
Simultaneous Localization and Mapping in Sensor Networks: a GES
sensor-based filter with moving object tracking

Pedro Lourenço, Pedro Batista, Paulo Oliveira, and Carlos Silvestre

Abstract— This paper presents the design, analysis, and
validation of a globally exponentially stable (GES) filter for
tridimensional (3-D) range-only simultaneous localization and
mapping in sensor networks with moving object tracking. For
observability analysis purposes, two nonlinear sensor-based dy-
namic systems are formulated resorting only to exact linear and
angular kinematics and a motion model for the target. A state
augmentation is exploited that allows the proposed formulation
to be considered as linear time-varying without linearizing the
original nonlinear systems. Constructive observability results
can then be established, leading naturally to the design of a
Kalman Filter with GES error dynamics. These results also
provide valuable insight on the motion planning of the vehicle.
Simulation results demonstrate the good performance of the
algorithm and help validate the theoretical results, as well as
illustrate the necessity of a proper trajectory.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is the
problem of navigating a vehicle in an unknown environment,
by building a map of the area and using this map to deduce
its location, without the need for a priori knowledge of
location. It has been subject of intensive research by the
community, and a myriad of approaches have arisen, varying
in filtering concept and type of sensors used (see [1] and
[2] for a two-part survey on this matter). Although the most
studied version of the SLAM problem is what is called range-
bearing SLAM, where the coordinates of measured beacons
are readily available, there are versions of the problem that
omit one of the two informations available, either range-only
SLAM (RO-SLAM) or bearing-only SLAM (BO-SLAM).
These approaches are named partially-observable, as a single
noise-free observation provides only a line or surface as
an estimate for the position of a beacon. This is one of
the main problems in RO-SLAM, i.e., the initialization of
the algorithm. The common RO-SLAM formulation has
similarities with the problem of Sensor Networks (SN), in
the sense that there is an agent receiving signals from a
network of sensors, and, therefore, the two ideas have been
used in conjunction in works such as [3] and [4], where,
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along with agent-to-sensor ranges, sensor-to-sensor ranges
are also used, thus approximating the RO-SLAM problem
to the sensor network localization problem. In that direction,
the authors of [5] use the concept of multi-hop measurements
in the SLAM context.

In spite of their proximity, the fields of SLAM and
self-localization of sensor networks have historically been
treated separately and by different fields of research, robotics
and signal processing. Due to that fact, very different ap-
proaches have been taken to produce algorithms for each
of these topics, from the Bayesian approach of robotics to
the convex optimization-based solutions spawned by signal
processing. The proliferation of (wireless) sensor network
applications, including environmental monitoring, intrusion
detection, search and rescue, within others, has led to a
significant research interest on the development of local-
ization techniques (see [6] and references therein for an
overview of these techniques). Due to the inherent distributed
computation capabilities of a sensor network, several self-
localization algorithms have been developed to explore those
capabilities, of which [7] is a good example as it provides
an optimization algorithm that addresses both range-based
and connectivity-based localization. Most algorithms rely
on nonlinear optimization problems with convex relaxation
techniques or on multidimensional scaling [8].

Another typical use of sensor networks is the tracking
of moving objects. This is mostly known in the scientific
community as the simultaneous localization and tracking
problem [9] and is closely related to SLAM. It is usually
formulated in a Bayesian framework [10], which brings it
further closer to SLAM.

In this paper, it is proposed a fusion of all these con-
cepts in a RO-SLAM framework. With this approach, a
motion-aided mapping of the sensor network is achieved.
Taking advantage of the sensor-based approach that allows
the whole network to be observable without anchors (as
opposed to the absolute or inertial approach that requires
anchors [8]), this paper introduces a novel algorithm for
RO-SLAM in sensor networks with moving object tracking
(SN-SLAMMOT) that eliminates the initialization problem
through the establishment of global convergence results with
a tridimensional (3-D) sensor-based formulation that avoids
the representation of the pose of the vehicle in the state, as
it becomes deterministic and available by construction. This
SN-SLAMMOT solution builds on a preliminary version that
presented only RO-SLAM capabilities [11], and is grounded
on the source-localization algorithm proposed in [12] and
the long baseline (LBL) navigation algorithm presented in
[13], as the global convergence results are achieved through
similar state augmentations.
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The main contributions of this paper are the design, anal-
ysis, and experimental validation of a 3-D SN-SLAMMOT
algorithm that (i) has globally exponentially stable (GES)
error dynamics; (ii) resorts to the exact linear and angular
motion kinematics; (iii) solves a nonlinear problem with
no linearizations whatsoever; and (iv) builds on the well-
established linear time-varying Kalman filtering theory. Note
that, although the maps and the target position provided
by this filter are expressed in vehicle-centric coordinates, it
is possible to obtain an inertial estimate of the map, the
vehicle pose, and the target position using, for example,
the algorithm proposed in [14], in which a methodology
was presented to obtain inertial estimates of the pose of the
vehicle and of the beacon map using only the sensor-based
map. This algorithm was successfully used with other purely
sensor-based SLAM filters such as [15] and [16].

Throughout the paper, the symbol 0n×m denotes an n×m
matrix of zeros (if only one subscript is present, the matrix
is square), In is an identity matrix with dimension n,
diag (A1, . . . ,An) is a block diagonal matrix, and 1n is
a n× 1 vector of ones.

II. SLAM IN SENSOR NETWORKS

A. Problem statement
Consider the existence of a sensor network composed of

several static nodes, or beacons, and two mobile nodes, or
agents. One of the agents is a full-fledged vehicle with
several sensing capabilities, such as ranging, as well as
angular and linear odometry. The other agent is merely
passive, i.e., it does not measure any motion-related vari-
ables and its distance to other nodes is only measured
by them. This could represent a person, another vehicle
in an enemy setting, within other possibilities. The sensor
network distributes among its nodes the range measurements
acquired by each of its nodes. Therefore, each beacon can
maintain an average filter for the range from its static
neighbours, thus reducing the uncertainty of that information.
The vehicle is the only node with real computing capabilities,
and therefore the localization of itself and the remaining
network is performed in the vehicle. This renders the problem
at hands a simultaneous localization and mapping/tracking
problem. One advantage of looking at this in a SLAM
framework is that with the regular algebraic solutions for
sensor-network localization data loss is a very relevant issue
as is network connectivity. With a SLAM filter, as long
as certain observability conditions are fulfilled, the whole
network can be localized in time.

Let {I} be a local inertial frame and {B} a body-fixed
frame, attached to the vehicle. The pair

(
Ip(t),R(t)

)
∈ R3×

SO(3) maps frame {B} into the inertial frame.
There are m static beacons, denoted in the inertial frame

as Ipi(t) ∈ R3, with i ∈M := {1, . . . ,m}, or in the body-
fixed frame as pi(t) ∈ R3. The second agent, henceforth
denominated the target, is denoted as IpT (t) ∈ R3 or
pT (t) ∈ R3 depending on whether it is expressed in frame
{I} or {B}.

Throughout the network, the following range measure-
ments are available: beacon-to-beacon (B2B), denoted as
rij(t) > 0 for all i < j and i, j ∈ M, vehicle-to-beacon
(V2B), denoted as ri(t) > 0 for all i ∈ M, vehicle-to-
target (V2T), or rT (t) > 0, and beacon-to-target (B2T),

denoted as riT (t) > 0 i ∈ M. The vehicle has available its
linear and angular velocities as expressed in its own frame,
respectively v(t) ∈ R3 and ω(t) ∈ R3. This can be seen as
three-dimensional (3-D) odometry.

B. Filtering concept

The main idea behind this paper is the sensor-based ap-
proach that allows to solve one of the main nonlinearities that
affects the SLAM problem: the presence of the vehicle pose
in the state. In this particular formulation of SLAM, with
range-only measurements, there are further nonlinearities that
impair the development of filtering solutions with conver-
gence guarantees, namely the nonlinear relation between the
output (the ranges) and the state (the beacons positions).
This nonlinearity can be bypassed through the use of state
augmentation, as was successfully done by the authors in
[12] and in the SLAM-context in [11]. In those works, the
state augmentation and the sensor-based approach allowed
to design systems that resemble linear time-varying systems,
and therefore permit the usage of the Kalman filter with
its convergence and stability properties. Following the same
reasoning, this work aims at achieving global convergence
and stability results in a filter for the problem described
before.

a) SN-SLAM: The problem is modelled as a nonlinear
dynamic system, expressed in local coordinates, fixed to
the vehicle similarly to the RO-SLAM problem in [11]. In
fact, if there are no agents besides the vehicle, the only
difference to RO-SLAM is the presence of sensor-to-sensor
ranges, and the fact that each beacon is capable of measuring
distances and save them. This communication allows for the
nodes without direct connectivity to a given node to have
information about that node with a few timesteps of delay
– allowing for multi-hop filtering when that information
reaches the vehicle. Hence, the nonlinear system that encodes
that part of the problem is

ṗi(t) = −S [ω(t)]pi(t)− v(t),∀i ∈M
v̇(t) = 0

yV (t) = v(t)

rj(t) = ‖pj(t)‖,∀j ∈MO

rkl(t) = ‖pk(t)− pl(t)‖,∀k, l ∈MI

, (1)

where S [ω(t)] is a skew-symmetric matrix that encodes the
cross-product, and the linear velocity is directly measured,
even though it is modelled as constant for filtering purposes.
The setMO := {1, . . . ,mo} represents the beacons directly
observed by the vehicle (in contrast to the setMU := {mo+
1, . . . ,m}), and the set MI contains the beacons indirectly
observed (note that, in general, MO ∩MI 6= ∅).

b) Tracking moving agents: Given that the second agent
is passive in the network, a model must be assumed for its
motion. For simplicity and to allow the use of an LBL-like
structure, the constant velocity model is used in the inertial
frame, resulting in

d

dt
(R(t)pT (t)) =

IvT (t)−R(t)v(t)

Iv̇T (t) = 0

rT (t) = ‖pT (t)‖
riT (t) = ‖pi(t)− pT (t)‖

, (2)
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where IvT (t) ∈ R3 is the velocity of the target expressed
in the inertial frame, and MT := {1, . . . ,mT } is the set of
beacons whose field-of-view includes the target.

In opposition to the beacons, ranges to the target can only
be used in the instant they are acquired, i.e., only the range
to the target whose originating beacons are directly seen by
the robot matter, as multi-hop ranges are older and cannot be
easily inserted in a forward-time filter. A possibility is their
use in a smoother [17] in post-processing to better recover
the full trajectory of the target.

The ultimate idea behind this paper is to design a linear
time-varying (LTV) system that mimics the nonlinear dynam-
ics derived in this section, while allowing for a LTV Kalman
filter to serve as the filtering engine for this problem, taking
advantage of its good stability and convergence properties.

III. SYSTEM DESIGN

This section presents the design of new systems that can be
regarded as LTV for observability purposes, while mimicking
the underlying nonlinear systems. Without loss of generality,
the two systems in analysis will be treated separately, for the
sake of clarity. Note that the first system is independent of
the second, while the second relies on the first. For all the
derivations to come, the following assumption is necessary.

Assumption 1: Any measured range from any node to any
other node of the network is upper and lower bounded by
some positive constants,

Rm < ri(t), rij(t), rT (t), riT (t) < RM ,∀i, j ∈M,∀t > t0.

A. SN-SLAM

The system introduced in the previous section is evidently
nonlinear and, as such, cannot be used directly in a Kalman
filter as intended. For that reason, and given that the non-
linearity presents itself on the output equations, a strategy
of state augmentation to obtain a linear relation between
the system state and output is proposed. Apart from the
B2B ranges, the system (1) is in every way similar to the
underlying system designed in [18], and, therefore, the idea
of adding the ranges to beacons to the system state proposed
there will be used here as well.

In order to be able to incorporate the beacon-to-beacon
ranges in this system, consider the expansion of the range
from beacon i to beacon j, given by

rij(t) =
1

rij(t)

(
pTi (t)pi(t) + pTj (t)pj(t)− 2pTi (t)pj(t)

)
.

(3)
Note that the first two parcels in (3) are in fact the square
of the ranges to beacons i and j and therefore could be
substituted by those quantities whenever available. However,
to allow for the use of these ranges even when one or more
of the corresponding beacons are not directly visible, the
squared ranges are added to the state of the system, in
contrast to the augmented state in [18] which consisted of
the ranges. The last parcel, the dot product between the two
beacons, is also nonlinear on the state of the original system
(1), and therefore it is also added to the state.

To summarize all this information, the new state is x(t) :=[
xTM (t) xTV (t) xTR(t) xTD(t)

]T
, where each component is

given by
xM (t) := {pi(t),∀i ∈M} ∈ R3m

xV (t) := v(t) ∈ R3

xR(t) := {‖pi(t)‖2,∀i ∈M} ∈ Rm

xD(t) := {pTi (t)pj(t),∀i, j ∈M, i < j} ∈ RC
m
2

. (4)

The augmented system dynamics are{
ẋ(t) = A(t,yV (t))x(t)

y(t) = C(t)x(t)
, (5)

where the dynamics matrix is

A(t) =

 AM (t) AMV 03m×m 03m×Cm
2

03×3m 03×3 03×m 03×Cm
2

−2ARM (t) 0m×3 0m×m 0m×Cm
2

−ADM (t) 0Cm
2 ×3 0Cm

2 ×m 0Cm
2 ×Cm

2

,
with AM (t) := −diag (S [ω(t)] , . . . ,S [ω(t)]), AMV :=[
−I3 · · · −I3

]T
, ARM (t) := diag

(
yTV (t), . . . ,y

T
V (t)

)
, and

ADM (t) is the matrix that encodes all the possible com-
binations of two beacons, such that d

dtpi(t)
Tpj(t) =

−yTV (t)
(
pi(t) + pj(t)

)
for all i < j, i, j ∈M. The output

matrix is
C(t) = 03×3m I3 03×mo 03×mu 03×Cm

2

0m×3m 0m×3 CR(t) 0mo×mu 03×Cm
2

0Cmi
2 ×3m 0Cmi

2 ×3 CDR(t) 0Cmi
2 ×mu

−2CD(t)

,
where the first mo range states were separated
from the mu non-visible ones. Its components are
CR(t) := diag

(
r−1
1 (t), . . . , r−1

mo
(t)
)
, CD(t) :=[

diag
(
r−1
12 (t), . . . , r

−1
(mi−1)mi

(t)
)
0Cmi

2 ×(Cm
2 −Cmi

2 )

]
,

and CDR(t) is the matrix that encodes all the possible
combinations of two observed beacons, such that
rij(t) = r−1

ij (t)
(
xRi + xRj − 2xDij

)
for all i < j,

i, j ∈MI .

B. Tracking
The target tracking part of the system is more complicated

to tackle than the previous one. Let zTP
(t) = R(t)pT (t)

and zTV
(t) := IvT (t) be its states. Consider the two types of

ranges to the target that the vehicle has access to: vehicle-to-
target and beacon-to-target. Following the reasoning in [13],
a series of new states are added to yield a linear-like structure
to the output-state relation. Take, for example, the vehicle-
to-target range, rT (t) = ‖zTP

(t)‖. If it is added to the state,
the output will be linear-like with respect to the state, with
dynamics given by

d

dt
(r2T (t)) = 2zTTV

(t)zTP
− 2IvT (t)zTP

(t).

The first parcel can then be added to a new state, zTV P
(t) :=

zTTV
(t)zTP

, yielding

żTV P
(t) := zTTV

(t)zTV
(t)− IvT (t)zTV

(t),

and denoting the first parcel as zTV V
(t) := zTTV

(t)zTV
(t),

its derivative is
żTV V

(t) = 0.

To tackle the inclusion of the beacon-to-target ranges in the
system, consider its expansion as in (3),

r2iT (t) = ‖R(t)pi(t)− zTP
(t)‖2

= xRi
(t) + zTR

(t)− 2zTTP
(t)R(t)pi(t),
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where xRi
(t) and zTR

(t) are replacing the corresponding
squared ranges. The last parcel can then be added as a new
state, zTPi

(t), with dynamics given by
żTPi

(t) = zTTV
(t)R(t)pi(t)− IvT (t) (R(t)pi(t) + zTP

(t)) .

Once again, the first nonlinear parcel is replaced by a new
state, zTV i

(t), whose derivative is
żTV i

(t) = −IvT (t)zTV
(t).

The quantities introduced here can then be stacked in the
target state,
zT (t) =[
zTTP

(t) zTTV
(t) zTR

(t) zTV P
(t) zTV V

(t) zTPM
(t) zTV M

(t)
]T
,

where zTPM
(t) ∈ Rm and zTV M

(t) ∈ Rm are the stacking
of all the zTPi

(t) and zTV i
(t) respectively.

It must be noted that although present in all the expressions
in this subsection, the rotation matrix is not observed nor
estimated. To avoid this issue, consider the state xT (t) :=

diag
(
RT (t),RT (t), 1, 1, 1, Im, Im

)
zT (t). The new aug-

mented system that can be joined with (5) is{
ẋT (t) = AT (t)xT (t) +ATB(t)x(t)

yT (t) = CT (t)xT (t) +CTB(t)x(t)
, (6)

where the dynamics matrix is composed of
AT (t) =

−S [ω(t)] I3 03×1 03×1 03×1 03×m 03×m
03×3 −S [ω(t)] 03×1 03×1 03×1 03×m 03×m
−2yTV 01×3 0 2 0 03×m 03×m
01×3 −yTV 0 0 1 03×m 03×m
01×3 01×3 0 0 0 01×m 01×m
−1myTV 0m×3 0m×1 0m×1 0m×1 0m×m Im
0m×3 −1myTV 0m×1 0m×1 0m×1 0m×m 0m×m


and

ATB(t) =



03×3m −I3 03×m 03×Cm
2

03×3m 03×3 03×m 03×Cm
2

01×3m 01×3 01×m 01×Cm
2

01×3m 01×3 01×m 01×Cm
2

01×3m 01×3 01×m 01×Cm
2

−ARM (t) 0m×3 0m×m 0m×Cm
2

01×3m 01×3 01×m 01×Cm
2


.

Finally, the output matrices of this part of the system are
CT (t) =[

01×3 01×3 r−1
T (t) 0 0 01×m 01×m

0mT×3 0mT×3 CTR
(t) 0 0 −2CTP

(t) 01×m

]
and

CTB(t) =

[
01×3m 01×3 01×m 01×Cm

2

0mT×3m 0mT×3 CTP
(t) 0mT×Cm

2

]
,

where CTR
(t) =

[
r−1
1T · · · r

−1
mTT

]T
and CTP

(t) =[
diag

(
r−1
1T , . . . , r

−1
mTT

)
0mT×(m−mT )c

]
.

These new systems, that mimic the dynamics of (1) and
(2), are still nonlinear in form. In fact, the time dependence
of the dynamics and output matrices hides the dependence on
the system output through the linear velocity of the vehicle
and the measured ranges, two known signals. However, for
that reason they are considered linear time-varying systems
for observability purposes. Furthermore, the algebraic con-
straints that helped define x(t) and xT (t) are not imposed
anywhere in the system dynamics.

Note that in the systems designed here, it is assumed that
the first mo beacons are directly observed, the first mi are
within the field-of-view of each other, and the first mT can
measure ranges to the target. In practice, any beacon can be
in either sets.

C. Observability analysis

The augmented system that does not include the dynamics
of the target is, as mentioned, very similar to the augmented
system derived in [11]. In fact, the inclusion of the beacon-
to-beacon ranges does not lighten the observability require-
ments established therein. Therefore, this first part of the
observability analysis is quite straightforward.

In this analysis, the invisible beacons, ranges, and dot
products are removed from the states, as they cannot be
observable. Therefore, the setMU is considered to be empty
and the sets MI and MT are contained in MO.

Theorem 1: Consider the system (5) and let T := [t0, tf ].
If there exist three instants {t1, t2, t3} ∈ T such that
the linear velocity of the vehicle expressed in the iner-
tial frame is linearly independent in those instants, i.e.,
det
([
Iv(t1)

Iv(t2)
Iv(t3)

])
6= 0, then the system is ob-

servable in the sense that, given the system output {y(t), t ∈
T }, the initial condition z(t0) is uniquely defined.

The following theorem is necessary to establish a clear
relation between the augmented system (5) that mimics the
nonlinear dynamics with the actual nonlinear system (1).

Theorem 2: Consider the LTV system (5) and the original
nonlinear system (1). If the conditions of Theorem 1 hold,
then the state of the original nonlinear system and that of the
LTV system are the same and uniquely defined, provided
that the invisible beacons are discarded. Furthermore the
constraints expressed by (4) become naturally imposed by
the dynamics.

The tracking of a target with unknown motion in a SLAM
framework is more complex than simple mapping, and there-
fore it will impose stronger requirements on the motion of
the vehicle. The following theorem addresses this issue, but
requires the definition of two functions of the linear velocity,
V [0](t, t0) =

Iv(t)− Iv(t0) and V [1](t, t0) =
∫ t
t0
Iv(τ)dτ +

(t−t0)Iv(t), each composed of three components V [.]
1 (t, t0),

V [.]
2 (t, t0), and V [.]

3 (t, t0).
To simplify the analysis, the set MI is assumed to be

empty, i.e., there are no B2B ranges.
Theorem 3: The systems (5) and (6) are observable if the

conditions of Theorem 1 hold, if the functions V [0]
1 (t, t0),

V [0]
2 (t, t0), V [0]

3 (t, t0), V [1]
1 (t, t0), V [1]

2 (t, t0), and V [1]
3 (t, t0)

are linearly independent in T and at least one B2T range is
available three times in T . If there are no B2T ranges, the
V functions must also be linearly independent to (t− t0).
Theorems 1 and 3 established conditions in which reduced
versions of the augmented systems (5) and (6) are observable.
As the discarded states are not observable, and do not
influence the non discarded ones, these results also apply
to the augmented systems even when there are non-visible
beacons. However, this does not immediately establish an
equivalence between the augmented systems and the original
nonlinear ones. Furthermore, the state relations stated in 4
and those described in subsection III-B are not imposed.
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Theorem 2 addressed the first constraints, and the following
result will address the latter.

Theorem 4: If the conditions of Theorem 3 hold, the
systems (2) and (6) are equivalent, when discarding the non-
visible beacons and respective ranges, and:

(i) the state of the original nonlinear system and that of
the LTV system are the same and uniquely defined,
provided that the invisible beacons are discarded. Fur-
thermore the constraints described in subsection III-B
become naturally imposed by the dynamics; and

(ii) a state observer with uniformly globally exponentially
stable error dynamics for the LTV system is also a
state observer for the underlying nonlinear system, and
the estimation error converges exponentially fast for all
initial conditions.

Remark 1: Due to space constraints, the proofs of the
results of this paper are omitted. The reader is referred to [12]
and [11] for similar proofs for slightly different dynamics.

IV. FILTER DESIGN

The previous results have established the ground to the de-
sign of a GES observer, using a linear time-varying Kalman
filter, which, to assure the GES nature of the estimation
error dynamics, requires the pair (AF (t),CF (t)) to be uni-
formly completely observable. This can be shown using the
Lyapunov function V (t, x̃F ) = x̃TF (t)P

−1(t)x̃F (t), where
x̃F (t) is the observer error and P(t) is the error covariance
and demonstrating that it respects all the conditions of [19,
Theorem 8.5] for global exponential stability. The steps taken
are similar to [19, Example 8.5] and include showing that
P−1(t) is positive definite using several results of [20]. This
last theorem addresses the uniform complete observability
of the pair (A(t),C). However, an additional assumption on
the linear velocity of the vehicle is required, as well as the
definition of V(τ, t) :=

[
V [0](τ, t) V [1](τ, t)

]T
.

Assumption 2: The norm of the linear velocity of the
vehicle in the inertial frame {I} is always bounded, i.e.,

∀
t≥t0

∃
VM>0

: ‖Iv(t)‖ ≤ VM .
Although imposing bounds on the linear velocity, this as-
sumption is still a mild one, as it is physically impossible to
reach arbitrarily large speeds. Moreover, the value of VM is
not required for the filter design.

Theorem 5: The pair (A(t),C) is uniformly completely
observable if Assumption 2 is true and there exist δ > 0 and
α∗ > 0 such that, for all t ≥ t0, it is possible to choose a set
of instants {t1, t2, t3, t4, t5, t6, t7} ∈ Tδ , with Tδ := [t, t+δ],
for which the linear velocity of the vehicle in the inertial
frame respects∣∣det [V(t1, t) · · · V(t6, t)

]∣∣ ≥ α∗

and there is a B2T range available, or if there is not,∣∣∣∣det [V(t1, t) · · · V(t7, t)
(t1 − t) · · · (t7 − t)

]∣∣∣∣ ≥ α∗.

The theoretical results of this paper were established in a
deterministic setting, and thus the presence of measurement
noise raises the need for a filtering solution. Hence, a Kalman
filter follows naturally for the augmented nonlinear systems
(5) and (6), in a discrete-time framework, obtained using
the forward Euler discretization as in [18]. The algorithm is
therefore the standard discrete-time LTV Kalman filter [17].
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Fig. 1. Picture of the estimated map rotated and translated using the true
transformation, with 2σ ellipsoids, and the path of the target, both real and
estimated. Non-visible beacons in blue; Visible beacons in green; Vehicle
path in red; Real target path in magenta; Estimated target path in cyan.
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Fig. 2. The estimation error and 3σ uncertainty bounds of the target
position and velocity when it follows a straight line. Solid lines indicate
the estimation error for each coordinate and dashed lines the uncertainty
bounds.

V. SIMULATION RESULTS

This section details the simulations performed to validate
the algorithm proposed in this paper and assess its perfor-
mance. The results of a typical run in the simulated environ-
ment are presented and discussed. The chosen environment is
similar to the fifth floor of the North Tower at IST, although
it was modified to include a large open space. It consists
of a 16 m by 16 m by 3 m corridor. 36 beacons were put
in notable places such as corners and doors, with random
heights. All the measurements are assumed to be perturbed
by zero-mean Gaussian white noise, with standard deviations
of σω = 0.05 ◦/s for the angular rates, σv = 0.03 m/s for
the linear velocity, and σr = 0.03 m for the ranges. The
trajectory of the vehicle is depicted in red in Fig. 1, and was
designed to meet the observability requirements. The results
of a simulation without a target to track are very similar
to the simulation and experimental results detailed in [18].
Comparison with these results shows that the uncertainty
does not grow as much when the beacons are not observed,
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Fig. 3. The estimation error and 3σ uncertainty bounds of the target
position and velocity when it follows a random trajectory.

although its lowest value when the estimation converges is
very near the achieved with the simple RO-SLAM algorithm
(10 cm). The next figures depict the results of two different
simulations of target tracking. In the first, the target starts in
the bottom right and is stopped for the first 250 seconds.
Then it accelerates until reaching constant velocity while
describing a straight line as depicted in Fig. 1. This trajectory
was chosen because it is the only one that respects the
constant velocity model. The results of this simulation are
presented in Fig. 2. Note that the algorithm takes around
100 seconds to converge, but when it does, the error is kept
very low until the target starts moving and the error grows,
just to converge again when the algorithm tends to the new
velocity of the target. The 3σ uncertainty is consistent with
the errors, except for a few moments when the target starts
moving. To illustrate a case in which the constant velocity
model is not correct, in the second simulation, the target is
placed randomly in the environment and, after 250 seconds
stopped, starts moving in a random walk (IvT (tk+1) =
IvT (tk) + u(tk) where u(tk) is zero-mean Gaussian white
noise), while restricted to the confines of the environment.
The results of a typical run are shown in Fig. 3. Once again,
the theoretical convergence properties are confirmed by the
results, as, albeit being initialized at the origin of the body-
fixed frame, the estimation converges fairly fast. Even when
the vehicle starts moving, the filter accompanies the motion
and the error does not increase significantly except when the
velocity is inverted at around 500 seconds into the run.

VI. CONCLUSIONS

This paper presented a novel sensor-based range-only
simultaneous localization and mapping in sensor networks
filter with moving target tracking. The filter is shown to
have globally exponentially stable error dynamics, through
state augmentation of two nonlinear systems, which, along
with the disposal of the non-visible beacons, enabled re-
garding the resulting system as linear time-varying. The
work focused on the observability analysis of the resulting
system, providing theoretical observability guarantees, and
equivalence between the systems used in each step of the
analysis. The theoretical results include the derivation of
sufficient conditions for observability, stability and conver-
gence of the algorithm, establishing a constructive basis

for trajectory design. These results were followed by the
design of a Kalman filter with globally exponentially stable
error dynamics. Simulations allowed the validation of the
results while demonstrating the need for a properly designed
trajectory. As for future work, the investigation of necessary
conditions for observability and the experimental validation
of the proposed algorithm the two main courses of action.
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