
http://www.researchgate.net/publication/273132758_Multiple_Hypotheses_for_Object_Class_Disambiguation_from_Multiple_Observations?enrichId=rgreq-34bfa7db-749f-4199-a935-91aafccfde5e&enrichSource=Y292ZXJQYWdlOzI3MzEzMjc1ODtBUzoyMDM3MTIyNjI4NzMwODhAMTQyNTU4MDE5NjMxMw%3D%3D&el=1_x_2
http://www.researchgate.net/publication/273132758_Multiple_Hypotheses_for_Object_Class_Disambiguation_from_Multiple_Observations?enrichId=rgreq-34bfa7db-749f-4199-a935-91aafccfde5e&enrichSource=Y292ZXJQYWdlOzI3MzEzMjc1ODtBUzoyMDM3MTIyNjI4NzMwODhAMTQyNTU4MDE5NjMxMw%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-34bfa7db-749f-4199-a935-91aafccfde5e&enrichSource=Y292ZXJQYWdlOzI3MzEzMjc1ODtBUzoyMDM3MTIyNjI4NzMwODhAMTQyNTU4MDE5NjMxMw%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Susana_Brandao?enrichId=rgreq-34bfa7db-749f-4199-a935-91aafccfde5e&enrichSource=Y292ZXJQYWdlOzI3MzEzMjc1ODtBUzoyMDM3MTIyNjI4NzMwODhAMTQyNTU4MDE5NjMxMw%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Susana_Brandao?enrichId=rgreq-34bfa7db-749f-4199-a935-91aafccfde5e&enrichSource=Y292ZXJQYWdlOzI3MzEzMjc1ODtBUzoyMDM3MTIyNjI4NzMwODhAMTQyNTU4MDE5NjMxMw%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Carnegie_Mellon_University?enrichId=rgreq-34bfa7db-749f-4199-a935-91aafccfde5e&enrichSource=Y292ZXJQYWdlOzI3MzEzMjc1ODtBUzoyMDM3MTIyNjI4NzMwODhAMTQyNTU4MDE5NjMxMw%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Susana_Brandao?enrichId=rgreq-34bfa7db-749f-4199-a935-91aafccfde5e&enrichSource=Y292ZXJQYWdlOzI3MzEzMjc1ODtBUzoyMDM3MTIyNjI4NzMwODhAMTQyNTU4MDE5NjMxMw%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Joao_Costeira?enrichId=rgreq-34bfa7db-749f-4199-a935-91aafccfde5e&enrichSource=Y292ZXJQYWdlOzI3MzEzMjc1ODtBUzoyMDM3MTIyNjI4NzMwODhAMTQyNTU4MDE5NjMxMw%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Joao_Costeira?enrichId=rgreq-34bfa7db-749f-4199-a935-91aafccfde5e&enrichSource=Y292ZXJQYWdlOzI3MzEzMjc1ODtBUzoyMDM3MTIyNjI4NzMwODhAMTQyNTU4MDE5NjMxMw%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Technical_University_of_Lisbon?enrichId=rgreq-34bfa7db-749f-4199-a935-91aafccfde5e&enrichSource=Y292ZXJQYWdlOzI3MzEzMjc1ODtBUzoyMDM3MTIyNjI4NzMwODhAMTQyNTU4MDE5NjMxMw%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Joao_Costeira?enrichId=rgreq-34bfa7db-749f-4199-a935-91aafccfde5e&enrichSource=Y292ZXJQYWdlOzI3MzEzMjc1ODtBUzoyMDM3MTIyNjI4NzMwODhAMTQyNTU4MDE5NjMxMw%3D%3D&el=1_x_7


Multiple Hypothesis for Object Class Disambiguation from Multiple
Observations

Susana Brand̃ao
Universidade de Lisboa

Portugal
sbrandao@ece.cmu.edu

Manuela Veloso
Carnegie Mellon University

USA
mmv@cmu.edu
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Abstract

The current paper addresses the problem of object iden-
ti�cation from multiple 3D partial views, collected from dif-
ferent view angles, with the objective of disambiguating be-
tween similar objects. We assume a mobile robot equipped
with a depth sensor that autonomously grasps an object
from different positions, with no previous known pattern.
The challenge is to ef�ciently combine the set of observa-
tions into a single classi�cation. We approach the problem
with a multiple-hypothesis �lter that allows to combine in-
formation from a sequence of observations given the robot
movement. We further innovate by off-line learning neigh-
borhoods between possible hypothesis based on the similar-
ity of observations. Such neighborhoods translate directly
the ambiguity between objects, and allow to transfer the
knowledge of one object to the other. In this paper we intro-
duce our algorithm, Multiple Hypothesis for Object Class
Disambiguation from Multiple Observations, and evaluate
its accuracy and ef�ciency.

1. Introduction

We envision mobile robots capable of autonomously rec-
ognize objects in their environment. We assume that such
mobile robots are equipped with a depth camera, e.g., the
Kinect sensor. Such a camera provides 3D partial views of
an object, namely the visible surface of the object, as illus-
trated in Figure 1. Our goal is to provide an algorithm to be
used by mobile robots to identify an object among similar
ones by gathering contiguous partial observations.

We assume that neither the number of observations nor
the view angles are a-priori known. We thus propose a prob-
abilistic approach to handle the arbitrary sequence of ob-
servations. Formally, given a library of know objects,O,
we propose to estimate the object class,ô, from n observa-
tions Z1:n = f �z1; :::; �zn g, �zi 2 RL , of the same object as
seen from a sequence of n view angles,V1:n = f �v1; :::; �vn g,

Robot
x

z

y

q
f

(q,f )

Figure 1. A mobile robot capturing a partial view of a mug from
the view angle(�; � ).

�vi 2 V, as the objecto 2 O maximizing the a-posteriori
probabilityp(ojZ1:n ; V1:n ).

However, the robot does not know the sequence of view
angles. While it has access at time instantn to changes in
the view angle,�� n through odometry, in general the ini-
tial view angle�vinit is not known. We thus estimate the
a-posteriori probability by marginalizing with respect tothe
initial view angle:

ô = arg max
o

X

v init 2 V

p(o; �vinit j �� 1:n � 1; Z1:n ): (1)

Under loose assumptions we can simplify the a-posteriori
probability in eq.1 by using appearance models,p(�zjo; �v),
as building blocks. The appearance models map each partial
view de�ned by an objecto and view angle�v to possible
observations�z. By off-line learning these models, the robot
can computêo during execution with little cost.

Nevertheless, we would still need to perform a dense
search over all the possible partial views of all the objects.
As there might be possibly in�nite partial views, we resort
to sampling to de�ne hypothetical initial robot orientations.
To propagate this initial hypothesis, we propose a formu-
lation based on the Sequential Importance Resampling �l-
ter, also known as a particle �lter, in a Markovian setting,
[1]. These �lters estimate the a-posteriori by de�ning a set
of hypothesis, called particles. Using the sampling of the
search space we can approximate the a-posteriori probabil-
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ity in eq. 1 at each time instant as:

p(o; �v1:n j� 1:n � 1; Z1:n ) �
N pX

i =1

wi
n �

�
s � si

n )
�

(2)

where each weight,wi
n , is associated with a particle

si
n = ( oi ; �vi

n ), here represented by the Dirac delta,� , dis-
tribution de�ned over s 2 S, the space of all pos-
sible objects and view angles pairs. Furthermore, the
weights correspond to the ratio between the probabil-
ity of p(o; �v1:n jZ1:n ; � 1:n � 1) evaluated at the particles
center, and the density from which they were sampled,
q(sjZ1:n ; � 1:n � 1):

wi
n /

p
�
si

n jZ1:n � 1:n � 1
�

q(si
n jZ1:n � 1:n � 1)

: (3)

In a Markovian setting, we can update the hypothesis
probability iteratively by taking into account the probability
in the previous time step, a prediction of a new observation
based on changes in the robot position and the new obser-
vation itself. A general formulation for a particle �lter in
object recognition would be:

Generate M random initial conditions :
Hypothesize M pairs of possible objects and initial ori-
entations,si

1 = ( oi ; �vi )1; i = 1 ; :::; M ;

For each time step,j , until Convergence :

1. Estimate a new observation,�zj ;

2. Propagate particles,si
j = si

j � 1 + (0 ; �� j � 1) ;

3. Update the probability for each hypothesis;

4. Bootstrap by replacing low by high probability
hypothesis;

5. Estimate the object identity;

6. Check convergence.

The inclusion of the object class in the state vector dif-
ferentiates our problem from more common uses of particle
�lters, such as, tracking and localization. In particular,the
object class separates the state space so that not all the par-
tial views are reachable by a given particle. For example,
if a particle is associated with objecto0 and view angle�v0,
the above algorithm can update the view angle according to
the robot movement, but not the object class. As hypothe-
sis can disappear in the bootstrapping step, if at some point
there is no hypothesis associated with a given object, the
object is no longer considered in subsequent iterations of
the algorithm.

To ensure that the whole search space is reachable at
each stage of the algorithm, we take advantage that our ob-
jects are actually similar to one another. We thus contribute

a multiple view object identi�cation algorithm that, while
leveraging on a Sequential Importance Resampling frame-
work, uses an off-line learned similarity between objects
and view angles. The similarity is used to �nd high proba-
bility hypothesis during the bootstrap and is based on obser-
vations only, i.e., independent of objects and view angles.

Our proposed bootstrap method is illustrated in 2 with an
example with two very similar objects: a cup with no handle
from a mug. In the �rst step, Figure 2(a), we map the current
hypothesis into the observation space. In the second step,
Figure 2(b), we search for similar observations. Finally,
Figure 2(c), we inverse mapping to �nd all view angles that
can be associated with those observations.

In the current paper we empirically show in different
datasets of similar objects that the proposed approach pre-
vents misclassi�cations and reduces the number of particles
needed to cover the complete set of objects.

2. Related Work

There are several approaches for merging information
from multiple consecutive observations. We here highlight
those related to ours either by using the same input data or
by using a sampling approach and a baysian setting.

The information from consecutive 3D partial views can
be used to construct complete 3D models, e.g., with the
KinectFusion algorithm, [8]. However, constructing a
model does not solve the classi�cation problem. Even with
an enlarged partial view, the robot would still need to rep-
resent and classify the object, e.g., using [4]. However, it
would have to see the full object before attempting to rec-
ognize it. Our algorithm can provides at each moment an
estimative of the object class.

Multiple-hypothesis approaches have also been exten-
sively used for object tracking in 2D color videos, e.g., in
[11], or localization of real robots actuating on the envi-
ronment [5]. However, in both applications, hypothesis do
not include the object class and the localization or tracking
algorithms assume that the class is provided by an indepen-
dent algorithm.

Notwithstanding, some tracking algorithms, such as
[10, 6], have been extended to include object classi�cation.
However, in neither the examples the similarity between
partial views of multiple objects is used.

The current work differs greatly from the previous ex-
amples in the sense that we use an a-priori known map
between the view angle and appearance to improve our
recognition, in a manner similar to what can be seen in
Active Monte Carlo Recognition (AMCR) [7]. The lat-
ter introduces an algorithm for object recognition based on
multiple-hypothesis, as well as the notion that when deal-
ing with sequential class estimation there are two spaces:
one associated with the object appearance and another as-
sociated with the observer dynamics. The authors also pro-
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(a) Map hypothesis.
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(b) Find similar partial views.

View angle space Observations space

o1,v 1 o1,v 4

o1,v N

o2,v N

o2,v 1

Object 1
Object 2

Object 1

Object 2

(c) Map back to view angles.

Figure 2. Example of the proposed bootstrap method, see the text for more details.

pose a mapping between the two, which re�ects the no-
tion of similarity between different state-vectors based on
the similarity between objects. However, AMCR uses the
mapping to establish a relation between two sets of parti-
cles, one that moves in the object appearance space, and
the other that moves on the observers space. In the current
work we re-introduce this concept of two spaces connected
by an off-line mapping. However, we only require a set of
particles on the observers space, as we use the mapping to
infer distances from the appearance space. Furthermore, we
propose more complex appearance models and similarities
than those used in [7].

Finally, there is a rich literature on hypothesis testing for
active object recognition, e.g., [2] and references therein. In
the active context, object recognition is also formulated in a
Bayesian framework, where the belief on a set of hypothesis
is propagated over a sequence of actions. However, there is
not a sampling approach as we here present. Instead there
is an hypothesis associated with each point in the search
space. Our current work is complementary to these in the
sense that it provides a way to handle large search spaces.

3. DATASETS

To illustrate and test our algorithm we introduce three
datasets composed of very similar objects.

Throughout the paper, we illustrate the algorithm using
the computer generated 3D models of the mug and cup with
no handle in Figure 2. The two objects are exactly the same
when seen from some view angles and are only distinguish-
able when the mug handle shows up in view. Thus, the
two objects clearly highlight the algorithm ability of dis-
ambiguating between similar objects and the advantage of
sharing knowledge between objects.

To obtain the partial views, we rendered the 3D com-
plete models using OpenGL to obtain depth images with
realistic spatial and depth resolutions as well as realistic
noise [9]. We simulated the camera at 1m from the object
and at view angles,�v = [ �; � ], such that� is equal to 0o and
� = 12o; 24o; 36o; :::; 360o.

We further test the performance of our algorithm in a
similar setup but on a dataset collected with a Kinect sen-
sor. The objects correspond now to human, spinning over
himself with and without a bag-pack, as illustrated in Fig. 3.
In each case we have a total of 24 different orientations,
equally distributed around the z axis. For each orientation,
we collected two sets of 25 observations. One set was used
for learning the appearance models and the similarity be-
tween view angles, the other was used for the algorithm
evaluation. The human was segmented in the depth images
by background subtraction. This second dataset is used to
identify whether the human is carrying the bag or not.

(a) No bag,
front

(b) No bag,
left

(c) Bag, front (d) Bag, left

Figure 3. Dataset of partial views collected with a Kinect sensor
of a human in different orientation.

Finally, we show the potential for generalization of our
algorithm with an example of intraclass object identi�ca-
tion. Our third dataset contains partial views of the eight
chairs represented in Figure 4 and retrieved from 3D Google
warehouse. While they are similar to each other the chairs
are not identical from any view angle. However, due to
noise and sparse training dataset, it is not always possible
to correctly identify an object. The partial views were ob-
tained from a manner similar to that described for the mug
and cup with no handle example. We collected three sets of
partial views, one for training, one for learning similarities
and the third as the testing dataset. The testing dataset con-
tains partial views gather from 127 different view angles per
chair, while the training dataset has only 13 per chair.
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Figure 4. Dataset of similar chairs.

4. Partial View Representation and Similarity

We here introduce our observation space, i.e., we intro-
duce the partial view representation, the distance metric and
similarity between partial views.

4.1. Descriptor

We represent partial views using the Partial View Heat
Kernel (PVHK) representation, [3]. This representation
conveys information on the distance over the surface be-
tween a point in the center of the partial view and points in
the boundary. Furthermore, PVHK provides a unique de-
scriptor to a given shape; is resilient to sensor noise; and
varies smoothly with changes in the view angle. Our choice
of representation was motivated by the latter property, be-
cause if the descriptor changes smoothly with changes in
the view angle, we do not need to keep a dense set of partial
views in the training dataset.

The descriptor itself builds upon the solution of a heat
diffusion equation over the object surface and, as we illus-
trate in Figure 5(a), and as described in [3], it can be com-
puted by taking three steps. First we place a heat source at
the center of the object surface, at pointsource andt = 0 ;
second we simulate the heat diffusion over the surface;
third, we access the temperature at some selected points
ci , i = 1 ; :::; K , in object boundary at some timet = tm

which depends on the object size. The selected points in the
boundary correspond to 80 points, separated by an angle
of �= 40measured from the source. The descriptor is then a
vector�z 2 R80 wherezi is the temperature at(i � 1)� �= 40,
andz1 corresponds to the leftmost point in the x-y axis that
passes in the heat source as shown in Figure 5(a).

We illustrate the descriptor smoothness in Figure 5(b).
The �gure represents the library of partial views for two
objects: a mug and cup with no handle. The 3D shapes cor-
respond to selected partial views and the colors corresponds
to the temperature att = tm . The graphic associate with
the 3D shapes corresponds to the PVHK descriptor. In the

center, we represent the set of descriptors, each associated
with a view angle, and use color to represent temperature.
We note that the descriptors can be separated in four cate-
gories. The �rst corresponds to shapes where the handle is
on the left side. The second, associated with shapes where
the handle is facing the observer. The third, to shapes where
the handle is on the right side. Finally, the forth represents
shapes with no handle, corresponding to the cup and some
view angles of the mug.

Place source Simulate heat
propagation

Measure temperature 
at boundary

(a) Computing the PVHK descriptor. Dots on the rightmost
image correspond to the selected points used for describing
the partial view and the green dot corresponds to the initial
element in the vector.
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(b) Mug and cup library of partial views. The 3D shapes correspond to
selected partial views and their color corresponds to the temperature
at t = tm . In the center, we represent the set of descriptors, each
associated with a view angle.

Figure 5. The Partial View Heat Kernel: how to compute it, Fig-
ure (a) and examples on two objects: a mug and a cup with no
handle, Figure (b). Red regions are warmer than blue ones.

4.2. Appearance Model

We compare observations using the Modi�ed Haus-
dorff distance, as it allows to compare the shape of the
descriptor. We �rst represent the descriptor as line in
2D, i.e., the descriptor�z 2 RL becomes a set of points
� = f [1=L; z1]; [2=L; z2]; :::; [1; zL ]g. Then estimate the
distance between two observations using eq.4.

d(�z; �z0) = dH (�; � 0) = min

8
<

:

X

x 2 �

inf
y2 � 0

k�x � �yk2;
X

y2 � 0

inf
x 2 �

k�x � �yk2

9
=

;

(4)
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