
Denoising Auto-encoders for Learning of Objects and Tools Affordances in
Continuous Space

Atabak Dehban1, Lorenzo Jamone1, Adam R. Kampff2 and José Santos-Victor1

Abstract— The concept of affordances facilitates the encoding of
relations between actions and effects in an environment centered
around the agent. Such an interpretation has important impacts on
several cognitive capabilities and manifestations of intelligence, such
as prediction and planning. In this paper, a new framework based on
denoising Auto-encoders (dA) is proposed which allows an agent to
explore its environment and actively learn the affordances of objects
and tools by observing the consequences of acting on them. The dA
serves as a unified framework to fuse multi-modal data and retrieve an
entire missing modality or a feature within a modality given information
about other modalities. This work has two major contributions. First,
since training the dA is done in continuous space, there will be no
need to discretize the dataset and higher accuracies in inference can
be achieved with respect to approaches in which data discretization is
required (e.g. Bayesian networks). Second, by fixing the structure of
the dA, knowledge can be added incrementally making the architecture
particularly useful in online learning scenarios. Evaluation scores of real
and simulated robotic experiments show improvements over previous
approaches while the new model can be applied in a wider range of
domains.

I. INTRODUCTION

The intelligence of an agent is related to its ability to succeed
in an environment [1]. This success depends on the agent’s ability
to choose appropriate actions in order to achieve some objective or
goal. Humans, as an inspiration for designing artificial intelligent
agents, can solve complex tasks routinely by choosing proper
actions from a vast repertoire of possibilities. It is very difficult,
if not impossible, to achieve this efficiency in action planning
without a mechanism of predicting the consequences of action
execution especially in environments that are not fully known to
agents. According to Pezzulo et al. [2] the ability to predict the
outcome of different actions is a manifestation of mastering the
sensorimotor knowledge, where sensorimotor knowledge is defined
as “practical knowledge of the ways movement gives rise to changes
in stimulation” [3].

One way to encode the aforementioned dynamic relationships
is through the concept of affordances. Affordances can be defined
as sensorimotor contingency patterns in the perceptual stimulus [4]
which arise from action possibilities that an environment can offer
an agent. The term was first introduced in J. J. Gibson’s influential
work [5] and has gathered the attention of many researchers from
diverse fields such as developmental psychology, neuroscience and
robotics.

Tackling the problem of prediction in sensorimotor space through
the concept of affordances facilitates the design of robots that

*This work is partially supported by the Portuguese FCT grant
PD/BD/105776/2014 and by the EU Project LIMOMAN [PIEF-GA-2013-
628315].

1A. Dehban, L. Jamone and J. Santos-Victor are with the Institute for Sys-
tems and Robotics, Instituto Superior Técnico, Universidade de Lisboa, Lis-
bon, Portugal. {adehban, ljamone jasv}@isr.ist.utl.pt

2Adam R.Kampff is with Champalimaud Neuroscience Programme,
Champalimaud Centre for the Unknown, Lisbon, Portugal and Sainsbury
Wellcome Centre for Neural Circuits and Behaviour (SWC), London, UK.
adam.kampff@neuro.fchampalimaud.org

Fig. 1. Experimental setup with iCub humanoid

are expected to behave in unstructured environments because this
approach allows the robot to predict how an object would behave
in response to actions even without any prior interaction with
that particular object and thus, solving the problem of object
manipulation independent of object recognition.

In robotics, affordances are most commonly defined as an
acquired relation by an agent between the triplet: (a) entity or
object (b) action or behavior and (c) effects [6]. According to this
definition, for an agent to acquire the knowledge of affordances,
it must already have a means to acknowledge objects, be able to
execute at least some primitive actions and also to notice the effects
caused by action execution.

This is also the scenario which will be presented in this work.
More specifically, we will explain how a denoising Auto-encoder
(dA) [7] , which are inspired from Multi-Layer Perceptrons (MLPs),
can be trained to find relations between objects’ and tools’ shape
descriptors with actions and the effects of executing those actions -
the relative displacement of object. dA has been selected to encode
the knowledge of affordances for several reasons. First, since they
are a variant of neural networks, they can be applied in online
learning scenarios. Second, they impose no constrain on the type
of inputs they can use (continuous or discrete) and third, they were
applied successfully in fusing multi-modal information and retrieve
one modality given the others [8].

The particular architecture of dA has another desired property to
model object affordances. In order to better explain this property,
we contrast dA to its predecessor MLPs. If an MLP was used to
encode the knowledge of affordances, one would need to train a
network which uses objects and tools features and actions, and
outputs the effect. Then it was necessary to train another network



with objects and tools features and effects, to infer the action, and so
on. In addition, different combinations would all require a dedicated
network, e.g. given object features and effects, infer tool features
and actions. On the other hand, a dA architecture fuses all the
modalities together and thus, one network can be used to infer
all arbitrary combinations of missing and available features and
modalities (Of course not all queries will lead to meaningful results.
For example one can provide tool and object features to the network
and the network will provide answers for actions and effects, which
in this case it would be hard to interpret these outputs).

The learning of affordances happens as the robot performs
various actions on different combinations of objects and tools while
observing the displacement of the object after 5 seconds. These
data is then used to train a dA, which serves both as a cross-
modal memory retriever [9] and an interpolator since it learns useful
cross-modal relations. The objects’ and tools’ shape descriptors are
the geometric properties of objects and tools surfaces which were
defined in [10] and [11], [12]. We have first compared the scores
of dA with those reported by Gonçalves et al. [12] using the same
dataset. In order to show the applicability of dA in real scenarios,
the model is also trained and tested on a dataset that was collected
by doing experiments on real iCub humanoid robot [13] (Fig. 1).
In our experiments, the robot can successfully imitate a human
demonstrator by selecting the correct tool and action.

The rest of the paper is organized as follows. After reviewing the
state of the art (Sec. II), in Sec. III the features of tools and objects
that were used in the dA to learn the affordances are introduced.
Afterward, actions that were executed by the robot are presented
and we have also explained what are the effects that were measured
by the robot after action execution. Next we present our dA and
explain how it can be used to learn about affordances. A description
of the experimental setup is presented in Sec. IV and the results
of these experiments are reported, which show the estimation and
generalization properties of the dA over different datasets. These
results are also compared to the state-of-the-art. Finally, in Sec. V
we draw our conclusions.

II. RELATED WORK

Fitzpatrick et al. [14] were among the first researchers who have
applied object affordances to reason about action effects. In their
experiment, a robot learns about objects rollability affordance by
executing poking action on it from different angles and observe the
resulting motion behavior. They have shown that the robot can use
this acquired knowledge in order to imitate an observed action to
achieve similar results by selecting the right poke angle. However,
this work is focused on interaction aspects of robots and objects and
not on learning an association between visual features and actions
with effects ,thus, the learned knowledge cannot be generalized to
new and unseen objects.

Stoytchev [15] extends the idea to incorporate the concept of tool.
In this work the robot learns about the affordances of various tools
by doing motor babbling with them and observing the effect. The
robot learns the associations between tool colors and behaviors and
effects. The robot can update its representation during execution
if inconsistencies are detected, e.g. breaking of a tool. Since the
tool feature that they have used in their model was color, which
in general can be independent of affordances of tools, their model
cannot associate new tools to the ones that were observed in the
past and it must restart the motor exploration step for each new
tool that is introduced.

In a more recent article, Katz et al. [16] have used visual
geometric features of objects for autonomous pile manipulation with

a robotic arm. The features were autonomously calculated from
images of a camera and a user would perform manual labeling of
predefined affordance classes such as grasp or push. Since they have
used visual geometric features, their model can guess labels from
experience for novel objects. However, the requirement for hand-
labeled dataset limits the robot’s potential to discover new action
possibilities.

Doğer et al. [17] have proposed a goal oriented affordance
control for mobile robots based on the formalism of [6]. The
robot explores the world with its primitive actions and collects the
related changes in feature space as effects. The effects are then
clustered using k-means to form the effect-id. Afterward for each
effect-id, a supervised algorithm such as SVM is trained to map
relevant features to effects. Ugur et al. [18] has further developed
this idea by encoding the effects and objects in the same feature
space and have utilized the learned mappings to perform various
object manipulation tasks using a robotic arm. In this approach,
the clustering algorithm that is used to find effect-ids and the
subsequent number of SVMs, needs the whole dataset in a batch.
Thus, this approach is not suitable in online learning scenarios.

Montesano et al. [10] have proposed a Bayesian Network (BN)
to encode the knowledge of affordances. The BN captures the
structural dependencies between actions, object features -which
were clustered using Xmeans-, and effects and can effectively deal
with uncertainties in the real world. It also provides a unified
framework to not only learn, but also to use object affordances.
This model can be used to imitate observed actions by predicting
the effects caused by its own action execution on different objects.
Since the model only relies on object’s visual features, it can easily
extend its knowledge to novel objects.

Osório et al. [19] have used Gaussian Mixture Models (GMMs) to
use continuous features and effects with BNs. Their results obtained
from simulation datasets suggest using continuous values improves
the performance of BNs in the presence of noisy data or when the
size of training set is large. However, to train the GMM, they needed
to know the sensor noise distribution which limits the applicability
of this approach in real scenarios.

Using icub humanoid, Tikhanoff et al. [20] have proposed a
method to learn the pulling affordance of a tool. The icub robot
preforms several experiments with a specific tool and a specific
object and learns to map the initial relative configuration of the
tool with respect to the object to the object’s displacement as the
result of pulling. Because the learned maps are specific to particular
tools and objects, generalization to novel tools and objects requires
new experiments to be performed.

More recently, Gonçalves et al. [11] have extended the use of
BNs to incorporate the concept of intermediate objects i.e. tools.
This model can be trained to relate tools’ and objects’ features
to actions and effects. The performance of different architectures
of BNs are evaluated in [12]. In this work, the dataset that was
used to train the BN was collected in iCub simulator [21] but was
successfully applied to predict the effects on the real robot.

One drawback of the aforementioned methods is that although
features are initially calculated in the continuous space, some form
of data clustering has to be applied to discretize the data. Automatic
data clustering requires the whole batch of dataset to find clusters
which are going to be used in the BN. On the other hand, ad hoc
data clustering also significantly influences the final performance
of the network. Moreover, learning the structure of the BN also
requires the whole dataset. In addition to these, by clustering the
features and effects into several bins, the accuracy of the prediction



will be at most equal to the accuracy of clusters which also hinders
the performance.

This work is built upon the work of [12] as it uses the same
features to represent the affordances. However, there are significant
differences compared to all the mentioned approaches. First, since
this architecture is trained on continuous features and effects, the
accuracy of predictions will not be affected by the bin sizes and
higher precisions could be obtained. Second the method can be
applied in online scenarios where information is added to the
network in an incremental manner.

III. COMPUTATIONAL METHODOLOGY FOR LEARNING OBJECT

AFFORDANCES

In this section we will outline the affordances learning process
which is similar to the process described in [11]. In this scenario,
it is assumed that the robot already posses an elementary set of
capabilities to perform some actions, calculate object and tool’s
geometric visual descriptors and to measure the effects caused
by the execution of actions as explained in Sec. I. The robot is
presented with one object and one tool and it calculates their visual
descriptors, then one of the predefined actions will be executed on
the object with the tool which the robot is holding in hand. The
effect of this action execution is also recorded. The set of object
and tool features, action and effects constitutes one sample in the
dataset.

A. Visual descriptors

According to affordances theory, visual features of the environ-
ment should immediately give rise to action inference. To this end,
we will extract the visual descriptors from the 2D silhouette of
object and tool. This task entails the segmentation of the object
from its surrounding background. This segmentation can easily
become complex specially when one needs to segment unknown
objects in cluttered scenes. This work is not focused on solving
this problem in its general form, thus we have limited the robots
playground on a table with colorful toys as objects and tools. With
this simplification, the objects and tools can be easily segmented
by using color thresholds and thus, connected components of pixels
in 2D can be retrieved. The geometric visual descriptors that
were introduced in [10] and [11] are then calculated based on
the connected components. These features are Area, Convexity,
Eccentricity, Compactness, Circleness and Squareness which are
useful since they allow the model to generalize to novel objects and
tools.Consider a situation where the goal of the human or robot is
to point. This task can be effectively carried out using numerous
objects such as a pen, a fork or a spoon. Although all these objects
belong to different categories, they will become similar given the
goal i.e. desired effect. On the contrary, if the goal becomes eating
from a bowl of soup, an architecture which knows about affordances
would choose the spoon over fork even though they might be
conceptually belong to the same category of cutlery.

B. Actions and effects

The actions that are considered in this work are categorical and
predefined and are constituted of a subset of different pushes (left,
right, pull close or push away) which are preformed on the object
while the tool is held in robot’s hand. The IDs of these actions are
directly fed to the affordances architecture.

The effects of action execution are considered as the 2D displace-
ment of the object’s center of mass along the lateral and longitudinal
directions on the table’s plane. To calculate this value, the position
of the object on the image plane before the action execution and 5

seconds after action execution is recorded. The difference between
these two values serves as the effect. In longitudinal movement, the
positive direction means closer to the robot (down in image space)
and the negative direction means farther away from the robot (up
in image space). In lateral movement, positive and negative values
are used to encode right and left movements, respectively.

The way the visual features and effects are introduced to the
model is where our proposed solution differentiates from ap-
proaches that rely on data discretization. After the aforementioned
features and effects are calculated from camera images, they are
fed directly into the dA and are used to train the network without
any need to group them into different bins.

C. Denoising auto-encoders for learning and using object affor-
dances

We propose to use an over-complete denoising Auto-encoder
(dA) to capture the structure of the affordance dataset. The dA for
this work consists of one encoding layer g−1 and one decoding
layer g (Fig. 2). A simple auto-encoder takes an input vector
x ∈ [0,1]m and maps it to a hidden representation z ∈ [0,1]n through
a deterministic mapping z = g−1 (x) where:

g−1 (x) = s(Wx+b) (1)

parameterized by θ = {W,b}. W is an n×m weight matrix and b is
an n×1 bias vector. After learning, the network tries to reconstruct
its input via the mapping x̂ =g(z) and we have:

g(z) = s
(
W′z+b′) (2)

which similarly is parameterized by θ ′ = {W′,b′}. In (1) and
(2) s(·) is the squashing function (usually sigmoid). In order to
reduce the number of auto-encoder parameters and hence, avoid
the problem of overfitting, one can optionally constrain the weight
matrices to W′ = WT , in which case the auto-encoder is said to
have tied weights. Suppose x(i) to be one sample point from the
training dataset D , thus for each x(i) the corresponding hidden
representation z(i) is determined and used to reconstruct the output
vector x̂(i).

E
ncoder g

D
ecoder g

-1

...

... b'1b'm

bn b3 b2 b1

...

z

x

^x

Fig. 2. Schematics of an auto-encoder where x is the input, z is the hidden
representation and x̂ is the reconstruction. bis are the bias terms associated
with hidden layer units and b′is are bias terms associated with the output
layer.

The parameters θ and θ ′ are optimized to minimize the average
reconstruction error:

θ∗,θ ′∗ = argmin
θ ,θ ′

1
d

d∑
i=1

L
(

x(i), x̂(i)
)

(3)

where d is the number of samples in D . The loss function L
can be a simple squared error L (x, x̂) = ∥x− x̂∥. In case of
variables which are between zero and one, the loss function is more
commonly defined as sum of Bernoulli cross-entropies:



L (x, x̂) =−
m∑

k=1

[xk log x̂k +(1− xk) log(1− x̂k)] (4)

To see how the above formula can be interpreted as a loss func-
tion, consider the case where xk = 0. The first term in (4) becomes
zero and L (xk, x̂k) =− log(1− x̂k). The training algorithm tries to
minimize this value and thus x̂k approaches xk. A similar argument
applies to the case where xk = 1.

The above formulation cannot capture the inter-feature depen-
dencies of our dataset since we have an over complete hidden layer
and each hidden unit can just learn to replicate its input. In this case
the reconstruction error of the network for the training set will be
very small while the network has not learned any useful relations.

One approach to make an over-complete auto-encoder to learn
useful features is by adding random noise to input, but force the
network to reconstruct the denoised version of the input [7]. The
network cannot reconstruct its input from noisy observations, unless
it could capture the structure of the dataset. In this case, the learning
algorithm tries to converge z to a representation which is useful to
reconstruct the input when some features are not available.

The input of the dA is a corrupted version x̃, of the original
input x according to a stochastic mapping x̃ ∼ q(x̃|x). In our
experiments, for each component of a feature vector, we have
conducted a Bernoulli experiment with probability of success v
and if the experiment was successful, that component was forced
to be 0.5. Since there is no information in the choice of the
corrupted component, the dA has to use the information from the
available components to infer the value of the corrupted feature.
This corrupted input x̃ replaces the original input x in (1).

IV. EVALUATION SCORES AND RESULTS

In this section we will discuss the training process of the
proposed over-complete denoising auto-encoder and validate its
performance on two datasets. One of these datasets was collected
using iCub simulator and the other was collected from the real
robot.

A. Training process of denoising auto-encoder

The implementation of dA was done in Theano [22] which is an
open source numerical computation library for Python. Theano was
selected since it provides a convenient interface to do numerical
computations on GPUs and can be easily integrated with other
Python libraries such as NumPy [23] and scikit-learn [24].

As explained in the previous section, the input to the dA must
lie between zero and one. Thus, it is necessary to preprocess
the data before feeding it into the network. In this step, each
feature of the dataset was first scaled to have zero mean and unit
variance (σ = 1). Afterward all the components which were outside
three standard deviation range were saturated to the value of three
standard deviation(3σ) to remove the outliers. The features were
then scaled in the interval [0.1,0.9] to comply with the general
guidelines in [25].

Empirically, adagrad training algorithm [26] with momentum
found better minimums in our training sets. Adagrad tries to adapt
a new learning rate for each feature at each time step. In this way,
the learning algorithm pays more attention to rare, but informative
features while slowly learning from the frequent ones.

We have found that increasing the number of hidden units does
not significantly improve the reconstruction errors on the training
set. Two explanations are proposed for this behavior. First, by
increasing the number of hidden layers, the training algorithm

cannot find better minimums for the weights and biases. The second
explanation is that we have already reached the limits of our training
set. Careful examination of the dataset revealed the existence of
contradicting samples (the same tools and objects along with the
same action results in completely different effects, i.e. bigger than
5σ ) due to the realistic scenarios in our datasets. These observations
make the second explanation more probable.

Since the whole datasets were available and this work is
not addressing the issue of online learning, we have used 5
fold cross validation to choose the learning rate from the set
{0.1,0.2,0.3,0.4,0.5} and the number of hidden units from the
set {20,22,24,26,28}. Nevertheless, the performance of the dA
is not very sensitive to the choice of these hyper parameters and
our initial guesses were almost as good as the results obtained
from cross validation. This robustness of our results with regard
to hyper parameters can be attributed to the fact that the set of
features we have chosen to represent tools and objects are relatively
uncorrelated which we will address while we discuss each dataset.

B. Simulation dataset

In this scenario, 2353 trials were done using the iCub simulator.
In each experiment, the robot first looks at the object and tool from
different angles and calculates the features introduced in Sec. III-A
(this dataset was gathered by Gonçalves et al. [11] and we have
used it with the permission of the author). Then, while holding the
tool in hand, chooses one of the actions from the set of actions in
Sec. III-B. More details about the shape of tools and objects can
be found in [11]. Each sample of this dataset has 15 components
(m = 15, 6 object features, 6 tool features, 1 action tag and 2
effects). In the correlation coefficient matrix calculated from the
object and tool features, only 30% of the elements had an absolute
value bigger than 0.5 (outside the main diagonal). Table I shows
hyper parameters that were used for this dataset.

TABLE I
SIMULATION DATASET HYPER-PARAMETERS

Train Parameters dA Parameters

epsilon learning momentum mini-batch # hidden corruption vrate size units n

10−6 0.2 0.8 200 24 0.3

In order to evaluate the performance of dA, we first compare its
performance to previous approaches. This comparison is problem-
atic since the dA outputs deterministic values while the output of
the BN reported in [12] are probabilities. On the other hand, dA is
trained on continuous data points and outputs a continuous value
where as the BN is trained and tested on categorical data.

To reconcile these two approaches, first we have discretized the
outputs of the dA after it was trained on continuous data. Fur-
thermore, since the accuracy score of BNs is based on maximum a
posteriori estimate, it is the closest measure to a deterministic output
thus, we have adopted this score as the basis of our comparison. To
measure the accuracy score for the bayesian network, the probability
of each effect given the value of actions and features is calculated.
If the most probable effect bin is the same as the correct bin, the
network gets a reward of 1. The sum of total rewards divided by
the number of testset samples in percent is the accuracy score. A
random system which chooses one out of five bins gets a score
of 20 . On the other hand, the accuracy score for dA is simply
the number of correct bin predictions normalized by the number of
testset samples.



Two tests were conducted using the simulation dataset. First, a
dataset of experiments with 7 objects and tools was divided into a
training set containing 80% of the samples and a testset containing
the remaining 20%. The dA is trained as explained in Sec. III-C
and during test time, all the effects were corrupted by the value
0.5 and all other features and actions were left untouched. Table II
shows the accuracy score of the different architectures. According
to the results of this table, the dA can provide similar results to the
previously reported approaches without the need to be trained on
discrete data.

TABLE II
EVALUATION SCORES OF SPLITTING THE DATASET OF 7 OBJECTS INTO

80% OF TRAINING SET AND 20% OF TEST SET

Baseline PCA BDe K2 dA

Accuracy Sc.(%) 75.90 80.57 83.28 83.73 79.13

In another experiment, the same model which was trained on the
previous step was tested on an unseen object. The results of this
experiment are reported in Table III.

TABLE III
EVALUATION SCORES OF THE UNSEEN OBJECT

Baseline PCA BDe K2 dA

Accuracy Sc.(%) 44.20 73.91 48.42 47.93 76.52

The dA score is similar to the reported BN score which was
trained on a PCA transformation of object and tool features. In
this network, after finding the principal components, only the first
two components were chosen as representatives of object and tool
features and each component was discretized into two categories.
Our experiments show that the reported results of the PCA network
can be severely hindered if more components were used or if each
component was discretized into more categories. On the other hand,
one of the merits of this work is that the performance of the
proposed dA is not affected by the choice of data discretization
or dimensionality reduction techniques.

(a) split dataset (b) unseen object

Fig. 3. Error distribution and histograms on simulation dataset

After these comparisons, we will evaluate the performance of
dA in continuous space to measure how reliable it can estimate the
effects. In these evaluations, we have fitted a normal curve to the
errors made by the dA. Note that each component of the samples is
scaled to be in the interval [0.1,0.9] but the output of the dA comes
directly out of the sigmoid function and thus is in the interval [0,1].
Fig. 3 shows the error histogram and distribution for the above
two experiments. According to these plots, 95% of the errors are
below 0.21 (3σ) which is about 21% of the maximum possible

Fig. 4. Objects and tools that were used in the robot experiment. a) stick_1,
b) tomato, c) cheese, d) stick_2, e) hammer and f) rake

error. The code to access this dataset along with an implementation
of the dA can be found at https://github.com/atabakd/
Continuous_affordances.

C. Real robot dataset

In order to see how the model behaves when encountered with
real world data, another dataset was collected in which the real iCub
robot executed actions on different objects and toys (Fig. 4). The
experiment was done with two actions {push, pull}, two objects
{cheese, tomato} and two tools {rake, stick_1} where each action
was repeated twice. Feature area was not calculated for objects and
tools (similar to the original feature set introduced in [10]). The
robot observes the tools and objects from 10 different view points
which results in a dataset of size 1600 (2× 2× 2× 2× 10). Each
sample of this dataset has 13 components (m= 13, 5 object features,
5 tool features, 1 action tag and 2 effects). In this dataset, 22% of
the tool and data features had an absolute correlation coefficient
bigger than 0.5. The hyper parameters of this network are similar
to Table I, the only difference is that because of smaller number of
features, 20 hidden units provided the best cross validation score.

First, we will examine the network’s performance with regard to
the number of samples. Fig. 5a shows the cross-entropy errors made
by the network on a fixed test set as a function of train set size.
This plot shows that increasing the number of training samples can
improve generalization error.

(a) cross-entropy error (b) Error distribution and histogram
of errors for the real dataset

Fig. 5. dA performance on real dataset

As in the first experiment with simulation dataset, 80% of the
data was used for training and 20% for testing. Fig. 5b shows the
distribution and histogram of the error. The similar performance
of dA in simulation and real datasets shows that it is a reliable
architecture for reason about object and tool affordances in robotic
experiments.

Similar to the simulation dataset, we have conducted new experi-
ments on the robot to see the generalization capabilities. In the new



experiments, the human demonstrator pushes an object {cheese}
toward the robot and the robot observes the effect. Afterward, the
robot is presented with two novel tools {stick_2, hammer} and is
expected to choose the right tool along with the right action to
imitate the observed effects. The experiment was repeated 8 times
and each tool was viewed from 4 different angles. The exact same
transformation which was used to pre-process the real robot dataset
was applied on the new tool and object features. In all the trials,
the robot had successfully selected the right tool {hammer} with
the right action {pull}.

V. CONCLUSIONS AND FUTURE WORK

In this work we have proposed the use of denoising auto-
encoders as a computational framework to learn and reason about
object affordances. This model is able to find structures which
can relate object and tool features with actions and effects. These
representations can be later used to 1) predict the effects of action
executions on different objects with different tools and 2) imitate
effects by selecting the correct action and tool. The comparison of
dA performance with previous approaches shows its superior gen-
eralization capabilities while maintaining desirable expressiveness
power. Infering the action and tool directly from object features and
observed effect is one of the main contributions of this work. Our
experiments indicates that going from simulation datasets to real
datasets does not impose any significant degradation of performance
and implies effectiveness of this approach on real robot scenarios.

Denoising auto-encoders are mostly used in the deep learning
literature as a pre-training step for multi-layer neural networks. To
the knowledge of authors, this work shows the first use of dAs
in relatively small datasets with low amount of features. To take
this work to where dAs shine the brightest, new scenarios must be
defined where the features are not predefined but are learned from
camera images and actions are not just labels but the dynamics
of joint angles movements. On the other hand, as the results of
the current work suggest, dA can be trained to find interesting
relations even with small datasets. One possible approach to further
investigate the capabilities of the proposed architecture is to use it
as an online learning mechanism in real robot scenarios. The dA
can benefit from more tool and object features which better covers
the space because of its relatively large expressive power.

ACKNOWLEGMENT

This work is partially supported by an FCT doctoral grant
PD/BD/105776/2014 and by the EU Project LIMOMAN [PIEF-
GA-2013-628315].

REFERENCES

[1] S. Legg and M. Hutter, “A universal measure of intelligence for
artificial agents,” in International Joint Conference on Artificial In-
telligence, vol. 19. LAWRENCE ERLBAUM ASSOCIATES LTD,
2005, p. 1509.

[2] G. Pezzulo, M. Butz, O. Sigaud, and G. Baldassarre, Anticipatory Be-
havior in Adaptive Learning Systems: From Psychological Theories to
Artificial Cognitive Systems, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2009.

[3] A. Noë, Action in perception. MIT press, 2004.
[4] S. Z. Caiani, “Extending the notion of affordance,” Phenomenology

and the Cognitive Sciences, vol. 13, no. 2, pp. 275–293, 2014.
[5] J. J. Gibson, The Ecological Approach to Visual Perception. Boston,

MA: Houghton Mifflin, 1979.
[6] E. Sahin, M. Çakmak, M. R. Dogar, E. Ugur, and G. Üçoluk, “To

afford or not to afford: A new formalization of affordances toward
affordance-based robot control,” Adaptive Behavior, vol. 15, no. 4,
pp. 447–472, 2007.

[7] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Pro-
ceedings of the 25th international conference on Machine learning,
2008, pp. 1096–1103.

[8] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng,
“Multimodal deep learning,” in Proceedings of the 28th International
Conference on Machine Learning (ICML-11), 2011, pp. 689–696.

[9] K. Noda, H. Arie, Y. Suga, and T. Ogata, “Multimodal integration
learning of robot behavior using deep neural networks,” Robotics and
Autonomous Systems, vol. 62, no. 6, pp. 721–736, 2014.

[10] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learn-
ing object affordances: From sensory motor coordination to imitation,”
IEEE Transactions on Robotics, vol. 24, no. 1, pp. 15–26, 2008.

[11] A. Gonçalves, G. Saponaro, L. Jamone, and A. Bernardino, “Learning
visual affordances of objects and tools through autonomous robot ex-
ploration,” in Autonomous Robot Systems and Competitions (ICARSC),
2014 IEEE International Conference on. IEEE, 2014, pp. 128–133.

[12] A. Gonçalves, J. Abrantes, G. Saponaro, L. Jamone, and
A. Bernardino, “Learning intermediate object affordances: Towards
the development of a tool concept,” in IEEE ICDL-Epirob, 2014.

[13] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga,
C. Von Hofsten, K. Rosander, M. Lopes, J. Santos-Victor et al.,
“The icub humanoid robot: An open-systems platform for research
in cognitive development,” Neural Networks, vol. 23, no. 8, pp. 1125–
1134, 2010.

[14] P. Fitzpatrick and G. Metta, “Grounding vision through experimental
manipulation,” Phil. Trans. R. Soc. A: Mathematical, Physical and
Engineering Sciences, pp. 2165–2185, 2003.

[15] A. Stoytchev, “Behavior-grounded representation of tool affordances,”
in Robotics and Automation, 2005. ICRA 2005. Proceedings of the
2005 IEEE International Conference on, 2005, pp. 3060–3065.

[16] D. Katz, A. Venkatraman, M. Kazemi, J. A. Bagnell, and A. Stentz,
“Perceiving, learning, and exploiting object affordances for au-
tonomous pile manipulation,” Autonomous Robots, vol. 37, no. 4, pp.
369–382, 2014.

[17] M. R. Doğar, M. Cakmak, E. Uğur et al., “From primitive behaviors
to goal-directed behavior using affordances,” in Intelligent Robots and
Systems, 2007. IROS 2007. IEEE/RSJ International Conference on.
IEEE, 2007, pp. 729–734.

[18] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in
perceptual space using learned affordances,” Robotics and Autonomous
Systems, vol. 59, no. 7, pp. 580–595, 2011.

[19] P. Osório, A. Bernardino, R. Martinez-Cantin, and J. Santos-Victor,
“Gaussian mixture models for affordance learning using bayesian
networks,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, 2010, pp. 4432–4437.

[20] V. Tikhanoff, U. Pattacini, L. Natale, and G. Metta, “Exploring affor-
dances and tool use on the icub,” in Humanoid Robots (Humanoids),
2013 13th IEEE-RAS International Conference on. IEEE, 2013, pp.
130–137.

[21] V. Tikhanoff, A. Cangelosi, P. Fitzpatrick, G. Metta, L. Natale, and
F. Nori, “An open-source simulator for cognitive robotics research:
The prototype of the icub humanoid robot simulator,” in Proceedings
of the 8th Workshop on Performance Metrics for Intelligent Systems,
ser. PerMIS ’08. New York, NY, USA: ACM, 2008, pp. 57–61.

[22] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU
and GPU math expression compiler,” in Proceedings of the Python for
Scientific Computing Conference (SciPy), Jun. 2010, oral Presentation.

[23] S. van der Walt, S. Colbert, and G. Varoquaux, “The numpy array: A
structure for efficient numerical computation,” Computing in Science
Engineering, vol. 13, no. 2, pp. 22–30, March 2011.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” The Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[25] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 9–48.

[26] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” The Journal of Machine
Learning Research, vol. 12, pp. 2121–2159, 2011.


