, γ∗) = 0, (16)

e+ sTQv∗ < 0, (17)

v∗Tv∗ = 1, (18)
γ∗ ≥ 0, (19)

γ∗(e+ sTQv∗) = 0 (20)

are satisfied by the primal-dual optimal points (v∗, λ∗, γ∗).
From conditions (17), (19) and (20), it is obvious that γ∗ = 0
and

∇vL(v, λ) = (D + λI)v + c = 0, (21)

vTv = cT (D + λI)−T (D + λI)−1c = 1. (22)

Since D = diag(σ1 . . . σn), where σi denotes an eigenvalue of
M, λ can be found by calculating the roots of the polynomial

n∑
i=1

c2i
(σi + λ)2

= 1.

For example for 2D, we have a 4th-degree polynomial

λ4 + 2(σ1 + σ2)λ3 + (4σ1σ2 + σ2
2 + σ2

1 − c21 − c22)λ2+

2(σ2
1σ2 + σ1σ

2
2 − σ2c21 − σ1c22)λ+ σ2

1σ
2
2 − c21σ2

2 − c22σ2
1 = 0,

whose four roots correspond to four possibilities for critical
points v = −(D + λI)−1c. Evaluating the objective function
of (14) and checking the constraint e + sTQv < 0 at these
points, the global minimum can be found. It is an exact and
very fast method. The major requirement is to calculate the
roots of a polynomial of degree 4 (for 2D) or 6 (for 3D). This
method will be called BKKT.

III. SIMULATIONS AND COMPARISONS WITH EXISTING
METHODS

An exact solution to the problem of source localization
using squared range differences (SRD-LS) is given in [8],
solving a quadratic objective function subject to two quadratic
constraints. Another popular approximate solution to (2), the
so-called Spherical Interpolation (SI) method, is based on
closed-form linear approximation techniques [7]. In the sequel,
our proposed method (BKKT) and the simple grid search
discussed in Section II-A (SEARCH) are compared with SRD-
LS and SI.
Example 1: To investigate the accuracy of the methods, two
physical scenarios are set with a source located in the near field
and far field of the sensors. The performance metric is root

mean square error (RMSE), defined as
√

1
K

∑K
k=1 ‖x− x̂k‖2,

where x̂k denotes an estimated source position in the k-th
Monte Carlo run. The number of Monte Carlo runs is 1000
for each noise level.

Near Field Case: In this part of the example, the methods
will be compared using five anchors plus a reference sensor at
the origin. In each Monte Carlo run the anchor locations ai and
the source x were randomly generated from a uniform distri-
bution over the square [−10, 10]× [−10, 10] m. The observed
range-difference measurements were obtained by adding a
normal random variable with mean zero and standard deviation
σgaussian ∈ [10−4, 10−1] m to the exact range differences.
Figure 1 shows the positions of anchors, hyperbolas defined
by each anchor-reference sensor pair and its measured range
difference, as well as the real source position and its estimate
by BKKT and SRD-LS in one specific Monte Carlo run for
the near field case. The true and estimated source position
appear at the intersection of the so-called right branches of
the hyperbolas. Table I lists the RMSE of the methods. The
RMSE of SEARCH, BKKT and SRD-LS are similar with a
slight superiority of BKKT and better than the approximate
method SI.

Far Field Case: An array with 10 anchors plus one ref-
erence sensor is considered. In each run, the coordinates
of 10 anchors that are not located at the origin were ran-
domly generated from a uniform distribution over the square
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Fig. 1: Hyperbolas and the source position estimated by BKKT
and SRD-LS methods.

TABLE I: RMSE comparisons of SEARCH, BKKT, SRD-LS
and SI for near field case.

σgaussian SEARCH BKKT SRD-LS SI
1e-4 0.0215 0.0190 0.0204 0.0230
1e-3 0.0574 0.0572 0.0568 0.0603
1e-2 0.1646 0.1646 0.1647 0.1808
1e-1 0.5604 0.5604 0.5605 0.6117

[−10 10] × [−10 10] m and the coordinates of the source
were randomly generated from a uniform distribution over the
square [−200 − 190] × [−200 − 190] m. The observed
range-difference measurements were obtained as described
previously. Table II shows the RMSE of the methods for
σgaussian ∈ [10−4, 10−1] m. Again, the results of the exact
methods are nearly identical and better than the approximate
one. The RMSEs are considerably higher than in Table I, as
the source is now always located outside of the convex hull
of the anchors, and localizing it becomes harder.
Example 2: This example is provided for direct comparison
with Example 3 in [8]. Consider an array of m = 5 sen-
sors in the plane (n = 2) whose coordinates are given by
a1 = (−5,−13) m, a2 = (−12, 1) m, a3 = (−1,−5) m,
a4 = (−9,−12) m, a5 = (−3,−12) m. The source coordi-
nates are x = (−5, 11) m. The observed range differences
were obtained by adding white Gaussian noise with standard
deviation 0.2 m to the exact range differences. The exact
range-differences and their noisy observations are given by

Exact: 11.9170 0.1235 4.4094 11.2622 11.0037

Noisy: 11.8829 0.1803 4.6399 11.2402 10.8183.

SRD-LS has a two-step solution procedure. The first step,
which resorts to a bisection method and a root finding tech-
nique, has a similar computational complexity to BKKT and
both of them have a running time less than a second for the
scenarios given in this paper. As it is numerically shown in [8],
the first step often fails for problems with high noise levels.
When the first step fails, i.e., when the last component of
a solution vector is negative, it invokes the second step that
satisfies necessary optimality conditions.

xfirst step SRD-LS = (−7.1645,−12.2497),

TABLE II: RMSE comparisons of SEARCH, BKKT, SRD-LS
and SI for far field case.

σgaussian SEARCH BKKT SRD-LS SI
1e-4 0.3156 0.3222 0.3224 0.3270
1e-3 1.1821 1.1823 1.1834 1.2154
1e-2 3.6724 3.6725 3.6724 3.8401
1e-1 13.303 13.303 13.303 13.397

xSI = (−6.5644,−6.0209),
xSEARCH = (−4.9800, 10.2834),
xBKKT = (−4.9798, 10.2786) and
xsecond step SRD-LS = (−4.9798, 10.2786).
For this setup SRD-LS is unable to give an accurate result

without the second step which adds additional computational
complexity.

IV. CONCLUSION

A new algorithm for source localization based on squared
range differences was proposed and numerically evaluated.
The approach describes the source location in polar coor-
dinates, leading to a non-convex algorithm whose solution
can be efficiently found from the KKT conditions through
bisection. The algorithm is very precise, yielding localization
accuracies that are (slightly) better than those of state-of-
the-art algorithms, including others based on root-finding
techniques. In addition to high accuracy and computational
efficiency, the proposed method has a simple (non-branched)
algorithmic structure that may be very appealing in practical
implementations.
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