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Fig. 7. Final cost of the parallel Algorithm 1 and its asynchronous counterpart
in Algorithm 2 with an exact update for the same number of communications.
Results for the asynchronous version degrade less than those of the parallel one
as the noise level increases. The stochastic Gauss-Seidel iterations prove to be
more robust to intense noise.

VI. CONCLUDING REMARKS

Experiments in Section V show that our method is superior
to the state of the art in all measured indicators. While the com-
parison with the projection method published in [4] is favorable
to our proposal, it should be further considered that the projec-
tion method has a different nature when compared to ours: it is
sequential, and such algorithms will always have a larger com-
putation time than parallel ones, since nodes run in sequence;
moreover, this computation time grows with the number of sen-
sors while parallel methods retain similar speed, no matter how
many sensors the network has.
When comparing with a distributed and parallel method

similar to Algorithm 1, like the ESDP method in [2] we can see
one order of magnitude improvement in RMSE for one order
of magnitude fewer communications of our method—and this
score is achieved with a simpler, easy-to-implement algorithm,
performing simple computations at each node that are well
suited to the kind of hardware commonly found in sensor
networks.
There are some important questions not addressed here. For

example, it is not clear what influence the number of anchors
and their spatial distribution can have in the performance of the
proposed and state of the art algorithms. Also, an exhaustive
study on the impact of varying topologies and number of sensors
could lead to interesting results. Some preliminary experiments
show that all convex relaxations experience some performance
degradation when tested for robustness to sensors outside the
convex hull of the anchors. This issue has been noted by several
authors, but a more exhaustive study exceeds the scope of this
paper.
But with the data presented here one can already grasp the

advantages of our fast and easily implementable distributed
method, where the optimality gap of the solution can also be
easily quantified, and which offers two implementation flavours
for different localization needs.

APPENDIX A
CONVEX ENVELOPE

We show that the function in (4) is the convex envelope of
the function in (3). Refer to as the function in (3) and as the
function in (4). We show that where denotes the
Fenchel conjugate of a function , cf. [16, Cor. 1.3.6, p. 45, v.
2].

We start by computing :

Thus, is the sum of two closed convex functions:
where and . Note that

where denotes the
support function of a set . Thus, using [16, Th. 2.3.1, p. 61, v.
2], we have

Since [16, Ex. 1.1.3, p. 38, v. 2] and
[16, Ex. 1.1.5, p. 39, v. 2] where if

and if denotes the indicator of a set , we
conclude that

APPENDIX B
LIPSCHITZ CONSTANT OF

We prove the inequality in (9):

(30)

where and is the projector
onto . Squaring both sides of (30)
gives the equivalent inequality

(31)

where, to simplify notation, we let . Inequality
(31) can be rewritten as

(32)

By the properties of projectors onto closed convex sets,
, for any and any , cf. [16, Th.

3.1.1, p. 117, v. 1]. Thus, the last two terms on the left-hand side
of (32) are nonnegative. Moreover, the first term is nonnegative
due to [16, Prop. 3.1.3, p. 118, v. 1]. Inequality (32) is proved.
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APPENDIX C
AUXILIARY LEMMAS

In this Section we establish basic properties of Problem (7) in
Lemma 5 and also two technical Lemmas, instrumental to prove
our convergence results in Theorem 2.
Lemma 5 (Basic Properties): Let as defined in (6). Then

the following properties hold.
1) is coercive;
2) and ;
3) is compact;
Proof:

1) By Assumption 1 there is a path from each node to some
node which is connected to an anchor . If
then there are two cases: (1) there is at least one edge
along the path from to where and
, and so ; (2) if for

all in the path between and , in particular we have
and so , and in both cases

, thus, is coercive.
2) Function defined in (6) is a sum of squares, it is contin-

uous, convex and a real valued function, lower bounded
by zero; so, the infimum exists and is non-negative.
To prove this infimum is attained and , we con-
sider the set ; is a sublevel set
of a continuous, coercive function and, thus, it is compact.
As is continuous, by the Weierstrass Theorem, the value

is attained; the equality is evi-
dent.

3) is a sublevel set of a continuous coercive function and,
thus, compact.

Lemma 6: Let be the sequence of iterates of
Algorithm 2, or of Algorithm 2 with the update (20), and

be the gradient of function evaluated at each
iterate. Then,
1) ;
2) .
Proof: Let be the sigma-al-

gebra generated by all the algorithm iterations until time
. We are interested in , the expected

value of the cost value of the th iteration, given the knowl-
edge of the past iterations. Firstly, let us examine
function , the slice of along a coordinate di-
rection, . As has
Lipschitz continuous gradient with constant , so will :

for all and , and, thus, it
will inherit the property

(33)

Inequality (33) is known as the Descent Lemma [28, Prop.
A.24]. The minimizer of the quadratic upper-bound in (33) is

, which can be plugged back in (33), obtaining

(34)

In the sequel, for a given , we let

Going back to the expectation
, we can bound it from above, recur-

ring to (34), by

(35)

where we used , for all in .
To alleviate notation, let ; we then have

and adding to both sides of the inequality
in (35), we find that

(36)

where . Inequality (36)
defines the sequence as a supermartingale. As is
always non-negative, then is also non-negative and so [29,
Corollary 27.1],

In words, the sequence converges almost surely to an inte-
grable random variable . This entails that

and so, . The previous arguments show
that Lemma 6 holds for Algorithm 2. To show that Lemma 6 also
holds for Algorithm 2 with the update (20) it suffices to redefine

As the second inequality in (34) shows, we have the bound

and the rest of the proof holds intact.
Lemma 7: Let be one of the sequences generated

with probability one according to Lemma 6.
Then,
1) The function value decreases to the optimum:

2) There exists a subsequence of converging to a
point in : .
Proof: As is coercive, then the sublevel set

is compact and, because is
non increasing, all elements of belong to this set.
From the compactness of we have that there is a convergent
subsequence . We evaluate the gradient at this
accumulation point, , which, by
assumption, vanishes, and we therefore conclude that belongs
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to the solution set . Moreover, the function value at this
point is, by definition, the optimal value.

APPENDIX D
PROOFS OF THEOREMS IN SECTION IV

Equipped with the previous lemmas, we are now ready to
prove the Theorems stated in Section IV.
Proof of Theorem 2: Suppose the distance does not converge

to zero. Then, there exists an and some subsequence
such that . But, as is coercive

(by Lemma 5), continuous, and convex, and whose gradient, by
Lemma 6, vanishes, then by Lemma 7, there is a subsequence
of converging to a point in , which is a contra-
diction.
Proof of Theorem 3: Fix an arbitrary point . We

start by proving that the sequence of squared distances to
of the estimate produced by Algorithm 2, with the update
defined in (20), converges almost surely; that is, the sequence

is convergent with probability one. We
have

(37)

where and
is the sigma-algebra generated by all

iterates until time . Expanding the right-hand side of (37) yields

Since
, we conclude that

Now, as proved in Lemma 6, the sum con-
verges almost surely. Thus, invoking the result in [30], we get
that converges almost surely.
We can now invoke the technique at the end of the proof of

[25, Prop. 9] to conclude that converges to some optimal
point .
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