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Simple and Fast Convex Relaxation Method
for Cooperative Localization in Sensor
Networks Using Range Measurements
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Abstract—We address the sensor network localization problem
given noisy range measurements between pairs of nodes. We
approach the nonconvex maximum-likelihood formulation via
a known simple convex relaxation. We exploit its favorable op-
timization properties to the full to obtain an approach that is
completely distributed, has a simple implementation at each node,
and capitalizes on an optimal gradient method to attain fast con-
vergence. We offer a parallel but also an asynchronous flavor, both
with theoretical convergence guarantees and iteration complexity
analysis. Experimental results establish leading performance.
Our algorithms top the accuracy of a comparable state-of-the-art
method by one order of magnitude, using one order of magnitude
fewer communications.
Index Terms—Convex relaxations, distributed algorithms, dis-

tributed iterative sensor localization, maximum likelihood estima-
tion, nonconvex optimization, wireless sensor networks.

I. INTRODUCTION

S ENSOR networks are becoming ubiquitous. From environ-
mental and infrastructure monitoring to surveillance, and

healthcare networked extensions of the human senses in con-
temporary technological societies are improving our quality of
life, our productivity, and our safety. Applications of sensor net-
works recurrently need to be aware of node positions to ful-
fill their tasks and deliver meaningful information. Neverthe-
less, locating the nodes is not trivial: these small, low cost, low
power devices are deployed in large numbers, often with impre-
cise prior knowledge of their locations, and are equipped with
minimal processing capabilities. Such limitations call for local-
ization algorithms which are scalable, fast, and parsimonious in
their communication and computational requirements.

A. Problem Statement
The sensor network is represented as an undirected graph

. In the node set we represent the
sensors with unknown positions. There is an edge
between sensors and if a noisy range measurement between
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nodes and is available (at both of them) and nodes and
can communicate with each other. Anchors are elements with
known positions and are collected in the set .
For each sensor , we let be the subset of anchors
(if any) whose distance to node is quantified by a noisy range
measurement. The set collects the neighbors of node .
Let be the space of interest ( for planar networks,

and otherwise). We denote by the position
of sensor , and by the noisy range measurement between
sensors and , available at both and . Following [1], we
assume 1. Anchor positions are denoted by .
We let denote the noisy range measurement between sensor
and anchor , available at sensor .
The distributed network localization problem addressed in

this work consists in estimating the sensors’ positions
, from the available measurements

and known anchor positions , through
collaborative message passing between neighboring sensors in
the communication graph .
Under the assumption of zero-mean, independent and iden-

tically-distributed, additive Gaussian measurement noise, the
maximum likelihood estimator for the sensor positions is the
solution of the optimization problem

(1)

where

Problem (1) is nonconvex and difficult to solve [2], neverthe-
less, it is guaranteed to have a global minimum, since function
is continuous and coercive (because, as shown in Lemma 5

ahead, it is lower bounded by a coercive function ).

B. Contributions
We set forth a convex underestimator of the maximum likeli-

hood cost for the sensor network localization problem (1) based
on the convex envelopes of its parcels.
We present an optimal synchronous and parallel algorithm to

minimize this convex underestimator — with proven conver-
gence guarantees. We also propose an asynchronous variant of

1This entails no loss of generality: it is readily seen that, if , then it
suffices to replace and in the forth-
coming optimization problem (1).
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this algorithm and prove it converges almost surely. Further-
more, we analyze its iteration complexity.
Moreover, we assert the superior performance of our algo-

rithms by computer simulations; we compared several aspects
of our method with [2], [3], and [4], and our approach always
yields better performance metrics. When compared with the
method in [2], which operates under the same conditions, our
method outperforms it by one order of magnitude in accuracy
and in communication volume.

C. Related Work
With the advent of large-scale networks, the computational

paradigm of information processing algorithms — centralized
versus distributed — becomes increasingly critical. A central-
ized method can be less suited for a network with meager com-
munication and computation resources, while a distributed al-
gorithm might not be adequate if the network is supposed to de-
liver in one place the global result of its computations. Further,
none of the available techniques to address Problem (1) claims
convergence to the global optimum— due to the nonconvexity,
but also due to ambiguities in the network topology which create
more than one distant global optimum [5].
1) Centralized Paradigm: The centralized approach to the

problem of sensor network localization summoned up a wide
body of research. It involves a central processing unit to which
all sensor nodes communicate their collected measurements.
Centralized architectures are prone to data traffic bottlenecks
close to the central node. Resilience to failure, security and pri-
vacy issues are, also, not naturally accounted for by the cen-
tralized architecture. Moreover, as the number of nodes in the
network grows, the problem to be solved at the central node be-
comes increasingly complex, thus raising scalability concerns.
Focusing on recent work, several different approaches are

available, such as the work in [6], where sensor network lo-
calization is formulated as a regression problem over adaptive
bases. The method has an initialization step using eigendecom-
position of an affinity matrix; its entries are functions of squared
distance measurements between sensors. The refinement is done
by conjugate gradient descent over a discrepancy function of
squared distances — which is mathematically more tractable
but amplifies measurement errors and outliers and does not ben-
efit from the limiting properties of maximum likelihood esti-
mators. This approach is closely related to multidimensional
scaling, where the sensor network localization problem is posed
as a least-squares problem, as in [7]. Multidimensional scaling
is unreliable in large-scale networks due to their sparse connec-
tivity. Also relying on the well-tested weighted least squares ap-
proach, the work in [5] performs successive minimizations of a
weighted least squares cost function convolved with a Gaussian
kernel of decreasing variance.
Another successfully pursued approach is to perform semi-

definite or weaker second-order cone relaxations of the orig-
inal nonconvex problem (1) [3], [8]. These approaches do not
scale well, since the centralized SDP or SOCP problem gets
very large even for a small number of nodes. In [3] and [9] the
majorization-minimization framework was used with quadratic
cost functions to derive centralized approaches to the sensor net-
work localization problem.

2) Distributed Paradigm: In the present work, the expres-
sion distributed method denotes an algorithm requiring no cen-
tral or fusion node where all nodes perform the same types of
computations. Distributed approaches for cooperative localiza-
tion have been less frequent than centralized ones, despite the
more suited nature of this computational paradigm to sensor net-
works, when the target application does not require that the es-
timate of all sensor positions be available in one place.
We consider two main approaches to the distributed sensor

network localization problem: 1) one where the nonconvex
Problem (1) (or some other nonconvex discrepancy minimiza-
tion) is attacked directly, and hence the quality of the solution is
highly dependent on the quality of the algorithm’s initialization;
2) and another, where the original nonconvex sensor network
localization problem is relaxed to a convex problem, whose
tightness will determine how close the solution of the convex
problem will approximate the global solution of the original
problem, not needing any particular initialization.

Initialization Dependent: In reference [10] the authors de-
velop a distributed implementation of multidimensional scaling
for solution refinement. These authors base their method on the
majorization-minimization framework, but they do not provide
a formal proof of convergence for the jacobi-like iteration. The
work in [11] puts forward two distributed methods optimizing
the discrepancy of squared distances: a gradient algorithm with
barzilai-borwein step sizes calculated in a first consensus phase,
followed by a gradient computation phase, and a gauss-newton
algorithm also with a consensus phase and a gradient computa-
tion phase. Both are refinement methods that need good initial-
izations to converge to the global optimum.

Initialization Independent: The work in [12] proposes a
parallel distributed algorithm. However, the sensor network lo-
calization problem adopts the previously discussed squared dis-
tances discrepancy function. Also, each sensor must solve a
second order cone program at each algorithm iteration, which
can be a demanding task for the simple hardware used in sensor
networks’ motes. Furthermore, the formal convergence prop-
erties of the algorithm are not established. The work in [13]
also considers network localization outside a maximum like-
lihood framework. The approach proposed in [13] is not par-
allel, operating sequentially through layers of nodes: neighbors
of anchors estimate their positions and become anchors them-
selves, making it possible in turn for their neighbors to esti-
mate their positions, and so on. Position estimation is based
on planar geometry-based heuristics. In [14], the authors pro-
pose an algorithm with assured asymptotic convergence, but the
solution is computationally complex since a triangulation set
must be calculated, and matrix operations are pervasive. Fur-
thermore, in order to attain good accuracy, a large number of
range measurement rounds must be acquired, one per iteration
of the algorithm, thus increasing energy expenditure. On the
other hand, the algorithm presented in [1] and based on the non-
linear Gauss Seidel framework, has a pleasingly simple imple-
mentation, combined with the convergence guarantees inherited
from the framework. Notwithstanding, this algorithm is sequen-
tial, i.e., nodes perform their calculations in turn, not in a par-
allel fashion. This entails the existence of a network-wide coor-
dination procedure to precompute the processing schedule upon
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startup, or whenever a node joins or leaves the network. The se-
quential nature of the work in [1] was superseded by the work
in [2] which puts forward a parallel method based on two con-
secutive relaxations of the maximum likelihood estimator in (1).
The first relaxation is a semi-definite program with a rank relax-
ation, while the second is an edge based relaxation, best suited
for the Alternating Direction Method of Multipliers (ADMM).
The main drawback is the amount of communications required
to manage the ADMM variable local copies, and by the pro-
hibitive complexity of the problem at each node. In fact, each
one of the simple sensing units must solve a semidefinite pro-
gram at each ADMM iteration and after the update copies of
the edge variables must be exchanged with each neighbor. A
simpler approach was devised in [4] by extending the source lo-
calization Projection Onto Convex Sets algorithm in [15] to the
problem of sensor network localization. The proposed method
is sequential, activating nodes one at a time according to a pre-
defined cyclic schedule; thus, it does not take advantage of the
parallel nature of the network and imposes a stringent timetable
for individual node activity.

II. CONVEX RELAXATION
Problem (1) can be written as

(2)

where represents the squared Euclidean distance of point
to the set , i.e., and the sets
and are defined as the spheres generated by the noisy

measurements and

nonconvexity of (2) follows from the nonconvexity of the
building block

(3)

A simple convexification consists in replacing it by

(4)

where is the convex hull of
. Actually, (4) is the convex envelope2 of (3). This fact is

illustrated in Fig. 1 with a one-dimensional example; a formal
proof for the generic case is given in Section I. The terms of (2)
associated with anchor measurements are similarly relaxed as

(5)

where the set is the convex hull of :
Replacing the nonconvex parcels in (2) by the

sums of terms (4) and (5) we obtain the convex problem

(6)
The function in Problem (6) is an underestimator of (2)

but it is not the convex envelope of the original function. We

argue that in our application of sensor network localization it
is generally a very good approximation whose sub-optimality
can be quantified, as discussed in Section IV-A. The cost
function (6) also appears in [4] albeit via a distinct reasoning;
our convexification mechanism seems more intuitive. But the
striking difference with respect to [4] is how (6) is exploited
to generate distributed solution methods. Whereas [4] lays
out a sequential block-coordinate approach, we show that (6)
is amenable to distributed solutions either via the fast Nes-
terov’s gradient method (for synchronous implementations)
or exact/inexact randomized block-coordinate methods (for
asynchronous implementations).

III. DISTRIBUTED SENSOR NETWORK LOCALIZATION
We propose two distributed algorithms: a synchronous one,

where nodes work in parallel, and an asynchronous, gossip-
like algorithm, where each node starts its processing step ac-
cording to some probability distribution. Both algorithms re-
quire to compute the gradient of the cost function and its Lips-
chitz constant. In order to achieve this it is convenient to rewrite
Problem (6) as

(7)

where , is the arc-node incidence matrix of ,
is the identity matrix of size , and is the Cartesian product
of the balls corresponding to all the edges in . We denote
the two parcels in (7) as

where . Problems (6) and (7) are
equivalent since is the vector and function

in (7) can be written as

and as all the terms are non-negative and the constraint set is
a Cartesian product, we can exchange with the summation,
resulting in

which is the corresponding term in (6).

A. Gradient and Lipschitz Constant of
To simplify notation, let us define the functions:

2The convex envelope (or convex hull) of a function is its best possible
convex underestimator, i.e., ,
and is hard to determine in general.
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Fig. 1. Illustration of the convex envelope for intersensor terms of the non-
convex cost function (2). The squared distance to the ball (dotted line) is
the convex hull of the squared distance to the sphere (dashed line). In this
one dimensional example the value of the range measurement is .

Nowwe call on a key result from convex analysis (see [16, Prop.
X.3.2.2, Th. X.3.2.3]): the function in (4),
is convex, differentiable, and its gradient is

(8)

where is the orthogonal projection of point onto the
closed convex set

Further, function has a Lipschitz continuous gradient with
constant , i.e.,

(9)

We show (9) in Section II.
Let us define a vector-valued function , obtained by

stacking all functions . Then, . From this
relation, and using (8), we can compute the gradient of :

(10)

where the second equality follows from (8) and
, with being the Laplacian matrix of . This gradient

is Lipschitz continuous and we can obtain an easily computable
Lipschitz constant as follows

(11)

where is the maximum singular value norm; equality
is a consequence of Kronecker product properties. In (11) we
denote the maximum node degree of by . A proof of the
bound can be found in [17]3.

3A tighter bound would be where
is the degree of node and is the number of vertices that are adjacent

to both and [18, Th. 4.13], nevertheless is easier to compute in a
distributed way.

The gradient of is
where the gradient of each is

(12)

The gradient of is also Lipschitz continuous. The constants
for are

(13)

where is the cardinality of set . We now have an overall
constant for ,

(14)

We are now able to write , the gradient of our cost function,
as

...

(15)
A Lipschitz constant is, thus,

(16)

This constant is easy to precompute by, e.g., a diffusion algo-
rithm — cf. [19, Ch. 9] for more information.
In summary, we can compute the gradient of using (15) and

a Lipschitz constant by (16), which leads us to the algorithms
described in Sections III-B and III-C for minimizing .

B. Parallel Method

Since has a Lipschitz continuous gradient we can follow
Nesterov’s optimal method [20]. Our approach is detailed in
Algorithm 1. Step 5 computes the extrapolated points in a
standard application of Nesterov’s method [21]. Steps 7 and
8, which constitute the core of the algorithm, correspond the
-th entry of given in (15). Specifically, Step 7 coincides
with the th entry of in (10) where
denotes the entry in the arc-node incidence matrix
, and is the degree of node . The -th entry of can

be computed by node , from its current position estimate and
the position estimates of the neighbors, in particular, it holds

. The less obvious parallel term is
. We start the analysis by the concatenated projec-

tions . Each one of those
projections only depends on the edge terminals and the noisy
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measurement . The product with will collect, at the en-
tries corresponding to each node, the sum of the projections rel-
ative to edges where it intervenes, with a positive or negative
sign depending on the arbitrary edge direction agreed upon at
the onset of the algorithm. More specifically,

, as presented in Step 7 of Algo-
rithm 1. The last summand in (15) is simply , and the -th
entry of is given in (12). This can be easily computed
independently by each node according to Step 8. The position
updates in Step 9 of the algorithm require the computation of
the gradient of the cost w.r.t. the coordinates of node , done in
the previous steps, evaluated at the extrapolated points .

Algorithm 1: Parallel method

Input:
Output:
1:
2: each node chooses random ;
3: while some stopping criterion is not met, each node do
4:
5:
6: node broadcasts to its neighbors
7:

8:

9:

10: end while
11: return

C. Asynchronous Method
The method described in Algorithm 1 is fully parallel but

still depends on some synchronization between all the nodes
— so that their updates of the gradient are consistent. This re-
quirement can be inconvenient in some applications of sensor
networks; to circumvent it, we present a fully asynchronous
method, achieved by means of a broadcast gossip scheme (cf.
[22] for an extended survey of gossip algorithms).
Nodes are equipped with independent clocks ticking at

random times (say, as Poisson point processes). When node
’s clock ticks, it performs the update of its variable and
broadcasts the update to its neighbors. Let the order of node
activation be collected in , a sequence of independent
random variables taking values on the set , such that

(17)

Then, the asynchronous update of variable on node can be
described as in Algorithm 2.

Algorithm 2: Asynchronous method

Input:
Output:
1: each node chooses random ;
2: ;
3: while some stopping criterion is not met, each node do
4:
5: if then
6:
7: else
8:
9: end if
10: end while
11: return

To compute the minimizer in Step 6 of Algorithm 2 it is useful
to recast Problem (7) as

(18)

where the factor accounts for the duplicate terms when con-
sidering summations over nodes instead of over edges. By fixing
the neighbor positions, each node solves a single source local-
ization problem; this setup leads to the Problem

(19)

where . Note that the func-
tion in (19) is continuous and coercive; thus, the optimization
problem (19) has a solution.

Algorithm 3: Asynchronous update at each node

Input:
Output:
1: if not then
2: ;
3: return ;
4: end if
5: choose random ;
6: ;
7: while some stopping criterion is not met do
8:
9: ;
10:

11:

12: end while
13: return



IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON SIGNAL PROCESSING

We solve Problem (19) at each node by employing Nes-
terov’s optimal accelerated gradient method as described in
Algorithm 3. The asynchronous method proposed in Algorithm
2 converges to the set of minimizers of function , as estab-
lished in Theorem 2, in Section IV.
We also propose an inexact version in which nodes do not

solve Problem (19) but instead take just one gradient step. That
is, simply replace Step 6 in Algorithm 2 by

(20)

where is the gradient with respect to , and
assume

(21)

The convergence terms of the resulting algorithm are estab-
lished in Theorem 3, Section IV.

IV. THEORETICAL ANALYSIS

A relevant question regarding Algorithms 1 and 2 is whether
they will return a good solution to the problem they are de-
signed to solve, after a reasonable amount of computations.
Sections IV-B and IV-C address convergence issues of the pro-
posed methods, and discuss some of the assumptions on the
problem data. Section IV-A provides a formal bound for the gap
between the original and the convexified problems.

A. Quality of the Convexified Problem
While evaluating any approximation method it is important

to know how far the approximate optimum is from the original
one. In this Section we will focus on this analysis.
It was already noted in Section II that

for ; when the functions differ, for , we
have that . The same applies to the terms related
to anchor measurements. The optimal value of function , de-
noted by , is bounded by
where is the minimizer of the convexified problem (6), and

is the minimum of function . With these in-
equalities we can compute a bound for the optimality gap, after
(6) is solved, as

(22)

In (22), we denote the set of edges where the distance of the
estimated positions is less than the distance measurement by

, and similarly
. Inequality (22) suggests

a simple method to compute a bound for the optimality gap of
the solution returned by the algorithms:

Fig. 2. One-dimensional example of the quality of the approximation of the
true nonconvex cost by the convexified function in a star network.
Here the node positioned at has 3 neighbors.

TABLE I
BOUNDS ON THE OPTIMALITY GAP FOR THE EXAMPLE IN FIG. 2

1) Compute the optimal solution using Algorithm 1 or 2;
2) Select the terms of the convexified problem (6) which are

zero;
3) Add the nonconvex costs of each of these edges, as in (22).

Our bound is tighter than the one (available a priori) from ap-
plying [23, Th. 1], which is

(23)

For the one-dimensional example of the star network costs
depicted in Fig. 2 the bounds in (22), and (23) averaged over
500Monte Carlo trials are presented in Table I. The true average
gap is also shown. In the Monte Carlo trials we sam-
pled a zero mean Gaussian random variable with and
obtained a noisy range measurement as described later by (28).
These results show the tightness of the convexified function and
how loose the bound (23) is when applied to our problem.

B. Parallel Method: Convergence Guarantees and Iteration
Complexity
As Problem (7) is convex and the cost function has a Lipschitz

continuous gradient, Algorithm 1 is known to converge at the
optimal rate [20], [24]:

.

C. Asynchronous Method: Convergence Guarantees and
Iteration Complexity

To state the convergence properties of Algorithm 2 we only
need Assumption 1.
Assumption 1: There is at least one anchor linked to some

sensor and the graph is connected (there is a path between
any two sensors).
This assumption holds generally as one needs anchors

to eliminate translation, rotation, and flip ambiguities while per-
forming localization in , which exceeds the assumption re-
quirement. We present two convergence results, — Theorem 2,
and Theorem 3 — and the iteration complexity analysis for Al-
gorithm 2 in Proposition 4. Proofs of the Theorems are detailed
in Appendix D.
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The following Theorem establishes the almost sure (a.s.) con-
vergence of Algorithm 2.
Theorem 2 (Almost Sure Convergence of Algorithm 2): Let

be the sequence of points produced by Algorithm
2, or by Algorithm 2 with the update (20), and let

be the set of minimizers of function defined in
(6). Then it holds:

(24)

In words, with probability one, the iterates will ap-
proach the set of minimizers of ; this does not imply that

will converge to one single , but it does
imply that , since is a compact set,
as proven in Appendix C, Lemma 5.
Theorem 3 (Almost Sure Convergence to a Point): Let

be a sequence of points generated by Algorithm 2,
with the update (20) in Step 6, and let all nodes start compu-
tations with uniform probability. Then, with probability one,
there exists a minimizer of , denoted by , such that

(25)

This result tells us that the iterates of Algorithm 2 with the
modified Step 6 stated in (20) not only converge to the solution
set, but also guarantees that they will not be jumping around the
solution set (unlikely to occur in Algorithm 2, but not ruled
out by the analysis). One of the practical benefits of Theorem 3 is
that the stopping criterion can safely probe the stability of the es-
timates along iterations. To the best of our knowledge, this kind
of strong type of convergence (the whole sequence converges
to a point in ) was not established previously in the context
of randomized approaches for convex functions with Lipschitz
continuous gradients, though it was derived previously for ran-
domized proximal-based minimizations of a large number of
convex functions, cf. [25, Proposition 9]. We emphasize that
what prevents the latter to apply to the exact version of Algo-
rithm 2 is the ambiguity in choosing estimates when is not a
singleton. A possible approach to circumvent non-uniqueness of
minimizers in (19) is to add a proximal term (as this makes the
function strictly convex). However, the proximal terms tend to
slow down convergence. Although overall strong convergence
is still an open issue with this device, we saw in preliminary
experiments that the proximal terms slowed down the speed of
convergence (up to one order of magnitude of degradation in the
iteration count).
Proposition 4 (Iteration Complexity for Algorithm 2): Let

be a sequence of points generated by Algorithm 2,
with the update (20) in Step 6, and let the nodes be activated
with equal probability. Choose and

. There exists a constant such that

(26)

for all

(27)

The constant can be computed from inequality (19)
in [26]; it depends only on the initialization and the chosen .

Proposition 4 is saying that, with high probability, the function
value for all will be at a distance of the op-
timal, and the number of iterations depends inversely on the
chosen .
Proof of Proposition 4: As is differentiable and has Lips-

chitz gradient, the result is trivially deduced from [26, Th. 2].

V. NUMERICAL EXPERIMENTS

In this Section we present experimental results that demon-
strate the superior performance of our methods when compared
with four state of the art algorithms: Euclidean Distance
Matrix (EDM) completion presented in [3], Semidefinite Pro-
gram (SDP) relaxation and Edge-based Semidefinite Program
(ESDP) relaxation, both implemented in [2], and a sequential
projection method (PM) in [4] optimizing the same convex
underestimator as the present work, with a different algorithm.
The fist two methods — EDM completion and SDP relaxation
— are centralized, whereas the ESDP relaxation and PM are
distributed.
1) Methods: We conducted simulations with two uniquely

localizable geometric networks with sensors randomly dis-
tributed in a two-dimensional square of size 1 1 with 4 anchors
in the corners of the square. Network 1 has 10 sensor nodes
with an average node degree4 of 4.3, while network 2 has
50 sensor nodes and average node degree of 6.1. The ESDP
method was only evaluated in network 1 due to simulation time
constraints, since it involves solving an SDP at each node, and
each iteration. The noisy range measurements are generated
according to

(28)

where is the true position of node , and
are independent Gaussian

random variables with zero mean and standard deviation . The
accuracy of the algorithms is measured by the original non-
convex cost value in (1) and by the Root Mean Squared Error
(RMSE) per sensor, defined as

(29)

where is the number of Monte Carlo trials performed.

A. Assessment of the Convex Underestimator Performance
The first experiment aimed at exploring the performance of

the convex underestimator in (6) when compared with two other
state of the art convexifications. For the proposed disk relaxation
(6), Algorithm 1 was stopped when the gradient norm
reached while both EDM completion and SDP relaxation
were solved with the default SeDuMi solver [27] value of

, so that algorithm properties did not mask the real quality
of the relaxations. Figs. 3 and 4 report the results of the exper-
iment with 50 Monte Carlo trials over network 2 and measure-
ment noise with ; so, we had a total

4To characterize the used networks we resort to the concepts of node degree
, which is the number of edges connected to node , and average node degree

.
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Fig. 3. Relaxation quality: Root mean square error comparison of EDM com-
pletion in [3], SDP relaxation in [2] and the disk relaxation (6), used in the
present work; measurements were perturbed with noise with different values
for the standard deviation . The disk relaxation approach in (6) improved on
the RMSE values of both EDM completion and SDP relaxation for all noise
levels, even though it does not rely on the SDP machinery. The performance
gap to EDM completion is substantial.

Fig. 4. Relaxation quality: Comparison of the best achievable root mean square
error versus overall execution time of the algorithms. Measurements were con-
taminated with noise with . Although disk relaxation (6) has a dis-
tributed implementation, running it sequentially can be faster by one order of
magnitude than the centralized methods.

of 200 runs, equally divided by the 4 noise levels. In Fig. 3 we
can see that the disk relaxation in (6) has better performance for
all noise levels. Fig. 4 locates the results of optimizing the three
convex functions for the same problems in RMSE versus exe-
cution time, indicating the complexity of the optimization of the
considered costs. The convex surrogate (6) used in the present
work combined with our methods is faster by at least one order
of magnitude.

B. Performance of Distributed Optimization Algorithms

To measure the performance of the presented Algorithm 1
in a distributed setting we compared it with the state of the
art methods in [4] and the distributed algorithm in [2]. The re-
sults are shown, respectively, in Figs. 5 and 6. The experimental
setups were different, since the authors proposed different stop-
ping criteria for their algorithms and, in order to do a fair com-
parison, we ran our algorithm with the specific criterion set by
each benchmark method. Also, to compare with the distributed
ESDP method in [2], we had to use a smaller network of 10
sensors because of simulation time constraints — as the ESDP
method entails solving an SDP problem at each node, the simu-
lation time becomes prohibitively large, at least using a general
purpose solver. The number of Monte Carlo trials was 32, with
3 noise levels, leading to 96 realizations for each noisy mea-
surement. So, in the experiment illustrated in Fig. 5, the stop-
ping criterion for both the projection method and the presented
method was the relative improvement of the solution; we stress
that this is not a distributed stopping criterion, we adopted it just
for algorithm comparison. We can see that the proposed method

Fig. 5. Performance of the proposed method in Algorithm 1 and of the Projec-
tion method presented in [4]. The stopping criterion for both algorithms was a
relative improvement of in the estimate. The proposed method uses fewer
communications to achieve better RMSE for the tested noise levels. Our method
outperforms the projection method with one forth of the number of communi-
cations for a noise level of 0.01.

Fig. 6. Performance of the proposed method in Algorithm 1 and of the ESDP
method in [2]. The stopping criterion for both algorithms was the number of
algorithm iterations. The performance advantage of the proposed method in Al-
gorithm 1 is even more remarkable when considering the number of communi-
cations presented in Table II.

TABLE II
NUMBER OF COMMUNICATIONS PER SENSOR FOR THE RESULTS IN FIG. 6

fares better not only in RMSE but, foremost, in communication
cost. The experiment comprised 120 Monte Carlo trials and two
noise levels.
From the analysis of both Fig. 6 and Table II we can see that

the ESDP method is one order of magnitude worse in RMSE
performance, using one order of magnitude more communica-
tions, than Algorithm 1.

C. Performance of the Asynchronous Algorithm

A second experiment consisted on testing the performance of
the parallel and the asynchronous flavors of our method, pre-
sented respectively in Algorithms 1 and 2, the latter with the
exact update. The metric was the value of the convex cost func-
tion in (6) evaluated at each algorithm’s estimate of the min-
imum. To have a fair comparison, both algorithms were allowed
to run until they reached a preset number of communications.
In Fig. 7 we present the effectiveness of both algorithms in op-
timizing the disk relaxation cost in (6), with the same amount
of communications. We chose the uniform probability law for
the random variables representing the sequence of updating
nodes in the asynchronous version of our method. Again, we ran
50 Monte Carlo trials, each with 3 noise levels, thus leading to
150 samplings of the noise variables in (28).
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Fig. 7. Final cost of the parallel Algorithm 1 and its asynchronous counterpart
in Algorithm 2 with an exact update for the same number of communications.
Results for the asynchronous version degrade less than those of the parallel one
as the noise level increases. The stochastic Gauss-Seidel iterations prove to be
more robust to intense noise.

VI. CONCLUDING REMARKS

Experiments in Section V show that our method is superior
to the state of the art in all measured indicators. While the com-
parison with the projection method published in [4] is favorable
to our proposal, it should be further considered that the projec-
tion method has a different nature when compared to ours: it is
sequential, and such algorithms will always have a larger com-
putation time than parallel ones, since nodes run in sequence;
moreover, this computation time grows with the number of sen-
sors while parallel methods retain similar speed, no matter how
many sensors the network has.
When comparing with a distributed and parallel method

similar to Algorithm 1, like the ESDP method in [2] we can see
one order of magnitude improvement in RMSE for one order
of magnitude fewer communications of our method—and this
score is achieved with a simpler, easy-to-implement algorithm,
performing simple computations at each node that are well
suited to the kind of hardware commonly found in sensor
networks.
There are some important questions not addressed here. For

example, it is not clear what influence the number of anchors
and their spatial distribution can have in the performance of the
proposed and state of the art algorithms. Also, an exhaustive
study on the impact of varying topologies and number of sensors
could lead to interesting results. Some preliminary experiments
show that all convex relaxations experience some performance
degradation when tested for robustness to sensors outside the
convex hull of the anchors. This issue has been noted by several
authors, but a more exhaustive study exceeds the scope of this
paper.
But with the data presented here one can already grasp the

advantages of our fast and easily implementable distributed
method, where the optimality gap of the solution can also be
easily quantified, and which offers two implementation flavours
for different localization needs.

APPENDIX A
CONVEX ENVELOPE

We show that the function in (4) is the convex envelope of
the function in (3). Refer to as the function in (3) and as the
function in (4). We show that where denotes the
Fenchel conjugate of a function , cf. [16, Cor. 1.3.6, p. 45, v.
2].

We start by computing :

Thus, is the sum of two closed convex functions:
where and . Note that

where denotes the
support function of a set . Thus, using [16, Th. 2.3.1, p. 61, v.
2], we have

Since [16, Ex. 1.1.3, p. 38, v. 2] and
[16, Ex. 1.1.5, p. 39, v. 2] where if

and if denotes the indicator of a set , we
conclude that

APPENDIX B
LIPSCHITZ CONSTANT OF

We prove the inequality in (9):

(30)

where and is the projector
onto . Squaring both sides of (30)
gives the equivalent inequality

(31)

where, to simplify notation, we let . Inequality
(31) can be rewritten as

(32)

By the properties of projectors onto closed convex sets,
, for any and any , cf. [16, Th.

3.1.1, p. 117, v. 1]. Thus, the last two terms on the left-hand side
of (32) are nonnegative. Moreover, the first term is nonnegative
due to [16, Prop. 3.1.3, p. 118, v. 1]. Inequality (32) is proved.
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APPENDIX C
AUXILIARY LEMMAS

In this Section we establish basic properties of Problem (7) in
Lemma 5 and also two technical Lemmas, instrumental to prove
our convergence results in Theorem 2.
Lemma 5 (Basic Properties): Let as defined in (6). Then

the following properties hold.
1) is coercive;
2) and ;
3) is compact;
Proof:

1) By Assumption 1 there is a path from each node to some
node which is connected to an anchor . If
then there are two cases: (1) there is at least one edge
along the path from to where and
, and so ; (2) if for

all in the path between and , in particular we have
and so , and in both cases

, thus, is coercive.
2) Function defined in (6) is a sum of squares, it is contin-

uous, convex and a real valued function, lower bounded
by zero; so, the infimum exists and is non-negative.
To prove this infimum is attained and , we con-
sider the set ; is a sublevel set
of a continuous, coercive function and, thus, it is compact.
As is continuous, by the Weierstrass Theorem, the value

is attained; the equality is evi-
dent.

3) is a sublevel set of a continuous coercive function and,
thus, compact.

Lemma 6: Let be the sequence of iterates of
Algorithm 2, or of Algorithm 2 with the update (20), and

be the gradient of function evaluated at each
iterate. Then,
1) ;
2) .
Proof: Let be the sigma-al-

gebra generated by all the algorithm iterations until time
. We are interested in , the expected

value of the cost value of the th iteration, given the knowl-
edge of the past iterations. Firstly, let us examine
function , the slice of along a coordinate di-
rection, . As has
Lipschitz continuous gradient with constant , so will :

for all and , and, thus, it
will inherit the property

(33)

Inequality (33) is known as the Descent Lemma [28, Prop.
A.24]. The minimizer of the quadratic upper-bound in (33) is

, which can be plugged back in (33), obtaining

(34)

In the sequel, for a given , we let

Going back to the expectation
, we can bound it from above, recur-

ring to (34), by

(35)

where we used , for all in .
To alleviate notation, let ; we then have

and adding to both sides of the inequality
in (35), we find that

(36)

where . Inequality (36)
defines the sequence as a supermartingale. As is
always non-negative, then is also non-negative and so [29,
Corollary 27.1],

In words, the sequence converges almost surely to an inte-
grable random variable . This entails that

and so, . The previous arguments show
that Lemma 6 holds for Algorithm 2. To show that Lemma 6 also
holds for Algorithm 2 with the update (20) it suffices to redefine

As the second inequality in (34) shows, we have the bound

and the rest of the proof holds intact.
Lemma 7: Let be one of the sequences generated

with probability one according to Lemma 6.
Then,
1) The function value decreases to the optimum:

2) There exists a subsequence of converging to a
point in : .
Proof: As is coercive, then the sublevel set

is compact and, because is
non increasing, all elements of belong to this set.
From the compactness of we have that there is a convergent
subsequence . We evaluate the gradient at this
accumulation point, , which, by
assumption, vanishes, and we therefore conclude that belongs
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to the solution set . Moreover, the function value at this
point is, by definition, the optimal value.

APPENDIX D
PROOFS OF THEOREMS IN SECTION IV

Equipped with the previous lemmas, we are now ready to
prove the Theorems stated in Section IV.
Proof of Theorem 2: Suppose the distance does not converge

to zero. Then, there exists an and some subsequence
such that . But, as is coercive

(by Lemma 5), continuous, and convex, and whose gradient, by
Lemma 6, vanishes, then by Lemma 7, there is a subsequence
of converging to a point in , which is a contra-
diction.
Proof of Theorem 3: Fix an arbitrary point . We

start by proving that the sequence of squared distances to
of the estimate produced by Algorithm 2, with the update
defined in (20), converges almost surely; that is, the sequence

is convergent with probability one. We
have

(37)

where and
is the sigma-algebra generated by all

iterates until time . Expanding the right-hand side of (37) yields

Since
, we conclude that

Now, as proved in Lemma 6, the sum con-
verges almost surely. Thus, invoking the result in [30], we get
that converges almost surely.
We can now invoke the technique at the end of the proof of

[25, Prop. 9] to conclude that converges to some optimal
point .
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