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Abs t r ac t .  This paper addresses the problem of designing guidance, control and 
navigation systems for autonomous underwater vehicles (AUVs). Its contribution is 
twofold: i) it introduces a new methodology for the integrated design of guidance and 
control, and ii) it describes a novel approach to the analysis and design of multi-rate 
complementary filters for navigation. The methodologies proposed lead to an efficient 
procedure for the design of controllers for AUVs, to accurately track reference trajec- 
tories defined in an inertial reference frame. The paper illustrates the application of 
that procedure to the design of a tracking controller for the MARIUS AUV. The de- 
sign phase is summarized, and the performance of the resulting controller is assessed 
in simulations, using dynamic models of the vehicle and its sensor suite. 

Keywords .  Autonomous vehicles, Tracking systems, Guidance, Navigation, 
H-infinity Control. 

1. INTRODUCTION. GUIDANCE, CONTROL 
AND NAVIGATION 

In a great number of envisioned mission scenar- 
ios, autonomous underwater vehicles (AUVs) will 
be required to follow inertial reference trajectories 
accurately (Pascoal, 1994). To achieve that goal, 
the following systems must be designed and im- 
plemented on board AUVs: i) navigation, to pro- 
vide estimates of linear and angular positions and 
velocities of the vehicle, ii) guidance, to process 
navigation/inertial reference trajectory data and 
output set-points for the vehicle's (body) velocity 
and attitude, and iii) control, to generate the ac- 
tuator signals that are required to drive the actual 
velocity and attitude of the vehicle to the values 
commanded by the guidance scheme. 

Traditionally, 'control and guidance systems are 
designed separately, using well-established design 
methods for control, and simple strategies such 
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as line of sight (LOS) for guidance, see (Healey 
and Lienard, 1993) and the references therein. 
During the design phase, the control system is 
usually designed with sufficiently large bandwidth 
to track the commands that are expected from 
the guidance system. However, since the two sys- 
tems are effectively coupled, the stability and ade- 
quate performance of the combined system about 
nominal trajectories are not guaranteed. In prac- 
tice, this problem can be resolved by the judicious 
choice of guidance-law parameters (such as the so- 
called "visibility distance" in the LOS strategy), 
based on extensive computer simulations. Even 
when stability is obtained, however, the resulting 
strategy leads to finite trajectory-tracking errors, 
the magnitude of which depends on the type of 
trajectory to be tracked (radius of curvature, ve- 
hicle's desired speed, etc.). 

The first part of the paper proposes a new method- 
ology for the design of guidance and control sys- 
tems for AUVs, whereby the two systems are ef- 
fectively designed simultaneously. The key idea is 
to realize that for these types of vehicles the equi- 
librium (also known as trimming) trajectories are 
helices, parameterized by the vehicle's body axis 
velocity, yaw rate and flight path angle. Further- 
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Fig. 1. The MARIUS vehicle 

more, using a convenient coordinate transforma- 
tion, the linearization of the vehicle error dynam- 
ics and kinematics about any trimming trajectory 
can be shown to be time-invariant (Silvestre et al., 
1994). Thus, the problem of designing integrated 
guidance/control systems to track inertial trajec- 
tories that consist of the piecewise union of trim- 
ming trajectories, falls within the scope of gain- 
scheduled control theory (Kaminer et al., 1995). 
Using this approach, the vehicle's body-axis ve- 
locity, yaw rate, and flight-path angle play the 
role of scheduling variables that interpolate the 
parameters of linear controllers designed for a fi- 
nite number of representative trimming trajecto- 
ries. The results reported in (Kaminer et al., 1995) 
on so-called D-implementation of gain-scheduled 
controllers can then be used to obtain a combined 
guidance/control system such that the properties 
of the linear designs are recovered locally, about 
each trimming trajectory. This new approach guar- 
antees that the steady-state tracking error about 
any trimming trajectory condition is zero. More- 
over, the D-implementation method leads natu- 
rally to a structure where the only exogenous com- 
mands required are the desired linear inertial po- 
sition and the yaw rate, thus avoiding the need to 
feedforward the trimming conditions for the re- 
maining state variables. Due to space limitations, 
the methodology used for the design of combined 
guidance and control systems for the MARIUS 
AUV is only briefly summarized here. For com- 
plete details, see (Silvestre et aL, 1994). 

The second part of the paper describes the design 
of the navigation system for the MARIUS AUV, 
using a conceptually simple framework for filter- 
ing that is rooted in the kinematic equations of 
motion of the vehicle. This approach borrows from 
complementary'filtering theory, see (Lin, 1991) for 
an introduction to the subject and for interest- 
ing applications to aircraft navigation. The set- 
up adopted leads naturally to the design of linear 
Kalman filters, whereby the covariances of pro- 
cess and observation noises are viewed as tuning 
knobs to shape the characteristics of the opera- 
tors that map measured into estimated variables. 
In the case of attitude estimation, all sensors are 
sampled at the same rate, and the corresponding 
operators are linear time-invariant. This leads to 
an interpretation of the filters in the frequency 
domain that is fruitful in analyzing the stabil- 
ity of combined guidance, control and navigation 

(Oliveira et al., 1994). In the case of linear posi- 
tion and velocity estimation, however, the charac- 
teristics of the sound channel imply that the po- 
sition measurements (obtained from a long base- 
line system) are available at a rate that is lower 
than that of the remaining sensors. This prob- 
lem has been tackled in (Oliveira et al., 1994), 
where a new approach to the design and anal- 
ysis of multi-rate complementary filters was in- 
troduced. Interestingly enough, these filters can 
be viewed as input-output operators that exhibit 
"frequency-like" properties, that are the natural 
generalization of those obtained for the single-rate 
case. 

The paper is organized as follows: Section 2 in- 
troduces the model of the MARIUS AUV, and 
derives its linearized equations of motion about 
trimming trajectories. Section 3 introduces the 
structure of a gain-scheduled trajectory-tracking 
controller for the vehicle. Section 4 describes the 
multirate navigation system of the AUV. Finally, 
Section 5 assesses the performance of combined 
navigation, guidance and control in simulation. 

2. VEHICLE DYNAMICS. 

This section describes the dynamic model of the 
MARIUS AUV, depicted in Fig. 1. A complete 
study of the AUV's dynamics, based on hydrody- 
namic tank tests with a Planar Motion Mecha- 
nism (PMM), can be found in (Fryxell and Pas- 
coal, 1994). In what follows, {I} denotes a univer- 
sal reference frame, and {B) denotes a body-fixed 
coordinate frame that moves with the AUV. The 
following notation is required: 

p -= Ix, y, z]' - position of the origin of {B} 
expressed in {I}; 
v = [u, v, w]' -linear velocity of the origin 
of {B) relative to {I}, expressed in {B}; 

= [¢, 8, ¢]' - vector of Euler angles which 
describe the orientation of frame {B} with 
respect to {1}; 
w =[p, q, r]' - angular velocity of {B} rela- 
tive to {I}, expressed in {B}; 
R = R(A) - rotation matrix from {B} to 
{I}; 
Q = Q(A) - matrix that relates A to w and 
satisfies ~ -- Q(A)w. 

The symbol 5 := [Sa,c,Sa,d,5~,5~]' denotes the 
vector whose entries correspond to deflections of 
the ailerons (common and differential), elevator, 
and rudder respectively, and the symbol n de- 
notes the rotational rate of the propellers. With 
the above notation, the dynamics of the AUV can 
be written in compact form as 

MRBO+ CRs(~t)~I ='r(~i,~l,A,5,n), (1) 

where 7" denotes the vector of external forces and 
moments, cl = Iv', w']',  and M R B  and CI~B denote 
the rigid body inertia matrix and the matrix of 
Coriolis and centrifugal terms, respectively. The 
vector "r can be further decomposed as 
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v(~t,~t,A,5,n) ='r ,~t(A)  + ~'~dd(~t,~t) (2) 

+ ~ ( ~ ,  ~) + ~.~c(O, ~) + ~ o ~ ( ~ ,  n), 

where v ~ t  denotes the (restoring) forces and mo- 
ments caused by gravity and buoyancy, and Tadd 
is the added mass term. The term - r ~  captures 
the effects of the deflecting surfaces, v .~c consists 
of the hydrodynamic forces and moments exerted 
on the vehicle's body (including the skin friction 
terms), and "r~o~ represents the forces and mo- 
ments generated by the main propellers. Using 
equation (1) and the associated kinematic rela- 
tionships, the state-space model for the AUV can 
be written as 

{ ~ = F(~t, A) + G(~t)H(~t, u) 
= Ib = R v (3) 

=Q~, 

where F ,  G and H are continuously differentiable 
functions, v, w, p and A are state space variables, 
and u -- [5',n]' is the vector of control inputs. 
An equilibrium or trimming trajectory of (3) is 

r o l l ~ I l l  defined as a path Pc = [qc,Pc, c ] such that  

F(~Ic,Ac) + G(~Ic)H(~Ic,Uc)=0 (4) 

Let Pc(c~c) be a trimming trajectory for the vehi- 
cle, and define the variables 

V E ---- V -  V C 

Od e ~- 02 - -  02 c 

Pe = R-~(P- Pc) 

~e = Q-~(~ - ~c), 

(7) 

which can be interpreted as the generalized error 
vector between the vehicle state and the trajec- 
tory Pc(c~c). Let uE = u - Uc. By noticing that 
Vc and Wc are constant along the trimming tra- 
jectories, straightforward computations show that 

lbE = vE + vc - R c ' R v c  - S ( w e  + w c ) p e  (8) 
)~e = we  + w~ - Q - ~ Q c w c  + Q-~QAe,  

where 

~=(OE, ~E) = F(Oe + Oc, O ~ + ;~c) 
6(OE) = G(OE + Oc) 

7-/(gtE, u) = H(~le + Clc, ue  + Uc), 

for some constant vector Uc. Notice that for sim- 
plicity, the equations do not show the explicit de- 
pendence on time. 

From equation (1), it can be concluded that the 
only possible trimming trajectories, Pc, correspond 
to helices defined by 

] ic= ~ , pc= |V~ocos(~o)sin(¢ct)|,(5) 
~c k -Vr¢  sin(Tc) J 

where ~c is yaw rate, VT¢ = IIVcll is the linear 
body speed, and 7c is so-called "flight path an- 
gle". Thus, the trimming trajectories can be pa- 
rameterized by the vector ~c = [Vr¢,¢c,7c] 6 

Given c~c, the corresponding trimming values for 
the state variables of (3) can be determined from 
analytical and numerical computations, as follows. 
Let G ± (dl) be the orthogonal complement of G(dl) 
satisfying G±(~t)G(~t) = 0. Multiplying the first 
equation of (3) by G±(~l), it follows that 

0 = G±(~ic)F(~ic,Ac) 
Pc = Rc Vc 
ic = Qc ~c 

(6) 

along a trimming trajectory, thus eliminating the 
control input uc. By requiring that  5a,c -- 0 at 
trimming, it can be shown that (6), together with 
(5), provides a set of equations that  can be solved 
numerically to give v, w, ¢, 8 as functions of Vr~, 
7c, ¢c,  thus concluding the computation of all 
relevant state variables at trimming. For complete 
details, the reader is referred to (Silvestre et al., 
1994). In what follows, the symbol Pc(c~c) denotes 
a path parameterized by c~c. 

and S(w) is the skew-symmetric matrix defined by 
S(w) = w×. It is now possible to prove that the 
linearization of (8) about the vector [0~2×10~×1]' 
is time-invariant and can be written in the form 

{ 5~te = Aqe(ac)a~te + Aae(c~c)aAe + B(c~c)aue 
515E = ave - S(wc)~fpE - S(vc)bAe (9) 
aAe = awe - S(Wc)bAe, 

where the matrices 

A.: = 0-%[~r(x,y) + G(x)7-l(x,z)], 

B = ~ [~(x, ~)~(x, z)] 

are computed at equilibrium values. Throughout 
the rest of the paper, the symbol Gz(ac) denotes 
the linearized time-invariant system with realiza- 
tion (9) determined by the parameter C~c. 

3. GUIDANCE/CONTROL SYSTEM 

Suppose that, associated with each linearized sys- 
tem Gl(c~c), there is a linear time-invariant con- 
troller ~(c~c) that stabilizes and achieves adequate 
performance for the closed-loop system, as eval- 
uated by some performance criterion. Theoreti- 
cally, it is then possible to define a gain-scheduled 
controller C that selects the appropriate linear 
controller ]~(c~), based on the measured value c~ 
of the parameter ac. 

In practice, C is obtained by designing a family 
of linear controllers for a finite number of sys- 
tems Gz ((~c), and interpolating between these con- 
trollers to achieve adequate performance for all 



404 D. Fryxell 

linearized plants in the regimes where the vehi- 
cle is expected to operate. During real-time op- 
eration, the controller parameters are updated as 
functions of the scheduling variable 

= 

3.1 Linear Controller Design 

The methodology selected for linear control sys- 
tem design was 7-/oo (Doyle et al., 1989). This 
method rests on a firm theoretical basis, and leads 
naturally to an interpretation of control design 
specifications in the frequency domain. Further- 
more, it provides clear guidelines for the design of 
controllers so as to achieve robust performance in 
the presence of plant uncertainty. 

I 
- - ' W  1 r- 

I 

w I 

I 

1 

I 

I 

I 
I_ 

u 

Fig. 2. Synthesis model. 

J( c) 

I 
i I 

I 

I 
: 

The first step in the controller-design procedure is 
the development of a synthesis model which can 
serve as an interface between the designer and the 
T/~ccontroller synthesis algorithm. Consider the 

feedback system shown in Figure 2, where Gl (a¢) 
is obtained from the linearized model of the AUV, 
and ~(ac)  is the controller to be designed. The 
correspondence between the standard notation of 
Fig. 2 (Doyle et al., 1992) and that introduced in 
Section 2 for incremental variables will be clear 
from the context. The block ff(o~c) within the 
dashed line is the synthesis model, which is de- 
rived from the linearized model of the plant by 
appending the depicted weights. In practice, the 
weights serve as tuning "knobs" which the de- 
signer can adjust to meet the desired performance 
specifications. 

The signal wl corresponds to the vector of input 
commands that must be tracked. In this design ex- 
ample, it includes linear positions. The signal w2 
represents the noise inputs to each of the sensors, 
and disturbance inputs to the states of the plant. 
The signal u corresponds to the control inputs 
to the system. The signal xl represents the com- 
ponents of the state vector that must track the 
input commands, while the vector x2 contains the 
remaining state variables that must be weighed. 

et al. 

The outputs of W1, W2, and W3 constitute the 
vector z. Since zero steady-state error in tracking 
the step command for all variables in xl was re- 
quired, the weighting function W1 was chosen as a 
diagonal of integrators. The integrator gains were 
adjusted to get the desired command response 
bandwidths. The weights W3, W4 do not include 
any dynamics. In order to drive 6a,c to zero in 
the steady state, an integrator was included in 
14/2.The signal y includes all the states of the plant 
Gz(o~c), together with the appended integrators. 

Given a design model, suppose that the feedback 
system is well posed and let T ~  denote the closed- 
loop transfer matrix from w to z. The ~ syn- 
thesis problem consists of finding, among all the 
controllers that yield a stable closed-loop system, 
a sub-optimal controller ~(a~) that makes the 
maximum energy amplification of the closed-loop 
operator T~,  denoted I I ~ t l ~ ,  arbitrarily close 
to its infimum. This problem was solved using the 
methodology explained in (Doyle et al., 1989), see 
(Silvestre et al., 1994). 

3.2 Non-linear Controller Implementat ion 

A set of controllers was determined for a finite 
combination of values of VT,¢ and 7, and their 
parameters interpolated according to the schedul- 
ing vector o~ in a given bounded domain, see (Sil- 
vestre et al., 1994). The resulting non-linear gain- 
scheduled controller was implemented by extend- 
ing the D-methodology described in (Kaminer et 
al., 1995), which guarantees the following funda- 
mental linearization property: the linearization of 
the nonlinear feedback control system about each 
equilibrium trajectory preserves the internal as 
well as the input-output properties of the corre- 
sponding linear closed-loop designs. 

Surprisingly, this property is often not satisfied 
by the gain-scheduled controllers proposed in the 
literature, see (Kaminer et al., 1995) and the ref- 
erences therein. In practice, violation of that prop- 
erty may lead to a degradation in performance, or 
even instability, of the closed-loop system. 

The D-methodology is based on the key obser- 
vation that linear controllers are designed to op- 
erate on the perturbations of the plant's inputs 
and outputs about the equilibrium points. Proper 
blending of the different controllers requires that 
they have access to such perturbations, locally. 
This is achieved by differentiating some of the 
measured outputs before they are fed back to the 
gain-scheduled controller. In order to preserve the 
input-output behaviour of the feedback system, 
integral action is provided at the input to the 
plant: 

The gain-scheduled controller implementation is 
depicted in Fig. 3, where K: is easily obtained from 
the interpolation of the linear controllers derived 
in Section 3.1. Notice that the only external com- 
mands to the trajectory tracking controller are Pc 
and ~c, which are easily available from the tra- 
jectory generator. 
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Pc 

Fig. 3. Tracking controller implementation 

It is important  to stress that the D-method pre- 
sented above requires differentiation of some of 
the plant's measured outputs. Except for the case 
where some of the derivatives are available from 
dedicated sensors, this cannot be done in prac- 
tice. In this case, the differentiation operator may 
simply be replaced by a causal system with trans- 
fer function ~---~, or by a simple finite differ- 
ence operator  for discrete-time implementation, 
see (Kaminer et al., 1995). It is also important 
to remark that  the D-methodology would require 
that  the time-derivative of ~ be computed on- 
line. However, from the relations ~ = ~ and 
, ~  = w - Q-~J~c, it follows that the derivative 
is simply computed as depicted in Fig. 3. Thus, 
the method proposed avoids the need to feedfor- 
ward trimming conditions for the state variables 
and inputs, except Pc and ~c. 

0,~ is the measured value of 0. The measurements 
0,~ and 0m are corrupted by observation noise v 
and process noise ~1 respectively, where the latter 
is obtained by driving an integrator with a noise 
source tt. Clearly, this simple model includes the 
case where the measurement 0m of 0 exhibits an 
unknown bias term that must be rejected. 

0rn V 

tt m 

0 0 

Fig. 4. Complementary Filter - Design model and 
Implementation 

The design model admits the description 

= F x  + G~u  + G u y ,  

z = H x + v ,  

4. NAVIGATION SYSTEM DESIGN 

This section describes the basic framework used in 
the design of the navigation system for the MAR- 
IUS AUV. The objective of this system is to ob- 
rain accurate estimates of the position and atti- 
tude of the vehicle, based on measurements avail- 
able from a motion sensor package installed on 
board. The estimates are input to the integrated 
control and guidance systems described in Section 
3. 

This paper adopts a conceptually simple frame- 
work for filtering, that is rooted in the kinematic 
equations of (3). This approach is based on the 
theory of complementary  filtering, see (Lin, 1991) 
for an introduction to the subject and (Oliveira et 
al., 1994) for a complete study of the multi-rate 
case. 

where x = [~, 0]' is the state vector, u = 0m and 
z = 0m are input and output  variables, respec- 
tively, and F, G~, G ,  and H are matrices of com- 
patible dimensions. Following the standard ap- 
proach in the design of Kalman filters, it is as- 
sumed that tt and v are zero-mean, Gaussian, un- 
correlated stochastic processes with covariances 

E[t t ( t )~(r)]  = Q6(t  - v), E[v( t )v( r ) ]  = RS( t  - r) ,  

where 6(.) is the Kronecker delta operator. Under 
some generic technicM assumptions, the station- 
ary filter that minimizes the mean-square error 
estimation of x based on the observations z, is 
asymptotically stable, and given by the Kalman 
filter structure 

= F ~  + G=u + K(z  - H~),  

where ~ denotes the best estimate of x, and 

4.1 Att i tude Est imat ion 
I (  = [kl, k2]' = p H T R  -1 

The motion sensor package of MARIUS includes 
two pendulums and one f luxgate that  provide - in- 
directly - measurements )~m of/k, and three rate 
gyroscopes that  provide measurements wm of an- 
gular body rates w. 

For the sake of completeness, the synthesis of a 
continuous-time filter to estimate pitch on the ba- 
sis of measurements of pitch and pitch rate is 
briefly described below. This illustrative example 
is simple, yet it captures the essence of comple- 
mentary filter design. 

The simplified design model is depicted in Fig. 
4, where ~) denotes the time derivative of O, and 

is obtained from the positive semidefinite solution 
P to the algebraic Riccati equation 

F P -  P F r  - P H r R - 1 H P  + G ,  QGr, = O. 

The resulting filter is depicted in Fig. 4. Let  ~ ,d  

and T0# denote the operators from 0m to 0 and 

from the integral of t)m to tg, respectively. Straight- 
forward computations show that the correspond- 
ing - stable - transfer functions are given by 

sk2 + kl s 2 
T0,d(s) - s2 + sk2 + k , '  r ° # ( s )  - + + k l '  
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and that  

T ,d(s) + = I .  (10) 

Equation (10) admits a simple interpretation: in 
order to compute estimates of angular position 0, 
the filter complements the information ~,~ avail- 
able directly from the pendulum at low frequency 
with that  obtained by integrating the information 
from the rate gyro at high-frequency. Thus, the fil- 
ter is convenient to use when high-frequency sen- 
sor data  of good quality are available. Notice also 
that with the above filter structure, any bias in 
the rate information will be rejected at the out- 
put. 

From a purely formal point of view, if the vari- 
able 0,~ in Fig. 4 is redefined as the integral of 
the input u = 0m, then the overall filter defines 

5, ^ 

an input-output operator from u to [~,0]~ that 
is equal to [I, I 7] , thus capturing the underlying 
physical constraint between angular velocity and 
position. This seemingly trivial property plays an 
important role in the stability analysis of the com- 
bined controller and navigation systems, since in 
theory no extra dynamics are introduced in the 
overall loop by the complementary filter. In prac- 
tice, high-frequency dynamics are bound to be in- 
troduced in that  loop, as one must use a high- 
bandwidth, low-pass filter to process the informa- 
tion obtained from the rate gyro. However, well- 
known results from robust stability theory indi- 
cate that stability will not be compromised if one 
restricts the bandwidth of the control loop to be 
well below that of the corresponding complemen- 
tary filter, see (Doyle et al., 1992) for the general 
theory and (Oliveira et al., 1994) for an applica- 
tion to the vehicle under study. 

The following requirements were specified in the 
design example reported here: 

i) pitch and pitch rate estimation errors should be 
driven asymptotically to zero when the vehicle is 
following a trimming trajectory (in particular, the 
filter should reject constant rate gyro bias terms); 

ii) the filter bandwidth corresponding to the trans- 
fer function from pitch measurement to the cor- 
responding estimate should be of the order of 0.3 
rad/s (this requirement is dictated by the low- 
pass sensor characteristics); 

iii) the overall bandwidth of the filter after inser- 
tion of a low-pass system at the output of the rate 
gyro should be of the order of 30 rad/s, that  is, 
much larger than that  of the corresponding con- 
trol loops. 

Using the formalism given above in a discrete-time 
setting, the covariances Q and R were manipu- 
lated to shape the transfer functions between the 
variables z and u and the estimates ~ of x. The 
resulting complementary filter, sampled at 50 Hz,  
exhibits the Bode diagram of Fig. 5. A low-pass 
filter ~ with a bandwidth of 30 rad/s has been 
inserted at the output of the rate gyro. Notice 
how the pitch estimator relies on the information 
provided by the pendulum at low frequency. At 

high frequency, the estimator relies essentially on 
the integral of the measured pitch rate. The gen- 
eral case (where corrected estimates of roll, pitch 
and yaw angles and body rates are sought) can 
be dealt with by an obvious generalization of the 
above procedure (Oliveira et al., 1994). 

1° 0] i iiiiiiii( )i   iiiiill i!iiiiiii(2)i ill i ::!:: 

,0t:: i ..... i ili! i :i il,ii  ,,:i:ii iil 
-zo ----;--i--; ::4i4!;----;--; ~ ~--;-;ii-;!ii-.--i--i-;i-;~i.---;-.;-;i-;;M 

:---i-i?:ili 
0.001 0.01 0.1 1 10 I00 

a) [tad/s] 

1000 

Fig. 5. Discrete Bode diagrams corresponding to 
the operators: (1)- T~,d, (2)-  T~,i~. 

4.2 Position/Velocity Estimation 

The following sensor units are used to provide 
measurements of the linear position and velocity 
of the vehicle: a long baseline positioning system 
(LBL) and a depth cell that provide measurements 
pm of p, and a Doppler sonar that  provides mea- 
surements of the velocity of the vehicle with re- 
spect to the water (i.e., of v - R- lvw,  where vw 
is the inertial sea current velocity). 

Conceptually, the basic framework described in 
Section 4.1 could be used to design a filter that  
would provide corrected estimates of the position 
and velocity of the vehicle with respect to the wa- 
ter and to the seabed. In fact, the time-derivative 
of p can be estimated from v using the kinematic 
equations. A time-invariant, multivariable com- 
plementary filter could then be obtained, adopting 
a design model similar to that  in Fig. 4. 

Notice, however, that due to the characteristics 
of the acoustic channel, the measurements from 
the LBL system are available at a rate that  is 
much smaller than that  of the remaining sensors. 
Thus, the resulting filter must exhibit a multi- 
rate structure. This problem has been tackled and 
solved in (Oliveira et al., 1994) exploring the re- 
lationship between multi-rate and periodic sys- 
tems, and using some algebraic and analytical re- 
sults on the equivalence between (discrete-time) 
periodic and time-invariant systems (Bittanti et 
al., 1990; Khargonekar et al., 1985; Souza, 1991). 

The set-up adopted here is best explained by con- 
sidering the simplified case where only naviga- 
tional data along the inertial x -  axis are sought. 
The corresponding filter design model is depicted 
in Fig. 6, where 2 denotes the time derivative of x 
and k,~ is the measured value of & that  is derived 
from the Doppler log output. The measurements 
x,~ and ~,~ are corrupted by observation noise v 
and process noise ~1 respectively, where the latter 
is obtained by driving a double integrator with a 
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noise source IZ. The state variable (1 captures the 
evolution of the water current in the x -  direction. 

:/;rn gt 

Fig. 6. Complementary Filter - Design model 

Suppose that  measurements x,,~ and J:,,~ are avail- 
able at rates ~TT and -~ respectively, where 1 is 
the fastest sampling rate and M is an integer. By 
discretizing the above design model at the sam- 
pling frequency of 1 ,  an M-periodic, discrete-time 
design model is obtained which is described by a 

x(k + 1) = F(k)x(k) + G~,(k)u(k) + G~,(k)lz(lc) 

z(k) = H(k)x(k) + v(k), (11) 

where x = [~2, ~1, x]' is the state vector, u = Jcm 
and z = x,~ are input and output  variables, and 
F,  G~, and G~, are matrices of compatible dimen- 
sions. The matr ix H(k) consists of a string of zeros 
and ones, the pat tern of which reflects the posi- 
tion interrogation strategy. It is easy to check that 
H ( k + M )  = H(k). Assume that  the state and ob- 
servations are corrupted by zero-mean, Gaussian, 
white-noise processes with covariance matrices 

E[lz(k)tz(j) T] = Q(k)6((k - j)modM) 

E[v(k)v(j)  T] = R(k)6((k - j)modM), (12) 

where 6(.) is the Kronecker delta operator, Q(k) >_ 
0 and R(Ic) > O. 

Associated with the periodic design model, con- 
sider the Kalman filter structure described by 

~(k + 1) = F(k)f((k) + G~(k)u(k) 

+K(k) [z(k) - H(k)f¢(k)], 

where the Kalman gain K(k) is given by 

(13) 

K(k) =P(k)HT(k)  [H(k)P(k)HT(k) + R ( k ) ] - l ,  

and the matr ix P(k) is the unique periodic, sym- 
metric, positive-semidefinite stabilizing solution to 
the periodic Riccati equation 

P(Ic + 1) = F(k)P(k)FT(k)  + a~(k)Q(k)GT(k) 
-F(k )P(k )HT(k )  [H(k)P(k)HT(k) 

+R(k) ]-1 H(k)p(k)FT(k) .  (14) 

The technical conditions under which such a peri- 
odic solution exists can be found in (Souza, 1991). 
The resulting multi-rate complementary filter is 
depicted in Fig. 7. The filter complements the in- 
formation obtained from the LBL system at low 
frequency, and that  obtained from the Doppler log 

3 In the  m a t r i x  pa rame te r s ,  k is used  as the  periodic index 
( k r n o d  M ) . 

at high frequency. Furthermore, the filter rejects 
any possible biases caused by the non-zero veloc- 
ity of the water with respect to the seabed. 

It is important  to point out that numerically effi- 
cient methods to solve the periodic Ricatti equa- 
tion (14) are available. A good reference is the 
work of (Bittanti et al., 1990), which explores the 
equivalence between the class of periodic systems 
and a sub-class of invariant systems using a cer- 
tain lift operator. The reader will find in (Oliveira 
et al., 1994) the application of this circle of ideas 
to the design of a multi-rate filter for the MAR- 
IUS AUV, based on information provided by the 
LBL system and the Doppler sonar. 

Fig. 7. Multi-rate Complementary Filter 

In the case where navigational data  along the x, 
y and z axes are required, a simple extension of 
the above, design procedure leads to the general 
navigation system of Fig. 8, where A4 consists of 
three multi-rate complementary filters with the 
structure shown in Fig. 7. For simplicity of pre- 
sentation, it was assumed that v~ = 0. 

Interestingly enough, the multi-rate filters descri- 
bed here exhibit properties that are the general- 
ization of those obtained for the single-rate case, 
as explained briefly below. 

(velocity 1 / T - ' ~ ' J '  - I M P I |  , ~  ' ~  estimate)  

_p_m_ . . . .  t 'k! l  Itk] 0 
F 1/T 1/MT L____.J d (position 

estimate)  

3A - multi-rate filter; [k] - time mark; 
M - integer; F - fictitious sampler. 

Fig. 8. Multi-rate Navigation System. 

Let G be the time-varying operator from a to c 
that  is obtained by forcing b to be equal to the 
discrete-time integral of a. It has been checked 
computationally in (Oliveira et al., 1994) that,  
for certain combinations of sampling frequencies, 
it is possible to select the process and noise co- 
variances in (12) such that the operator can be 
written in the form ~ = I + A, where the in- 
duced norm (Doyle et aL, 1992) of the operator 
A is small. Mathematically, this means that  G is 
close to the desired identity operator. As in the 
time-invariant case, this property plays a key role 
in analyzing the stability of combined navigation, 
guidance and control systems, and suggests im- 
portant rules of thumb for the choice of the co- 
variance matrices in (12). The theory required for 
the analysis borrows from well-known results in 
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the area of robust  stability of t ime-varying sys- 
tems. The algorithms for computing the induced 
norm of A are described in (Oliveira et al., 1994). 

5. I N T E G R A T E D  NAVIGATION, GUIDANCE 
AND CONTROL.  

The combined performance of guidance, naviga- 
tion and control was evaluated in simulation with 
a nonlinear model of the vehicle. The simulation 
included physically based models of the sensor 
units described in Section 4. In the simulations, 
the control and navigation systems were discre- 
tized using the following sampling rates: 

• Navigation (Atti tude and at t i tude rate): 50 
Hz,  tha t  is, larger than twice the desired 
bandwidth of the corresponding complemen- 
ta ry  filters. 

• Navigation (Linear position and velocity) - 
LBL system: 0.2 Hz,  Doppler sonar: 1 Hz. 
These frequencies are mission dependent, and 
reflect the compromise among such factors as 
range of operation required, precision sought 
and (acoustic) energy minimization. 

• Integrated Control and Guidance - 10 Hz,  
that  is, much larger than the desired band- 
width of the integrated control and guidance 
system. 
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Fig. 9. Reference and observed t ra jectory - hori- 
zontal and vertical planes. 

The reference for linear position in the x - y  plane 
is an S - shaped t ra jectory consisting of three 
straight lines, each 50m long, and two semicir- 
cumferences with radii of 38m. The reference tra- 
jectory in the vertical plane descends smoothly 
along the depth coordinate z with a slope of - 1 0  
deg. In order to simplify the interpretation of the 
simulation results, the t rajectory was generated 
with a constant velocity V r  = 2.0m/s. 

The desired and observed trajectories are depicted 
in Fig. 9. The activity of some relevant s tate  vari- 
ables are condensed in Fig. 10. In this simulation, 
the LBL system uses four t ransponders located in 
positions { -40 ,0 ,160} ,  {130,0,150}, { -40 ,  190, 
170} and {140,190,135}, specified in meters. At 
the beginning of the maneuver,  the actuation vari- 
ables are essentially constant during the first 25s. 
Upon entering the circular path, the rudder de- 
flects to create a torque that  will impart  the de- 
sired rotational speed to the vehicle. Once the de- 
sired speed is reached, the rudder deflects slightly 
in the opposite direction to stabilize the rotation. 
This maneuver is characteristic of vehicles that  
are unstable in yaw. 
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Fig. 10. Control activity: Rudder (/~), Ailerons 
(6~,c and 6~,d), Elevator (6~) and Thruster  
( T ) .  

At the middle of the first turn, the vehicle shows 
a pronounced rotation in pitch in order to con- 
verge rapidly to the desired vertical inclination 
of - 1 0  deg. This rotation is achieved by deflect- 
ing the common aileron 6~,c and the elevator/~e 
in opposite directions, so as to generate a pure 
torque. When the vehicle reaches the desired ori- 
entation, 6~,c and 6e decrease. However, their val- 
ues do not tend to zero, since they must coun- 
teract the restoring torque due to the combined 
effects of buoyancy and gravity. 

When the vehicle reaches the end of the first turn, 
there is a strong deflection in the rudder to drive 
the velocity of rotation to zero. Similar comments  
apply to the remaining part  of the trajectory. 

It  is important  to remark that  the thrust  activity 
rises during maneuvers that  require large deflec- 
tion of the control surfaces. This is required to 
counteract the increase in drag, which tends to 
slow down the vehicle. 
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