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a b s t r a c t

The training and the evaluation of learning algorithms depend critically on the quality of data samples.
We denote as pure the samples that identify clearly and without any ambiguity the class of objects of
interest. For instance, in pedestrian detection algorithms, we consider as pure samples the ones
containing persons who are fully visible and are imaged at a good resolution (larger than the detector
window in size). The exclusive use of pure samples entails two kinds of problems. In training, it biases
the detector to neglect slightly occluded and small sized samples (which we denote as impure), thus
reducing its detection rate in a real world application. In testing, it leads to the unfair evaluation and
comparison of different detectors since slightly impure samples, when detected, can be accounted for as
false positives. In this paper we study how a sensible use of impure samples can benefit both the training
and the evaluation of pedestrian detection algorithms. We improve the labelling of one of the most
widely used pedestrian data sets (INRIA) taking into account the degree of sample impurity. We observe
that including partially occluded pedestrians in the training improves performance, not only on partially
visible examples, but also on the fully visible ones. Furthermore, we found that including pedestrians
imaged at low resolutions is beneficial for detecting pedestrians in the same range of heights, leaving the
performance on pure samples unchanged. However, including samples with too high a grade of impurity
degrades the performance, thus a careful balance must be found. The proposed labelling will allow
further studies on the role of impure samples in training pedestrian detectors and on devising fairer
comparison metrics between different algorithms.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Machine Learning (ML) is the field of science researching how
computers can learn from data. ML has been successfully applied
to many areas of knowledge, from medical [1,2] to financial [3,4],
to scientific applications in general [5–7]. The results obtained by a
ML system, however, depend heavily on the quality of the data
used in its training [8,9]. Moreover, the evaluation and comparison
of such systems depend on the quality of the data used for their
testing [10]. In this paper, we focus on the application of ML to the
detection of people in images.

Detecting humans in images is a challenging task that attracts
the attention of the scientific community and industry alike. The
problem assumes different contours depending on whether the
sensor used to capture the images is fixed or mobile, whether
the detection is performed on a single image or on a sequence of

images, and whether the sensor is a single camera or a richer
sensor providing depth information. One further distinction can be
made between the methods that do and do not restrain the
articulation of the persons. This work concentrates on the detec-
tion of pedestrians, i.e., people assuming poses that are common
while standing or walking, in images acquired by a mobile camera.
Detecting pedestrians is important as it enables the estimation of
the presence and the position of humans in the vicinity of a vision
sensor. The task is complex mostly because of the high variabi-
lity that characterizes the pedestrians projections on the camera
image plane. The appearance of a pedestrian on the image is
influenced by the person's pose, his or her clothing, occlusions,
and the atmospheric conditions that contribute to the illumination
of the scene. Background clutter also plays a role in making the
detection difficult.

The publication of data sets is an important step towards a fair
comparison of the performances of Pedestrian Detection (PD)
systems, but it is not enough. Standard evaluation code is also
needed as different evaluation procedures can lead to discrepan-
cies in the reported performances. Data sets are created not only
with the intent of comparing the performance of algorithms, but
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also with the goals of exposing the limitations of contemporary
algorithms and stimulating advances in the state of the art.
As such, data sets have a limited life span: as the understanding
of the problem by the scientific community grows, hurdles are
conquered and data sets become obsolete.

The missed detection rate for the INRIA data set [11] at 0.1 False
Positives Per Image (FPPI) has dropped from around 50% to around
20% since its publication (see [12]). There is still room for
improvement, which explains why that data set is still widely
used as a benchmark [13–16]. The same data is also very popular
for training: 13 out of 16 algorithms reviewed in [12] are trained
on it. The labelling, like in many other PD data sets, consists of
rectangular bounding boxes each one of which tightly enclosing a
person. For the purposes of this work, we choose to enrich and
extend the labelling of the INRIA person data set.

This paper is an extension of our work published in [17], in
which we proposed a new labelling for the INRIA test set to
improve the comparison between different algorithms. In this
work we present a new labelling for the INRIA training set and
show through experimental results the importance of the correct
use of pure and impure samples both in the training and in the
testing phase. The labelling was conducted following the method
proposed in [12]. The proposed annotation is available on the
authors' website.2 We argue that the new test set labelling leads to
a better evaluation of PD algorithms, while the new training set
labelling enables researchers to analyse the impact of pedestrian
height and visibility during training on the detection performance.
In this paper we restate, for continuity of exposition, the con-
tributions described in [17] and build on them to present new
results. In the section on the evaluation protocol we show that a
fair evaluation of detectors with the original labelling of the INRIA
test set requires the use of a minimum resolution limit: since only
pedestrians taller than 90 pixels are systematically labelled, the
evaluation should ignore detections shorter than that limit.
Furthermore we show that using the proposed labelling for testing
produces a more truthful evaluation of the detectors. The con-
tributions specific to this paper are: the introduction of the notion
of sample purity, the elaboration of a new labelling for the training
set, the results of Experiment 1, confirming that visibility plays an
important role for detectability, the results of Experiment 2,
showing that it is worth to include partially occluded pedestrians
in the training set, even when testing on fully visible pedestrians,
and the results of Experiment 3, showing that it is important to
have “short” examples in the training set when the goal is to
detect “short” pedestrians.

The remainder of the paper is organized as follows. In Section 2
we introduce the reader to the PD problem. In Section 3 we detail
how annotations for data sets are usually compiled, while in
Section 4 we describe the principles that guided the proposed
labelling. In Section 5 we describe the PD used in this work and in
Section 6 we define the evaluation protocol used in the experi-
ments. We relate results in Section 7 and draw conclusions in
Section 8.

2. Related work

Advances in Pedestrian Detection (PD) stem mostly from
research in the areas of visual feature extraction and Machine
Learning, the most common classifiers being based either on
AdaBoost [18] or Support Vector Machines [19]. Seminal work in
PD was presented in [20,21]. The authors of [22] introduced
Integral Images for faster feature computation, AdaBoost for

combining many weak classifiers into a strong classifier and a
Cascaded Detector for speeding the detection up. That work
focused on the recognition of frontal faces and used Haar-like
features, which failed to perform as well in the person detection
task. The architecture, nonetheless, became very popular for PD
algorithms. Dense features, computed on a regular grid over the
image, have been very successful. One example of such features,
which is ubiquitously used in detection, is the Histogram of
Oriented Gradients (HOG). Introduced in [11] and reminiscent of
SIFT [23], it represents gradient information in a way that enables
robust classification. A recent trend is that of combining multiple
features: the Integral Channel Features [24] exploit 10 channels of
information based on colour and gradient. The authors of [25]
combine Gradient Histograms, Local Binary Patterns (to exploit
texture information), Colour Self Similarity (second order statistics
of colour) and Histograms of Flow (to exploit movement informa-
tion). Another line of work concentrates on reducing the detection
time, see for instance the Fastest Pedestrian Detector in the West
(FPDW) algorithm [26]. One dualism in the literature contrasts
monolithic detectors (see [11,13,16]), which compute features at
fixed locations on the detection window, to part-based detectors
(see [27,28]), which explicitly model the articulation of the human
body and use the features where the limbs are estimated to be.

Comparing the performance of PD systems is a fairly complex
matter. Many data sets have been published over the years. A first
notable example is the MIT pedestrians data set [20], introduced in
1997. It includes frontal and rear views of pedestrian and only
positive windows, i.e., fixed-size rectangular images designed to
contain a person. The INRIA person data set [11] was introduced by
Dalal and Triggs in 2005, it is divided in training set and test set
and it provides both positive and negative examples. The ETH
pedestrians data set [29] was introduced in 2007. It was recorded
with a mobile platform moving along a sidewalk, equipped with a
stereo camera. It presents a scenario typical for a mobile robot.
The TUD-MotionPairs/TUD-Brussels data set [30] (TUD) and the
Caltech pedestrian data set [12] were introduced in 2009 and
contain sequences of images taken in automotive scenarios. The
size of the data sets has grown over time, from 924 positive
examples (MIT data set) to 350 000 labels over 250 000 images
(Caltech data set). Each data set can be characterized in a number
of ways, one important parameter being the range of sizes of the
annotated pedestrians. Most PD algorithms output detections in a
selected range of sizes, in order to perform a fair evaluation it is
important that such ranges coincide.

The code used to evaluate the performance of a detector on a
data set can considerably influence the results. Many parameters,
such as the number of classes of labels used for annotating the
data and the amount of padding on the candidate images, can
influence the reported results. A solution for this problem is to use
the same evaluation code on each algorithm. Dollár provides such
a code3 together with a collection of data sets and the detections
obtained running several state-of-the-art detectors on such data
sets. We adopt that evaluation code and describe its principles in
Section 4.

3. Labelling strategies

The purpose of the labelling of a data set for Pedestrian
Detection (PD) is twofold. First, the annotation of the training set
enables the extraction of the positive and negative examples for
training the detector. Second, the annotations of the validation and

2 Proposed annotation http://users.isr.ist.utl.pt/�mtaiana/data.html

3 Caltech Pedestrian Detection evaluation code www.vision.caltech.edu/Ima
ge_Datasets/CaltechPedestrians/DollarEvaluationCode
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test sets are used during evaluation to determine which detections
are correct, corresponding to a pedestrian.

Most PD algorithms define the ground truth (GT) labelling and
the detections in terms of a collection of rectangles on the images.
Such rectangles are known respectively as GT and detection
“Bounding Boxes”, in short, “BB's”. Each detection BB is associ-
ated to a confidence value and is meant to enclose exactly one
pedestrian.

Training labels are used in the training of a PD algorithm. The
positive BB's are cropped from the positive training image set and
scaled to fit the detection window size. Negative samples are
chosen by randomly sampling the negative training images (or the
parts of the training images where no people appear) with BB's of
the same aspect ratio as the positive ones. They subsequently
undergo the same scaling as the positive samples do.

Test labels are used during the evaluation of the performance of
a PD algorithm. Evaluating such performance on one image consists
in matching detection and GT BB's and counting the occurrences of
the result of the matching process. Two BB's (one detection and one
GT label) are said to match if the area of intersection of the two
rectangles is larger than half of the area of their union (Pascal VOC
criterion, see [31]). The possible outcomes of the matching process
are: True Positive (TP) when one GT BB matches one detection BB
(and so one pedestrian is correctly detected), False Positive (FP)
when a detection does not match any GT BB, and Missed Detection
(MD) when a GT BB does not match any detection. Each GT BB can
match at most one detection BB. In case there be more detections
potentially matching one GT BB, the conflict can be solved by
greedily assigning the detection with the highest confidence to the
match, leaving the others unmatched.

The original labelling of the INRIA data set follows closely the
general description. Each person is labelled with a rectangular BB.
Only one label is possible: “UprightPerson”, which includes both
pedestrians and people riding a bicycle (this stems from the
automotive applications of PD). Sitting people are not included
in the positive class. No information is present on the amount of
visibility each person is imaged under.

The INRIA data set was designed in 2005 to support PD
research. Since then, Pedestrian Detectors have improved drama-
tically and, as a result, the original labelling is now starting to
show its limitations. A fair assessment of the performance of

detectors on the INRIA data set is hindered by three factors: first,
many persons appearing in the images are not labelled, second,
there is no class label for the regions of the images that are
ambiguous or difficult to be classified even by a person and thus
should be ignored during the evaluation and, third, an estimate of
the visible part of each person is lacking. We discuss each of these
factors in the following paragraphs.

The lack of labelling of some of the people present in the data
set (see Fig. 1(a–d)) affects both training and testing. Regarding the
training, the lack of such labels prevents researchers to analyse
the impact of what we deem pure and impure training samples on
the performance of the detector. Regarding the testing, each
detection on one of the unlabelled persons counts as a FP, instead
of as a TP. So optimizing a detector using this labelling can lead to
the undesirable effect of detecting less small and occluded people.
Current state-of-the-art algorithms can detect at least some of the
partially occluded and smaller pedestrians that are not marked in
the original labelling. Their performance is thus under-reported
(see Fig. 2 for an example of how the performance of the FPDW
algorithm [26] is affected). People who have parts of their bodies
outside the image boundaries are also not labelled, leading to a
similar phenomenon. It is important to notice that the spurious
FP's originated by the unlabelled persons tend to assume high
confidence values, so they have a big impact on some regions of
the performance curves of the detectors (see Section 6).

There are, moreover, image patches for which it is difficult to
decide whether they should be labelled as a person or not. Such
cases include the appearance on the image of a mannequin, of
photographs of people, of reflections of people. It is not clear
whether an algorithm that generates a detection on one of such
image areas should be rewarded or penalized: this decision is very
application-dependent. Only some of such occurrences are marked
as “person” in the original labelling, both in the training and the test
set, introducing noise in the evaluation process (see Fig. 1(e–h)).

Finally, in the original labelling there is no information on the
amount of visibility each person is imaged under. Such informa-
tion is not needed for a simple training or test of a PD algorithm,
but it is instrumental to assess the effect of the pure and impure
fraction of the data on the detection performance.

Most of the pedestrians marked in the original labelling are
fully visible and larger than the size of the detection window used

Fig. 1. Details from the INRIA test set highlighting some limitations. (a–d) Unlabelled persons. (e–h) Ambiguous cases. (e) Reflections of persons on a shop window, not
labelled. (f) Some persons drawn on a wall, only one of them is labelled. (g) Some mannequins, all labelled. (h) A poster depicting a man, not labelled.
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in the algorithm introduced with the data set (96 pixels), making
them “pure” for our purposes. A small fraction of the labelled
pedestrians, though, are imaged under a certain degree of occlu-
sion or are shorter than the detection window, making them
“impure”. The labelling, thus, results to be a mixture of pure and
impure examples in unknown proportions. In this work we extend
the labelling to include all, within reason, visible pedestrians and
enrich it with the visibility information, allowing experiments to
be run with training and test sets characterized by different
degrees of purity.

4. Proposed method

We propose a new annotation for the data set in which we label
all the pedestrians with heights greater than 25 pixels, we
associate to each person the estimate of the extent of his/her
visible part and mark ambiguous cases (see Fig. 1(e–h)) as such.
The labelling was performed manually by one of the authors. As in
the original annotation, we use rectangular Bounding Boxes (BB's)
and we consider both cyclists and pedestrians as belonging to the
“Person” class. We base our annotations on the scheme introduced
in [12], which consists in labelling individual persons as “Person”,
large groups of persons for which it is very difficult to label
each individual as “People”, and ambiguous cases as “Person?”.
We label the test set according to such scheme. The proposed
annotation is available on the authors’ website. For the training
set, we do not label groups of people and ambiguous cases as we
believe such annotations not to be useful for training. In the
Caltech evaluation code “People” and “Person?” BB's are merged in
the “Ignore” class and treated as one, but we choose to use the two
labels considering that in the future the two sets can be treated
differently. The “Ignore” class was introduced to acknowledge the
fact that there is a grey area at the boundary between the “Person”
and the “Non-person” categories and with the insight that both
detections and missed detections on an image area marked as
“Ignore” should not be penalized. Detections that match an
“Ignore” BB's are not counted as True Positives (TP's) nor False
Positives (FP's) and “Ignore” BB's which are not matched by any
detection are not counted as MD's. The matching between a
detection BB and a “Person” BB works exactly as explained in
the previous section, while matching a detection BB with an
“Ignore” BB only requires that the overlap between the two is
greater than half of the area of the detection. Moreover, multiple
detections can match the same “Ignore” rectangle. In the

evaluation code the Ground Truth (GT) BB's are centred horizon-
tally and transformed to assume an aspect ratio of 0.41 (width/
height) prior to matching (see [12] for details).

In this work we aim at determining the impact of pure and
impure samples in the training and evaluation of a detection
system. We consider pure the BB's enclosing pedestrians who are
fully visible and imaged with a height larger than the height of the
detection window in use. We deem the remaining BB's enclosing
pedestrians as impure. Labelling the training set with the visibility
information (the height is implicitly encoded in each BB) enables
us to create various training sets with a different ratio between the
pure and the impure samples. The proposed training set is filtered
each time, controlling the amount of “short” and partially
occluded examples used to train the detection system.

Controlling the balance between pure and impure samples
during testing is allowed by the evaluation code. The minimum
height and the minimum visibility ratio of the Ground Truth (GT)
rectangles in the test set are specified as a parameter for the
evaluation, so that all the BB's that do not match the criterion are
set to “Ignore”.

5. Pedestrian detectors

5.1. Our implementation of a pedestrian detector

We implemented a version of the Fastest Pedestrian Detector in
the West (FPDW) algorithm [26]. The detector is based on a
structure common to most of the pedestrian detectors in the state
of the art: it combines a Machine Learning-based window classi-
fier, the sliding window approach, image pyramids and Non-
Maximum Suppression.

The fundamental block of the detector is the window classifier,
which takes as input one image window of a specific size and
evaluates whether it contains a person of the corresponding
height. In our case the classifier is based on AdaBoost in the
variant of Soft Cascades [32,33]. We use 1000 level-2 trees as weak
classifiers. The output of the classifier is a real value expressing the
confidence on the presence of a person in the window at hand. The
sliding window approach consists in applying the window classi-
fier on a grid of locations on one image, thus obtaining a set of
confidence values. This technique allows for the detection of fixed-
size pedestrians over one image, and, in order to succeed in multi-
scale detection, it must be combined with image pyramids.
Running the detection window on each layer of the pyramid

Fig. 2. The influence of labelling in the presence of mutual occlusion on the evaluation. (a) A part of image 20 of the INRIA test set showing the original labelling: only
5 persons out of 11 are marked. Some partially occluded persons are merged in the annotation with a visible one. (b) The classification of the detections produced by FPDW
[26] in TP's (green), FP's (red) and FP's which significantly overlap with an unlabelled person (yellow) and thus should be considered TP's. In the whole test set, 26 out of 292
FP's ascribed to FPDW significantly overlap with an unlabelled person. (For interpretation of the references to colour in this figure caption, the reader is referred to the web
version of this paper.)
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allows for the detection of pedestrians of different sizes, but can
give rise to multiple detections for a single pedestrian. Non-
Maximum Suppression techniques are used with the intent of
merging the positive confidence values originated by the same
pedestrian, thus obtaining a detection system that returns only
one detection for each pedestrian appearing in the image.
As features, we use 30 000 Integral Channel Features (see [24]),
we compute the Integral Channels using publicly available code by
the author.4 We train the detector on the INRIA pedestrians
training set with the original labelling. We use 4 epochs of
bootstrap for mining hard negative examples. We use our imple-
mentation of FPDW in experiment 1.

5.2. The aggregated channel features detector

The Aggregated Channel Features detector (ACF) [34] is a recent
development of FPDW. In ACF the authors substitute the rectan-
gular features of FPDW with square ones and apply additional
smoothing. This removes the need for Integral Images, making the
computation of a feature, and thus the whole detection process,
faster. One important characteristic of the ACF code is that of using
a fast implementation of AdaBoost for the training: a randomized
subset of features is used for learning each node (1/16 of the total
features), the values of the features are discretized to 256 bins,
thus reducing the number of split points to evaluate and, finally,
the number of weak classifiers is increased after each bootstrap
round. Such design choices allow for a much quicker training time
compared to our implementation of FPDW, but have the drawback
of producing detectors with a higher variability in performance.
We choose to use ACF and repeat the training 10 times for each
evaluated condition, using different randomizations seeds and
averaging the reported performance. We used the authors' imple-
mentation of ACF3 in experiments 2 and 3.

5.3. Other state-of-the-art detectors

The Caltech Pedestrian Detection Benchmark5 provides not
only annotated data sets and evaluation code, but also detections
obtained with a number of algorithms in the state of the art. This
enables the users of the benchmark to evaluate the strengths and
the failure modes of the different methods and to compare their
performances with those of their own algorithms. The detections
provided represent well the diversity of the approaches to PD.
They include for instance the detections obtained with the
detector based on Histogram of Oriented Gradients by Dalal and
Triggs [11], the Discriminatively Trained Deformable Part Models
detector by Felzenszwalb et al. [27] and the multi-feature detector
by Walk et al. [25].

We use the detections provided in the Caltech benchmark to
assess the impact of occlusion on the detectability of the pedes-
trians, as explained in Section 7.1. Having access to the detections,
but not to the code of the aforementioned detectors means that
we cannot train them in different conditions. Thus, we cannot use
them in the experiments assessing the importance of occlusion
and minimum resolution in training.

6. Evaluation protocol

In this section we motivate and describe the evaluation protocol
we use in the experiments. First, we define the parameters for

running an experiment and the measures used to evaluate its
results. Then, we discuss the height ranges relevant for the evalua-
tion and the relationships among them. Finally, we highlight the
impact of a more accurate test set labelling on the evaluation of the
performance of the detectors, laying the bases for our experiments.
The results we present in this section have been published in [17],
they are repeated here for completeness of the exposition.

Fig. 3. The reported performance of the LatSvm-V2 algorithm [27] using the
original labelling and the “Reasonable” or the “Reasonable90” evaluation modes,
in red and green respectively. Performance is summarized in the legend with the
Log-Average Miss Rate. Using the “Reasonable90” evaluation mode instead of the
“Reasonable” one reports slightly lower missed detection rates. This is expected as
some GT annotations that are impossible for the detector to match (given the
detections provided in the Caltech benchmark) are accounted for in the “Reason-
able” mode and ignored in the “Reasonable90” mode. (For interpretation of the
references to colour in this figure caption, the reader is referred to the web version
of this paper.)

Table 1
The performances of a set of state-of-the-art PD algorithms reported with the
original INRIA labelling and the “Reasonable” or the “Reasonable90” evaluation
modes. Min. det. height refers to the minimum height for the detections produced
by each algorithm, in pixels. The minimum height for the detections provided with
the Caltech benchmark lies between 90 and 100 pixels for most of the detectors.
This makes setting the lower height limit during evaluation to 90 pixels more
sensible than the default 50 pixels of the “Reasonable” mode. The Miss Detection
rate at 100 FPPI is reported to be lower when testing with the “Reasonable90”
evaluation mode than with the “Reasonable” one. This is due to the latter
containing GT labels with heights under 90 pixels, which are impossible to detect
correctly given the detections distributed with the Caltech benchmark. See Fig. 3
for a graphical comparison of the performance of LatSvm-V2 in the two cases.

Algorithm Min. det.
height

MD at 100FPPI

Reasonable
(MHTE¼50)

Reasonable90
(MHTE¼90)

Difference

FtrMine [35] 100.0 0.340 0.324 �0.016
LatSvm-V1 [36] 79.0 0.175 0.159 �0.015
HOG [11] 100.0 0.231 0.215 �0.015
HikSvm [37] 100.0 0.221 0.207 �0.014
PLS [38] 100.0 0.226 0.212 �0.014
HogLbp [39] 96.0 0.190 0.173 �0.017
FeatSynth [40] 100.0 0.109 0.089 �0.019
MultiFtrþCSS [25] 93.7 0.109 0.093 �0.016
FPDW [26] 100.0 0.093 0.075 �0.018
ChnFtrs [24] 100.0 0.087 0.072 �0.015
LatSvm-V2 [27] 91.3 0.081 0.058 �0.024
Our FPDW 95.6 0.093 0.081 �0.013
CrossTalk [13] 99.2 0.098 0.079 �0.020

Mean �0.017

4 Piotr's Image and Video Matlab Toolbox (PMT) http://vision.ucsd.edu/
�pdollar/toolbox/doc/index.html

5 Caltech Pedestrian Detection Benchmark http://www.vision.caltech.edu/Ima
ge_Datasets/CaltechPedestrians/

M. Taiana et al. / Neurocomputing 150 (2015) 214–226218

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/


6.1. Parameters and evaluation variables for an experiment

Performing a detection experiment consists in choosing one
detection algorithm, setting the visibility and height conditions for
training and testing and finally running the training and testing of

the detector. The variables we set are: the minimum height in
training (MHTR) and in testing (MHTE), and the minimum visibi-
lity in training (MVTR) and in testing (MVTE).

For evaluating the results of one experiment we use the de
facto standard measures of Missed Detection (MD) rate and False

Fig. 4. Characterization of the original and the proposed labellings of the test set. (a) Histograms of the height of “Person” labels for the original (blue) and the proposed
labelling (red). The proposed annotation outnumbers the original one, particularly at low heights. (b) Histogram for the proposed labelling and the “Reasonable90” mode,
showing the amount of “Person” and “Ignore” BB's in red and yellow, respectively. The number of “Ignore” BB's is considerable and does influence the assessment of the
detection performance. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Fig. 5. Comparison of one evaluation performed with the original (a, b) and the proposed (c, d) test set labelling. The image is part of the INRIA test set, the detections were
obtained with FPDW. (a) The original GT labels. (b) Evaluation with the original labels: True Positives (TP's) in green, False Positives (FP's) in red and yellow. The yellow FP's
significantly overlap with unlabelled persons, hence it is unfair to consider those as errors. (c) The proposed GT labels: pink labels are the ones that the evaluation code set to
“Ignore” because of excessive occlusion given the chosen evaluation mode. (d) Evaluation with the proposed labels: TP's in green, FP's in red, ignored matches in pink. Two
detections match “Ignore” BB's (dashed pink lines), while one “Ignore” BB is not matched by any detection (not shown in this image). None of these events influence the
evaluation of the performance of the detector. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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Positive Per Image (FPPI). MD is defined as the fraction of the
positive examples in the test set which goes undetected. FPPI is
defined as the total number of False Positive detections (FP's) in
the test set, divided by the number of images that constitute it.
Both MD's and FP's are detection errors, thus, the lower the values
of MD and FPPI, the better the performance of one algorithm.
Detectors associate a confidence value (also called a score) to each
detection. Varying the value of the threshold on such confidence
produces a curve in the MD/FPPI space. The curves are usually
presented in log–log plots, see Fig. 3 for one example. Each point
on the curve corresponds to an operating point for the PD
algorithm. Comparing PD algorithms through curves is not always
straightforward, so the performance of one detector is typically
summarized by the Log-Average Miss Rate (LAMR), the average
miss rate (as computed on the logarithmic FPPI axis) between
10�2 and 100 FPPI (see [12] for details).

6.2. Height ranges matching for a fair evaluation

When testing PD algorithms, care should be taken to match
several height ranges. First (A), there is the height range of the
people imaged in the test set. This is implicitly defined by the
images comprised in the test set. Second (B), there is the height
range of the GT labels, which is decided by the authors of the data
set. Ideally, it should correspond with the first range, but this is not
always the case. Third (C), there is the height range of the
detections generated by a particular PD system. This is typically
a parameter for the algorithms and is set by the experimenters to
match the second range we mentioned. Last (D), there is the range
of heights taken into account by a specific evaluation mode. This
should be selected by the experimenters to be a subset of the
intersection of the other three ranges: it is sensible to compare the
performance of algorithms for a range of heights for which there
are persons in the test set, such persons are annotated and the
detectors were allowed to produce detections.

It is common practice to compare algorithms on the original
INRIA test set using the “Reasonable” evaluation mode and using the
detections provided in the Caltech benchmark for algorithms in the
state of the art. The “Reasonable” mode corresponds to setting a
minimum height in testing (MHTE) of 50 pixels and a minimum
visibility in testing (MVTE) of 0.65 (see [12] for details). The visibility
constraint is ignored for the original labelling, since the latter
provides no visibility information. In sum, people taller than 50
pixels are considered as “Person”, while the rest of the Bounding
Boxes (BB's) are set to “Ignore”. For the vast majority of the detectors
whose output is distributed with the Caltech benchmark, the
minimum output detection height lies at around 90 pixels (see
Table 1, column 2). Thus, when evaluating the performance of those
detectors on the INRIA data set with the “Reasonable” mode, the
height ranges of the detections (C) and that specified by the
evaluation mode (D) do not match. The GT annotations of heights
comprised between 50 and 90 pixels can never be matched by the
output of most of the detectors. This introduces a bias in the
evaluation: the affected detectors can never reach a miss rate of zero.

We define an evaluation mode that matches the range of
resolution of the detections, the “Reasonable90” mode, which
ignores pedestrians imaged with heights under 90 pixels or with
visibilities under 0.65. We compare the reported performance of PD
algorithms using the original labelling and selecting either the
“Reasonable” or the “Reasonable90” evaluation mode. We argue
that “Reasonable90” is a more appropriate test mode for the
considered experimental setting since it matches the range of
heights of the detections provided in the Caltech benchmark. We
evaluate the detections of a number of state-of-the-art algorithms
provided with the Caltech benchmark and the detections generated
by our implementation of FPDW trained on the original labelling.

We display the Missed Detection rate/False Positive Per Image
(FPPI) curves for one representative algorithm, for the two modes,
in Fig. 3. Using the “Reasonable90” evaluation mode reports
slightly lower missed detection rates, especially at relatively high
(100) FPPI levels (see the results for all the tested algorithms in

Table 2
The performances of a set of state-of-the-art PD algorithms reported with the
original or the proposed labelling. In both cases the evaluation mode is “Reason-
able90”, which correspond to a minimum height in testing (MHTE) of 90 pixels and
a minimum visibility in testing (MVTE) of 0.65. LAMR indicates the Log-Average
Miss Rate for each algorithm. Using the proposed labelling reports considerably
lower Miss Detection rates at 10�2 FPPI. This effect is likely due to the pedestrians
who are unlabelled in the original annotation and who are labelled in the proposed
one. The effect is stronger for the detection algorithms with a better performance
(lower LAMR). See Fig. 6 for a visualization of the performance of the LatSvm-V2
detector in the two evaluation cases.

Algorithm MD at 10�2FPPI LAMR, proposed
labelling (%)

Original
labelling

Proposed
labelling

Difference

FtrMine [35] 0.918 0.900 �0.019 57
LatSvm-V1 [36] 0.806 0.835 þ0.029 43
HOG [11] 0.744 0.702 �0.042 42
HikSvm [37] 0.766 0.681 �0.085 39
PLS [38] 0.674 0.596 �0.078 38
HogLbp [39] 0.665 0.629 �0.036 35
FeatSynth [40] 0.754 0.738 �0.015 29
MultiFtrþCSS [25] 0.469 0.425 �0.044 21
FPDW [26] 0.576 0.386 �0.189 18
ChnFtrs [24] 0.581 0.383 �0.198 18
LatSvm-V2 [27] 0.448 0.319 �0.129 17
Our FPDW 0.577 0.307 �0.270 16
CrossTalk [13] 0.511 0.333 �0.178 15

Mean �0.089

Fig. 6. The reported performance of the LatSvm-V2 algorithm [27] using the
original and the proposed labelling, in green and blue respectively. The evaluation
mode is “Reasonable90” in both cases. Performance is summarized in the legend
with the Log-Average Miss Rate. Using the proposed annotation instead of the
original one reports considerably lower Miss Detection rates at low FPPI values. We
ascribe this effect to the pedestrians that are unlabelled in the original annotation
and have been labelled in the proposed one: the corresponding detections are
evaluated as False Positives with the original annotation and as True Positives with
the proposed one. Using the proposed annotation also reports slightly increased
Miss Detection rates at high FPPI values. We attribute this effect to the introduction
in the test set of more occluded pedestrians, which are arguably more difficult to
detect than the fully visible ones. (For interpretation of the references to colour in
this figure caption, the reader is referred to the web version of this paper.)
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Table 1, columns 3–5). This result is expected, as passing from
“Reasonable” to “Reasonable90” some labels which were impos-
sible for the algorithms to match were removed from the test set.
The number of such labels is low since in the original test set only
a small fraction of the people with heights between 50 and 90
pixels are labelled. We conclude that the “Reasonable90” mode
provides for a fairer evaluation when testing the algorithms on the
INRIA test set using the detections from the Caltech benchmark.

A deeper analysis on the INRIA test set reveals that only a
fraction of the pedestrians is labelled: the higher the level of
occlusion, the more unlikely people are to be labelled, while the

smallest pedestrians are unlabelled as a whole. We describe a new
labelling for the INRIA test set and assess its impact on the
evaluation in the following section.

6.3. The proposed test labelling and its influence on evaluation

With the passing of time the flaws of the labellings become
evident and new labellings are needed. Evaluating detection
algorithms is typically done by means of annotated test sets.
Ideally, the Ground Truth annotation should be perfect. In practice
though, labelling a test set is an error-prone process which reflects

Table 3
Summary of the experiments, The goal of each experiment, the algorithms and the training and test labelling used in each experiment are listed. “Others” in “FPDW þ
others” refers to a set of algorithms whose detections are distributed with the Caltech Pedestrian Detection Benchmark (see Section 5.3 for details and Table 1 for a list of the
detectors).

Exp. # Description Train. labelling Test labelling Det. algorithm

1 Influence of partial occlusion in testing Original Proposed FPDWþothers
2 Influence of partial occlusion in training Proposed Proposed ACF
3 Influence of “short” examples in training Proposed Proposed ACF

Fig. 7. The effect of partial occlusion in testing on the accuracy of Pedestrian Detectors. (a) Reducing the minimum visibility of the pedestrians in the test set decreases the
detection performance of our implementation of FPDW. (b) The detection accuracy of FPDW varies greatly as a function of visibility. The three lines represent results obtained
using the good visibility, average visibility and scarce visibility partitions of the test set. In the legends of (a) and (b) the performance of the test combinations is summarized
with the Log-Average Miss Rate (LAMR, see text for details). (c) The effect of partial occlusion on the performance of several algorithms in the state of the art. The
performance of the detectors is again summarized with the LAMR. A clear relationship holds for all the algorithms: the better the visibility, the lower the LAMR, i.e., the
better the performance.
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the goal of the labeller. At the time of compilation of the INRIA
person data set, the focus was on the detection of high-resolution,
fully visible pedestrians. Meanwhile, the performance of Pedes-
trian Detectors has improved and the focus has shifted to partially
occluded and low-resolution pedestrians. The original labelling of
the INRIA test set cannot provide a good evaluation for the
detections in such conditions. We propose a new annotation that
enables the evaluation of the performance of algorithms on
pedestrians imaged at low resolutions, and improves the accuracy
of the results reported for taller pedestrians.

The proposed annotation for the test set contains a total of 879
labels, 806 of which for “Person” and 73 for “Person?” or “People”.
In comparison, the original annotation has 589 labels equivalent to
“Person”. The proposed annotation contains more labels than the
original one, especially at low heights, but also at medium heights
(see the comparison between the two annotations in Fig. 4a). The
fraction of “Ignore” BB's for the new annotation is considerable,
Fig. 4b illustrates the amount of labels that are set to “Person” and
“Ignore” for the “Reasonable90” evaluation mode, as a function of
height. One example of the proposed annotation, together with
the effect it has on the evaluation of the detections produced by
the FPDW algorithm, can be seen in Fig. 5.

Comparing the performance reported by testing using either
the original or the proposed annotations, we observe that the
proposed annotation reports better performances for the algo-
rithms at low FPPI values and better differentiates the perfor-
mance of the various detectors. We use the same set of algorithms
mentioned in the previous subsection and the “Reasonable90”
mode: MHTE¼90 pixels, MVTE¼0.65. We display the missed
detection/FPPI plot for one representative algorithm and the two
annotations, in Fig. 6. Two effects can be seen: the miss rate is
minimally higher at high FPPI values for the proposed labelling, we
ascribe this to the introduction in the test set of more occluded
pedestrians, who make the problem more difficult. The other
effect, the most significant one, is the average drop of 8.9% for
the missed rates at low FPPI values (10�2) (see the results for all
the tested algorithms in Table 2, columns 2–4). We ascribe this to
the removal of the spurious False Positives (FP's) generated on top
of unlabelled pedestrians. Such FP's tend (correctly) to be asso-
ciated with high values of confidence, ruining the reported
performance especially when the number of FP's is low. A working
point on the curve at (10�2) FPPI for this data set means that there

we are dealing with just three FP's. Adding even only one spurious
FP in such conditions will damage the performance in a noticeable
way. The algorithms that perform best overall are the ones that
benefit the most from using the proposed labelling (see Table 2,
columns 4 and 5). We conclude that for a correct evaluation of the
performance of a detector it is important to label the impure
examples in the test set and to treat them in a principled way.

7. Results

In this section we present the results of three experiments that
measure the influence of different degrees of impurity in the
testing and training of Pedestrian Detectors and describe the
proposed labelling for the INRIA training set. The first experiment
measures the impact of partial occlusion in the test set on the
detection performance, while the last two experiments assess the
influence on performance of using partially occluded and low
resolution examples during the training of the detector. Informa-
tion on the goal of each experiment and the labelling and the
detectors used in each experiment is summarized in Table 3. For
all the experiments we use the evaluation code by Piotr Dollár. The
original annotation of the INRIA data set and the evaluation code
are available on the Caltech Pedestrian Benchmark website,6 the
proposed annotation is available on the authors' website.

7.1. Experiment 1 – influence of partial occlusion in the test set on
detection performance

In this experiment we evaluate the impact of the amount of
partial occlusion of the examples in the test set on the detection
performance. We tackle, thus, a single source of impurity. It has
been shown in [12] that even a modest amount of occlusion
(visibility ratio as low as 0.65) has a highly detrimental effect on
the performance of Pedestrian Detectors. Those results were
obtained using the Caltech data set. We perform a similar experi-
ment on the INRIA data set and confirm that the finding has
general validity. We use the detections generated by our
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Fig. 8. Characterization of the original and the proposed labellings of the training set. (a) Histograms of the height of “Person” labels for the original (blue) and the proposed
labelling (red). The proposed annotation outnumbers the original one, particularly at lower heights. (b) Histogram for the full proposed labelling and for the subset whose
BB's are marked with a visibility ratio of at least 0.65, in red and yellow respectively. Most of the new BB's correspond to pedestrians imaged with a good visibility. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

6 Caltech Pedestrian Benchmark website http://www.vision.caltech.edu/Ima
ge_Datasets/CaltechPedestrians/
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implementation of FPDW, trained on the original training set, as
well as the detections of several algorithms distributed with the
Caltech benchmark. We define 7 test modes which correspond to
as many test sets. We filter the proposed test set with different
constraints on the visibility to create the 7 test sets. The first test
set contains only fully visible pedestrians, while the successive
sets include pedestrians imaged under an increasing degree of
occlusion. We include in this experiment only pedestrians imaged
with heights greater than 90 pixels.

We observed that lowering the minimum degree of visibility of
the test examples negatively affects the detection performance
(see Fig. 7a for the MD/FPPI curves of FPDW tested with different
degrees of visibility and Fig. 7c for a visualization of the relation-
ship between minimum visibility in testing and the Log-Average
Miss Rate for various detectors). This confirms the generality of the
observation obtained on the Caltech data set.

In order to better gauge the impact of partial occlusion on
detection we partitioned the INRIA test set into three visibility
classes and evaluated the performance of FPDW: detecting on
pedestrians with a good visibility (at least 0.7 visibility) leads to a
Log-Average Miss Rate of 15%, while detecting on pedestrians with

average and scarce visibilities (between 0.4 and 0.7, or under
0.4 visibility) leads to Log-Average Miss Rate of 59% and 75%,
respectively (see Fig. 7b).

7.2. Proposed labelling for learning

The original labelling for the training set consists of 1237
“Person” BB's, while the proposed annotation contains a total of
1997 such BB's, a 60% increment. The largest increase in labelled
pedestrians resides in the low height fraction of the data, but still
remains significant for heights of up to 300 pixels (see Fig. 8a). Each

Fig. 9. (a) The performance of ACF trained with different levels of occlusion and evaluated with a minimum visibility in testing (MVTE) of 0.65. Including partially visible
examples in training is advantageous: the best performance is obtained with a minimum visibility in training (MVTR) value of 0.8. (b) Including partially visible examples in
training is useful even when testing exclusively on fully visible pedestrians (MVTE of 1.0). (c) The result is general: averaging over the 18 combinations of fixed parameters
(see text for details) still indicates that including partially occluded examples in the training set is useful. (d) Restricting the minimum height in training (MHTR) leads to
different optimal values for MVTR. The reason generating this effect unclear at the moment (see text for conjectures).

Table 4
The number of positive examples in the proposed labelling,
in each of three height bins.

Height Training Test

425; o50 59 47
450; o100 294 150
4100 1644 682
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label in the proposed training set is associated with a visibility ratio,
enabling different training sets to be created by setting a threshold
on such quantity. Most of the newly labelled pedestrians are imaged
under good visibility conditions (see Fig. 8b).

The two following experiments are devoted to assessing the
importance of including impure, e.g., small and partially occluded
positive examples in the training set. We evaluate the effect of
partial occlusion in Experiment 2, while we gauge the impact of
including small pedestrians in the training set in Experiment 3. We
use the Aggregated Channel Features (ACF) detector and the
proposed labelling both for training and for testing. We choose
to use the ACF detector for these experiments because of the great
reduction in training time it allows for, compared to our imple-
mentation of FPDW. We filter the full training set varying two
thresholds: we set 3 minimum image heights for a person to 25,
50 or 100 pixels and we set 6 minimum visibility ratios to 0.5, 0.6,
0.7, 0.8, 0.9 or 1.0 (full visibility). We train the detector with the
training set resulting from each of the 18 combinations and, for
comparison, we train it also with the original INRIA set. To account

for the stochastic parts of the ACF algorithm, we repeat each
training 10 times with a different randomization seed (leading to
180 full trainings) and compute the average of the resulting
performances. For a complete analysis of the influence of positive
example height and visibility on the performance of PD, varying
the training set is not enough. In these experiments we use the
proposed labelling also for the test set. This allows us to set the
minimum height for a person to be considered in the test set to 25,
50 or 100 pixels. In a similar way, we constrain the minimum
visibility ratio during testing to 0.65 or 1.0 (full visibility), yielding
a total of 6 evaluation modes. We adjusted the depth of the image
pyramid so that it is possible to detect pedestrians 25 pixels tall or
taller.

7.3. Experiment 2 – influence of partial occlusion in the training set
on detection performance

In this experiment we evaluated the impact of varying the
minimum visibility in training (MVTR) while fixing the rest of the

Fig. 10. Log-average miss rate obtained varying minimum training height, ACF detector. The four plots display the results obtained with two test modes: full visibility
(MVTE¼1.0) in green and minimum visibility in testing (MVTE) of 0.65 in blue. (a) When testing on pedestrians spanning the whole range of heights, the different training
conditions fail to produce different performances. (b) When testing on short pedestrians, it is important to include examples of similar size in the training. Including
examples of medium height is also advantageous. (c) When detecting medium height pedestrians it works to include “middle sized” pedestrians in the training set, but
including the small ones does not help. Including the smaller pedestrians does not change much the detection performance on the big pedestrians (b). Overall, since in the
INRIA test the pedestrians with heights under 50 pixels are just 47 out of 879, the improvement of detection accuracy on this range has a small impact on the accuracy
measured on the full test set (c). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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experiment parameters: the minimum height in training (MHTR),
the minimum height in testing (MHTE) and the minimum visibility
in testing (MVTE). We repeated the test for each of the 18 fixed
parameters combinations.

For the first analysis, we fixed MHTR to 25 pixels, MHTE to 100
pixels and MVTE to 0.65. We compared the performance of the
ACF detector when trained including examples with different
degrees of visibility. We display the performance achieved by the
different training modes (as measured by the Log-Average Miss
Rate, LAMR) in Fig. 9a. It can be seen that including partially
occluded pedestrians (up to 0.8 visibility) in the training is
advantageous, as it leads to lower LAMR's.

In the second part of the experiment we set the MHTR and
MHTE to 100 pixels and the MVTE to 1.0, i.e., we tested on fully
visible pedestrians. The results depicted in Fig. 9b show that
including partially occluded pedestrians in the training is advan-
tageous even when testing exclusively on fully visible pedestrians.
Lowering the required training visibility past the optimal amount,
however, adversely affects performance. This behaviour is com-
mon to all the 18 combinations of training and testing constraints
(see the average behaviour in Fig. 9c).

Training restricting the minimum height of the pedestrians to
25, 50 or 100 pixels leads to different optimal visibility thresholds
for the training set (see Fig. 9d). It is not clear at this point if this
effect is due to peculiarities of the different training subsets, to
their different numerosities (see Table 4), to the increasing
difficulty in labelling when dealing with smaller pedestrians or
to some other phenomenon.

7.4. Experiment 3 – influence of “short” examples in the training set
on detection performance

In this experiment we assess the impact of the inclusion of
examples smaller than the detection window in the training set.
We observe that including small pedestrians in the training has a
strong positive effect on the detection of pedestrians in a similar
range of heights. We consider the same training modes as in the
previous experiment. In order to test for the influence of training
pedestrians of different heights on the detection performance, we
partition the pedestrians in three classes. Pedestrians between 25
and 50 pixels tall form the “short” class, those between 50 and 100
pixels tall form the “medium” class and those over 100 pixels tall
form the “tall” class. The numerosity for each class in both training
and testing with the proposed labelling is reported in Table 4. We
introduce three new testing modes based on this partition of the
heights. We consider training with the “tall” class the baseline (as
100 pixels coincides with the detection window height) and we
evaluate the effect of including smaller pedestrians in the training.
We report results averaged over the 6 training visibility ratios.

Testing on the full test set (pedestrians taller than 25 pixels)
indicates little change when training with different subsets of the
proposed data set (see Fig. 10a). Testing on the “short”, “medium”

and “tall” classes separately gives a better insight: when testing on
the “short” class, including elements of the same height range is
very beneficial, while including elements of the “medium” class is
beneficial, but to a lesser extent (see Fig. 10b). The advantage is not
visible, though, when testing on the full set. We ascribe the lack of
impact on the full set to the small numerosity of the “short” class:
in the test set its elements account for less than 1/15 of the
element of the “tall” class. A comparison of the best detection
performances for the “short” range, obtained with various mini-
mum heights in training, is visible in Fig. 11. When testing on the
“medium” class, including elements of the same height range has a
small positive effect on detection accuracy (see Fig. 10c), while
including elements from the “short” class produces little change.
When testing on the “tall” class, the inclusion of shorter examples

in training produces negligible variations (see Fig. 10d). Summar-
izing, including examples two octave smaller than the detection
window has a positive effect on the detection of pedestrians in the
same range. We speculate that short pedestrians contribute to the
detection system knowledge on the appearance of people when
imaged at low resolutions.

8. Conclusions

In this work we discussed the importance of the sensible use of
impure data in the training and evaluation of detection systems.
We partitioned the positive samples in pure and impure data, the
pure samples being the ones imaged in ideal conditions (in the
Pedestrian Detection case, the ones imaged under full visibility
and with high resolution). We proposed a new labelling for the
INRIA person data set which allows for measuring the effect of
impure data on Pedestrian Detectors. We showed that handling
impure examples correctly is important during the evaluation
phase. We observed that including partially occluded examples
(up to a certain degree of occlusion) in the training set improves
the detection performance both on fully visible and on partially
visible pedestrians. Furthermore, we observed that the inclusion of
examples imaged with heights lower than that of the detection
window positively affects the detection of pedestrians in the same
height range, while the performance on taller examples is
unchanged. We are confident that the proposed labelling will
allow for further studies on the effect of data purity on detection
systems, fostering improvement in the detectors.
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