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RESUMO 

 

No contexto de futebol robótico, uma das tarefas fundamentais que cada robot deverá 

ser capaz de realizar é a deteção de obstáculos que o rodeiam. Para além de um conhecimento 

instantâneo da posição dos obstáculos, é também de grande utilidade caracterizar e prever a 

sua evolução no tempo, permitindo assim um melhor planeamento de ações. Adicionalmente 

deverá ser capaz de classificar os obstáculos detetados, identificando os que correspondem a 

outros robots e a equipa a que pertencem.   

O objetivo desta tese é pois o desenvolvimento de um sistema robusto de deteção, 

classificação e seguimento de obstáculos para robots da liga média de futebol robótico. O 

sistema foi separado nos seus constituintes, sendo cada um tratado individualmente. 

Inicialmente foi abordado o problema da segmentação por cor, sendo dado enfase à 

robustez perante alterações na iluminação. De seguida foi desenvolvido um sistema de ground-

truth, que não participando durante o jogo nas tarefas de deteção e seguimento, é no entanto 

relevante no âmbito deste trabalho, uma vez que é indispensável para a estimação de estatísticas 

de erro necessárias para o seguimento. Seguidamente discutem-se as tarefas da deteção e 

classificação propriamente ditas. Primeiro é abordado o modelo da câmara omnidirecional e 

seguidamente de que forma a imagem é processada de modo a extrair a posição dos obstáculos. 

Por último é discutido o procedimento para efetuar o seguimento dos obstáculos. Sendo 

abordados o filtro de Kalman, o algoritmo Húngaro para associação de dados e as regras de 

inserção e retirada de um obstáculo. 

 

PALAVRAS-CHAVE: Segmentação por cor; deteção de obstáculos; seguimento de múltiplos 

objetos; futebol robótico; câmara omnidirecional; Sistema de ground-truth. 
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ABSTRACT 

 

In the context of robot soccer, one of the fundamental tasks that each robot must be able 

to accomplish is the detection of its surrounding obstacles. Besides the knowledge of the 

instantaneous position of the obstacles, it’s of great utility to characterize and predict their 

evolution with time, which allows for more sophisticated action planning. Additionally the robot 

should be able to classify the detected obstacles, identifying the ones that correspond to other 

robots and which team they belong to.  

The objective of this thesis is thus the development of a robust system for the detection, 

classification and tracking of obstacles for robots of the middle sized robot soccer league. The 

system has been separated in its subsystems, and each one addressed individually. 

Initially it was addressed the problem of color segmentation, with special emphasis on 

the robustness to illumination changes. Next, it was developed a ground-truth system, that 

although not directly involved in the detection and tracking during matches, it was indispensable 

for the estimation of error statistics of which the tracking is dependent. The detection and 

classification specific tasks are then address. Starting with the omnidirectional camera model 

followed by the image processing method used to extract obstacle positions. The final part deals 

with the obstacle tracking. The Kalman filter is presented, followed by the Hungarian algorithm 

used for data association and finally the rules for insertion and removal of obstacles from the 

tracking lists. 

 

KEYWORDS: Color segmentation; Ground-truth system; Multiple object tracking; Obstacle 

detection; Omnidirectional camera; Robot soccer. 
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1 INTRODUCTION 

 

1.1 BACKGROUND 

 

Mobile autonomous robotics is a multi-disciplinary field of engineering, encompassing 

and interfacing a vast range of areas of knowledge. Robot Systems may be very complex and 

composed of many subsystems that must interconnect and work together seamlessly. It is in this 

context that robot soccer and in particular RoboCup medium sized league (MSL) robot soccer 

competitions stand out as an invaluable research and development tool. MSL competitions 

constitute a challenging and holistic application for mobile robotics and are an exceptional testing 

ground for the development of new methods and algorithms. The adversarial and competitive 

nature of robot soccer, not only adds an element of excitement for the researcher but also forces 

her/him to validate the produced work in an environment other than a controlled laboratory setting. 

This contributes to bridge the gap between theoretical research and real world applications. 

 An MSL robot must perform and integrate a vast number of tasks, ranging from low level 

hardware control, all the way to high level decision making in a cooperative multi-agent 

environment. The performance of some fundamental tasks such as navigation, obstacle 

avoidance or ball passing, depends strongly on the ability of the robot to be aware of obstacles in 

its surrounding environment. Additionally to being aware of the presence of the obstacle, it is also 

desirable to possess a characterization of its motion over time, which will allow to predict its 

evolution, even in case of intermittent detection. A detected obstacle should also be classified as 

to whether it is a robot, and if so, which team does it belong to. This work is concerned with the 

task of detecting, classifying and tracking of obstacles in the MSL competition environment.  

The MSL soccer regulations impose a color structured environment, for example: the 

robots chassis should be predominantly black, cyan and magenta are used as team identifying 

color, the ball should be yellow, the field should be green, etc. To take full advantage of this color 

structure for the purpose of obstacle detection, it was identified the necessity to develop a robust 

color segmentation solution. Additionally, the development of a ground-truth system was 

considered relevant for its usefulness in the estimation of noise statistics. The color segmentation 

and the ground-truth subsystems were designed to be as generic as possible, allowing their utility 

to extend beyond the immediate scope of this work.  
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1.2 DEVELOPMENT SETUP  

The development of this work demanded a good deal of data collecting and 

experimentation. For that purpose, the following laboratory equipment was put at disposal: half 

green playing field with white markings, with dimensions of approximately 12x9m; one fully 

operational MSL robot; a few other MSL robots at different levels of operability; two ceiling 

mounted fixed cameras at each end of the field for ground-truth purposes. 

Figure 1.1 shows details of MSL robots of the type that was used and the laboratory 

environment.  This robot has a three wheel omnidirectional drive system, with powerful motors 

that provide high acceleration and the ability to reach top speeds of about 3m/s. Each motor is 

equipped with an optical incremental encoder. The main sensor that the robot is equipped with is 

am omnidirectional camera. This camera is fitted with a fish eye lens having a field of view 

exceeding 180°. It captures frames at an average rate of 15 fps and is interfaced via Gigabit 

Ethernet. The robot is allowed to be equipped with other types of sensors such as ultrasonic or 

laser range finders. However, these type of active sensors are vulnerable to cross-talk when used 

simultaneously by different robots. It was found that problems associated with this type of sensor 

for this particular application outweigh their utility, and thus the option of their use was discarded.  

 

   

Figure 1.1: From left to right: MSL robot; Omni-directional camera detail; MSL robots in the 
laboratory test field, with ground-truth markers installed. 

The Robots middleware is based on the ROS framework. The obstacle tracking system 

was implemented as a ROS package and it relies on the use of ROS topics for data transmission. 

The following data is used as input: raw camera image topic, linear and angular velocity 

commands topic, incremental odometry topic. After each iteration the obstacle tracking system 

publishes to a topic that describes the current tracked obstacles. This information will then be 

used by higher level subsystems such as obstacle avoidance and others, which are out of the 

scope of this work. 
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1.3 SYSTEM OVERVIEW AND THESIS STRUCTURE 

 

In figure 1.2 is depicted a high level diagram of the whole system. There are offline and 

online components of the system. The online components operate during the course of the soccer 

match, processing real-time sensor and control information. These components depend on 

configuration and calibration data generated by the offline components.  

 

Figure 1.2: System overview 

 

In the next chapters of this work, the system’s individual components are addressed in 

the following manner: 

 In Chapter 2 the problem of color segmentation is addressed. The HSV color model is 
presented and its advantages explained. The LUTCreator, a ROS integrated color 
segmentation application is presented and compared to previously used method. The 
problem of color constancy is discussed and some methods are proposed. Experimental 
procedures are described and the results interpreted. 

 

 Chapter 3 deals with the Ground-truth system. First the transformation from camera 
coordinates to world coordinates is derived. A procedure for fast estimation of position error 
covariance using the Kabsch algorithm is suggested. The processing of the images for 
detection and tracking of the markers is described. 
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 Chapter 4 deals with the detection and classification of obstacles. The adopted model for 
omnidirectional camera model is presented.  The procedure for estimating the measurement 
error covariance is described. Next, the image processing tasks are addressed, namely the 
ray casting detection method and the heuristic filtering strategies.  

 

 Chapter 5 focuses on the obstacle tracking system. First the model of the dynamics is derived. 
The Kalman filter is discussed, as well as the procedure for estimating the process error 
covariance. The Hungarian Algorithm and its application in this context are presented. Finally 
the heuristic rules that control the insertion and removal of tracked obstacles are addressed. 

 

 In Chapter 6 the results from previous chapters are synthetized and final conclusions are 
presented. A few avenues for future work are proposed, contemplating both the improvement 
of current solutions and the expansion of functionality. 
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2 IMAGE SEGMENTATION 

 

2.1 INTRODUCTION 

 

Segmenting an image consists of identifying groups of pixels that share some common 

attribute. In this particular case, the objective is identifying which pixels represent obstacles in 

general and in particular MSL soccer robots. MSL rules impose a color structured environment, 

where robots should be predominantly black with the colors cyan and magenta being used for 

team identification. Thus it's only natural to take advantage of this environmental constraint and 

chose color as the attribute used for segmenting an image.  

The rest of this chapter is organized as follows: first the HSV color model is formally 

introduced, and its advantages explained. Methodologies for creating an RGB look-up-table for 

segmentation are analyzed and compared. The LUTCreator application is presented. The 

problem of color constancy is addressed and a few methods of implementation are derived. 

Finally, a set of experimental procedures are described. These are designed to evaluate the 

performance and robustness of the segmentation methods. The experimental results are 

presented and interpreted. 

 

2.2 HSV COLOR MODEL 

 

The RGB color model is a convenient machine representation of color, however there is 

no direct correspondence between RGB values and the psychological perception of color as the 

relation between red, green and blue channels in not intuitive. A color model more perceptually 

orientated is the HSV color model, which stands for hue, saturation and value. The HSV model 

encodes chromaticity in the hue and saturation, whereas brightness is encoded in the value 

parameter. The hue parameter in particular has great affinity with the visual sensation of color, 

and this is why the HSV model is particularly relevant for applications that require selection of 

color through human perception. 

The HSV color space results of a geometrical nonlinear transformation of the RGB color 

space. The RGB color space is represented in a Cartesian space in which the red, green, and 

blue components are aligned with the coordinate axes. The RGB to HSV transformation will 

transform this Cartesian space into a cylindrical coordinate space in which the hue parameter will 

be represented in the angular coordinate, the saturation in the radial distance and the value in the 



 

6 
 

height. Figures 2.1(a) and 2.1(b) show the gamut of colors in the RGB and HSV spaces 

respectively.  

To obtain the hue coordinate H, the color point in RGB space is projected into a plane 

designated as chromaticity plane. This plane is perpendicular to the axis of the grays which 

contains the black (0,0,0) and the white point (1,1,1). This projection of the RGB cube results in 

a hexagon in the chromaticity plane which is then morphed into a circle. The projected RBG cube 

and subsequent morphing is depicted in figure 2.1 (c). The way the hue parameter 𝐻 is obtained 

from an RGB is expressed in the equations (2.1) to (2.4). 

 

 

 

 

 

𝑀 = max(𝑅, 𝐺, 𝐵) (2.1) 

 

𝑚 =  𝑚𝑖𝑛(𝑅, 𝐺, 𝐵) (2.2) 

 

(a) (b) 

(c) 

Figure 2.1: (a) RGB color space; (b) HSV color space; (c) Morphing of hexagon in chromaticity 
plane. Images by Jacob Rus  used under CC BY license. 

http://commons.wikimedia.org/wiki/User:Jacobolus
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𝐻′ =  

{
  
 

  
 
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑,            𝑖𝑓 𝑀 = 𝑚
𝐺 − 𝐵

𝑀 −𝑚
 𝑚𝑜𝑑6,       𝑖𝑓 𝑀 = 𝑅

𝐵 −  𝑅

𝑀 −𝑚
 +  2, 𝑖𝑓 𝑀 = 𝐺

𝑅 −  𝐺

𝑀 −𝑚
 +  4, 𝑖𝑓 𝑀 = 𝐵

 (2.3) 

 

𝐻 =  𝐻′ ×  60° (2.4) 

 

The saturation parameter 𝑆  and the value parameter 𝑉  are given respectively by 

equations (2.5) and (2.6). 

 

𝑆 =  
𝑀 −𝑚

𝑀
 (2.5) 

 

𝑉 = 𝑀 (2.6) 

 

2.3 SEGMENTATION METHOD 

 

The need for real-time performance makes computational efficiency an important 

concern. An RGB lookup table (LUT) is one of the fastest methods for color segmentation, 

because for each pixel all it takes is accessing an array position indexed by the pixel RGB 

component values (some mapping between RGB components and LUT indexes may be 

necessary depending on the ranges, but that can also be implemented via an array). The problem 

then lies on how to create the LUT. Prior to this work the method that was being used consisted 

of selecting the pixels that belong to the area that is desired to be segmented and inserting their 

RGB values in the LUT, from hereafter this method is referred as RGB picking method. This 

approach however has shown in practice to perform inconsistently. The problem with this method 

stems from the fundamental misconception that the selected RGB values are a representation of 

the perceptional notion of color. Instead these selected RGB values are a function of the lighting 

conditions presented at the time. Because of that, even though the segmentation might be very 

good in the conditions in which the LUT was created, even a small alteration in the lighting 

conditions will substantially degrade the quality of the segmentation produced by that LUT. A 

better alternative to selecting pixels is to select range intervals in HSV color space. As stated 

before, this allows to make a selection that better represents the visual sensation of color, which 

being the intended discriminating characteristic results in a more robust segmentation.  
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As an example consider the case showed in figure 2.2, observe that in figure 2.2(a) two 

cyan areas are present. Note that the one further away is in a recessed area and therefore 

appears a little darker than the one closer to the camera.  

   
 

  
 

Figure 2.2: (a)  Raw image ; (b) binary image resulting from the RBG picking method; (c) binary 
image resulting from the HSV intervals ; (d) LUT produced with the RBG picking method; (e) LUT 

produced by HSV intervals. 

Figures 2.2(d) and 2.2(e) are each graphical representations of a LUT in RGB color 

space. The colored volumes represent the RGB values that correspond to the color selected for 

segmentation.  Two LUTs were created, one created with the RGB picking method and the other 

with the HSV intervals method. In figures 2.2(b) and 2.2(c) it can be observed that both methods 

seem to produce good results, this observation is however misleading. Analyzing and comparing 

the morphology of the LUTs created by both methods helps to obtain a better insight on the 

performance differences. For the LUT created by selecting the HSV intervals, the rectangular 

volume in HSV space defined by the selected interval values, corresponds to a well-defined 

wedge shaped volume that resembles a truncated pyramid in the RGB color space. Visualizing 

the LUT created by the RGB picking it is clear that it is composed of disconnected irregular 

shapes. It is possible to recognize two distinct areas corresponding to the two cyan areas in the 

image. So the LUT created with the RGB picking method includes the RGB values visible in the 

current frame, while in the LUT created with the HSV intervals method those values are included 

in a bounding region . Furthermore this method allows easy control of the margin of this bounding 

region which can be expanded (carefully so that it doesn’t intersect another color region) so that 

(a) (b) (c) 

D 

E 
(d) (e) 
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the same RGB values will still be bounded by the region, even if the illumination conditions are 

moderately altered.  

 

2.3.1 LUTCreator application 

 

For the purpose of selecting the HSV intervals, it was recognized the need for a 

specialized software application. The usefulness of such software spans beyond the application 

addressed in this work, and therefore this software was designed for general use. The task of 

interactively tuning the HSV interval ranges for multiple colors would be very cumbersome to do 

without resorting to a graphical user interface (GUI), and so it was deemed necessary do design 

one, which culminated in the development of the LUTCreator application. 

The LUTCreator GUI uses the QT framework and features custom-made graphical control 

elements. These widgets consist of colored slider bars with handles for lower and upper values 

which have shown in practice to provide a very intuitive, quick and controllable way of selecting 

channel intervals. The application allows an arbitrary number of colors to be selected. These 

colors are displayed in a list with several features for organization. Being integrated in the ROS 

middleware, LUTCreator subscribes to an image topic and publishes a segmented image to 

another topic. This segmented image is an 8 bit grayscale image in which each pixel values is the 

assigned color code. The working sessions can be saved and later loaded for easy and quick 

editing. Of course, the LUTCreator application also exports LUT files with options for resolution 

and format. 

 

  

Figure 2.3: (a) Input Frame; (b) Output Frame 

 

(a) (b) 
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Figure 2.4: LUTCreator control panel. 

 

There are several ways in which the LUTCreator is able to be used in an online 

application, first it can be used directly in the ROS topic pipeline, that is if the GUI overhead is not 

a problem for that particular application. In most cases however, CPU is too precious of a resource 

to be wasted unnecessarily, and a small API can also be used to import and use a LUTCreator 

LUT file or session file. Using a LUT file provides the fastest segmentation, however it has some 

minor drawbacks such as having to export (which usually takes a few seconds) and keep large a 

LUT file, and in case one decides to make the LUT smaller, the decreased resolution will have an 

impact on the accuracy of the segmentation. It is also possible to use a session file, which is a 

file that contains only the information that is displayed in the LUTCreator control panel such as 

the HSV interval values. Being very lightweight and fast to save/load, makes them a convenient 

albeit less computationally efficient alternative to using a LUT file. The segmentation using the 

session file requires color conversion from the camera RGB to an HSV representation for every 

frame, and each pixel has to be checked to see if the value falls in any of the selected intervals. 

3 
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These are per-pixel operations and can take advantage of GPU parallel processing. In table 2.1 

are presented the average segmentation processing times on an Intel Core i73610QM CPU and 

an NVIDIA GeForce GT 650M GPU. It can be observed that the average segmentation time using 

a session file is about an order of magnitude greater than the average segmentation time using a 

LUT. However, when using the GPU to compute the color conversion, this difference gets 

significantly reduced. Note that the GPU via the CUDA platform is used in this example only to 

compute the RGB to HSV conversion using an available OpenCV method from the GPU module. 

The results from a custom-made implementation are expected to be even better. 

Method LUT file Session file 
Session file with 

CUDA accelerated 
color conversion 

Average Time (500 samples) 0.002943 s 0.028129 s 0.009993 s 

Table 2.1: Average color segmentation processing times 

 

2.4 COLOR CONSTANCY 

 

Color constancy is the ability to distinguish a color of an object, invariant of the color of 

the illuminant.  Many strategies have been proposed to computationally achieve (although not 

necessarily mimic) this ability of the human visual system. Most approaches to this problem 

consist of finding an estimate of the scene illuminant color and then perform the chromatic 

adaptation, so that the output scene colors are perceived as if under some desired illuminant, 

usually achromatic. 

The reason for addressing in this context the topic of color constancy arises from 

situations that often occur in the MSL environment, which have the potential to degrade the 

performance of the color segmentation. For example, one situation that may occur due to the 

relative large dimensions of the field, is non-uniform illumination. Consider for example the 

situation where there are windows located at one end of the field, in this case depending on type 

of artificial light sources and on the time of day there may be a considerable difference in color of 

the illumination from one end of the field to the other. For the sake of simplicity and computational 

performance, the algorithms presented here make the assumption of the presence of only one 

illuminant. The previous situation can however be accepted in this category, if the transition of 

illumination is smooth. In this case, as the illumination color changes progressively in space, the 

illumination may be considered as locally uniform. Another situation that may occur is a change 

in the illuminant color over time, this occurs in for natural illumination, in which its color depends 

on the time of day, but it may also happen with some artificial light sources. Consequently it may 

happen that a color segmentation system that was calibrated at some point in time, has its 

performance progressively degraded over time. 
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There are a vast number of proposed algorithms, however the objective is merely to 

evaluate the impact of color constancy techniques on the robustness of the color segmentation 

and not to exhaustively evaluate color constancy methods. Because of that, only two techniques 

were chosen for testing, the Max-RGB method, and the Gray-World assumption. The reason this 

methods were chosen in detriment of others is twofold, first these are perhaps the most 

popularized methods and are commonly used as a benchmark for testing, second they have the 

lowest computational cost. For a thorough expose on the topic of color constancy and its 

applications refer to [1] and [2]. 

2.4.1 Sensor model 

 

Before introducing the color constancy methods it’s necessary to describe the adopted 

sensor model. The formalism used in the derivation follows as described in [1]. In equation (2.7) 

is represented the model for the intensity 𝑰 of a general sensor at position  𝒙𝐼  under uniform 

illumination. The factor 𝐺(𝒙𝑂𝑏𝑗) represents the object lighting geometry factor, which depends on 

the position 𝒙𝑂𝑏𝑗 ,  𝑅(𝜆, 𝒙𝑂𝑏𝑗) is the reflectance of the object that depends on 𝒙𝑂𝑏𝑗  and on the 

wavelength 𝜆 , 𝐿(𝜆) is the radiance of the light source and finally 𝑺(𝜆) is the sensitivity of the 

sensors. 

𝑰(𝒙𝐼) = 𝐺(𝒙𝑂𝑏𝑗)∫𝑅(𝜆, 𝒙𝑂𝑏𝑗)𝐿(𝜆)𝑺(𝜆)𝑑𝜆 (2.7) 

 

This model can be greatly simplified if the sensitivity of the sensors is considered to be of 

very narrow band, such that it can be modeled as a delta function. If we consider three sensors 

with sensitivity given by a delta function at  𝜆𝑖  with 𝑖 ∈ {𝑟, 𝑔, 𝑏}   each corresponding to 

wavelengths in the red, green and blue parts of the spectrum respectively. The simplified model 

thus becomes: 

 

𝐼𝑖(𝑥, 𝑦) = 𝐺(𝑥, 𝑦)𝑅𝑖(𝑥, 𝑦)𝐿𝑖 (2.8) 

 

2.4.2 Max-RGB algorithm 

The Max-RGB algorithm relies on the idea that there is some bright patch in the image 

and that color of the pixels belonging to that patch can be used as an estimate of the color of the 

illuminant. In practice is not necessary to identify any patch in the image, only to search all pixels 

for the maximum intensity value for each channel. Those maximum values are assumed to be 

part of the supposed bright patch, and thus the color they represent should be the color of the 

illuminant. 
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A white patch should reflect the maximum light possible for each band, if 𝑅𝑖(𝑥, 𝑦) = 1 for 

𝑖 ∈ {𝑟, 𝑔, 𝑏}   and let 𝐺(𝑥, 𝑦) =   1 i.e. the patch surface normal is oriented perpendicular to the 

camera, then the sensor captures the color of the illuminant.  

 

𝐼𝑖(𝑥, 𝑦) = 𝐿𝑖        , (𝑥, 𝑦)  ∉ 𝑀𝑎𝑠𝑘 (2.9) 

 

The omnidirectional image contains a black vignette that correspond to areas of the 

sensor that don't receive any light from the lens. The values of the pixels in this area should not 

be included in the calculations. The set 𝑀𝑎𝑠𝑘 contains all the pixel positions that correspond to 

areas outside the useful part of the image. 

Assuming a linear relationship between the response of the sensor and pixel colors, 

where 𝑐𝑖(𝑥, 𝑦) is the pixel color for each channel  𝑖 ∈ {𝑟, 𝑔, 𝑏}    

 

𝑐𝑖(𝑥, 𝑦) = 𝐺(𝑥, 𝑦)𝑅𝑖(𝑥, 𝑦)𝐿𝑖        , (𝑥, 𝑦)  ∉ 𝑀𝑎𝑠𝑘 (2.10) 

 

For every channel the maximum value is found, 

 

𝐿𝑖,𝑚𝑎𝑥 = max
𝑥,𝑦

{𝑐𝑖(𝑥, 𝑦)}       , (𝑥, 𝑦)  ∉ 𝑀𝑎𝑠𝑘 
(2.11) 

 

Each maximum value is used to scale the respective channel values so that the range of 

values in that channel becomes [0,1], consequently eliminating the effects of the color of the 

illuminant. 

 

𝑜𝑖(𝑥, 𝑦) =  
𝑐𝑖(𝑥, 𝑦)

𝐿𝑖,𝑚𝑎𝑥
= 𝐺(𝑥, 𝑦)𝑅𝑖(𝑥, 𝑦)       , (𝑥, 𝑦)  ∉ 𝑀𝑎𝑠𝑘 (2.12) 

 

In in first row of histograms in figure 2.5 it is possible to observe an example of what 

happens to the histogram of the RGB channels. On the left is depicted the original histogram for 

one channel where it can be observed that the maximum pixel value is less than 1. On the right 

we can observe the histogram after the Max-RGB algorithm is applied, where it appears to have 

been "stretched" across the entire tonal range. If this is done for the three channels, and assuming 

that the brightest values in the histogram are indeed the representation of some white object in 

the scene, the white objects will actually appear white in the image, i.e. will have an RBG value 

of (1,1,1). 



 

14 
 

 

This simplistic approach may work well for most cases, but if sensor noise of even 

specular reflections are present in the image in the form of bright pixel intensities, these may be 

incorrectly assumed to represent the white color and this results in an incorrect estimation of the 

illuminant. This situation is depicted in the middle row of histograms in figure 2.5, in which the 

small island in the histogram (exaggerated in size for clarity) represents noise. To prevent this, 

instead of using  𝐿𝑖,𝑚𝑎𝑥 as the estimate of the illuminant, the histogram 𝐻𝑖(𝑘)  is computed for 

each channel and the estimate 𝐿𝑖 is chosen such that the number of pixels with intensity higher 

or equal that the intensity at bin 𝑗𝑖 is at least a percentage 𝑝 of the total number of unmasked 

pixels 𝑛. This is expressed (2.13) and (2.14) where 𝑛𝑏 is the number of bins in the histogram. 

 
𝐿𝑖 = 𝑐𝑖(𝑗𝑖) (2.13) 

 

𝑝𝑛 ≤  ∑ 𝐻𝑖(𝑘)

𝑛𝑏

𝑘=𝑗𝑖

    𝑎𝑛𝑑    𝑝𝑛 ≥  ∑ 𝐻𝑖(𝑘)

𝑛𝑏

𝑘=𝑗𝑖+1

  (2.14) 

 

The example at the bottom row of figure 2.5 illustrates this idea, where the histogram gets 

scaled beyond the tonal range and the pixels in red have their values clipped. The percentage 

value 𝑝  is selected in a way that provides good robustness to noise but at the same time 

minimizes the clipping, a value of 1% is adequate most of the times.  

 

Figure 2.5: Examples of the effect of the Max-RGB algorithm on the histogram. 

 

𝑏𝑖𝑛 𝑗𝑖 

𝐶𝑙𝑖𝑝𝑝𝑖𝑛𝑔 𝑜𝑐𝑐𝑢𝑟𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒 𝑝𝑖𝑥𝑒𝑙𝑠  

   

Noise values 
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In this particular application there is a considerable amount of frame area that is occupied 

by the image of the robot’s chassis directly under the camera. Thus another ad hoc variation of 

this algorithm consists on restricting the search for the maximum pixel values to a selection of 

pixels that corresponds to the image of a small (about 10x10 cm) checkerboard pattern fixed to 

the robot in a way that is not visible to other robots and thus still complies with the MSL rules. 

This version of the algorithm will be hereafter as designated as Max-RGB on a patch. 

 

2.4.3 Gray-world assumption 

 

Possibly the most popular white balance method, it is not so much an algorithm as it is 

an idea from which have spawned several different algorithms, the derivation that ensues is 

according to the one  found in [1] . The idea is that under most conditions the average color of a 

scene is a neutral gray color. Therefore the average pixel color 𝑎𝑖 can be used for obtaining an 

estimate of the color of the illuminant  𝐿𝑖, as indicated in the following expressions where 𝑛  is the 

number of unmasked pixels. 

 

𝑎𝑖 = 
1

𝑛
 ∑𝑐𝑖(𝑥, 𝑦)       , (𝑥, 𝑦)  ∉ 𝑀𝑎𝑠𝑘

𝑥,𝑦

 
(2.15) 

                         =  
1

𝑛
 ∑𝐺(𝑥, 𝑦)𝑅𝑖(𝑥, 𝑦)𝐿𝑖        , (𝑥, 𝑦)  ∉ 𝑀𝑎𝑠𝑘

𝑥,𝑦

 
(2.16) 

                          = 𝐿𝑖  
1

𝑛
 ∑𝐺(𝑥, 𝑦)𝑅𝑖(𝑥, 𝑦)

𝑥,𝑦

       , (𝑥, 𝑦)  ∉ 𝑀𝑎𝑠𝑘 
(2.17) 

 

Both the geometry factor 𝐺 and the reflectance 𝑅𝑖  can be considered as independent 

random variables, as there is no correlation between the shape and the color of an object. If there 

are many different colors in the scene it’s reasonable to assume that the reflectance  𝑅𝑖  is 

uniformly distributed in the range [0, 1]. 

 

𝐸[𝐺𝑅𝑖] =  𝐸[𝐺]𝐸[𝑅𝑖] = 𝐸[𝐺] (∫ 𝑥 𝑑𝑥
1

0

) = 𝐸[𝐺]
1

2
 (2.18) 

 

For a large 𝑛 the average color becomes:  
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                      𝑎𝑖 = 𝐿𝑖
1

𝑛
 ∑𝐺(𝑥, 𝑦)𝑅𝑖(𝑥, 𝑦)

𝑥,𝑦

        , (𝑥, 𝑦)  ∉ 𝑀𝑎𝑠𝑘 
(2.19) 

  ≈   𝐿𝑖  𝐸[𝐺𝑅𝑖] (2.20) 

 = 𝐿𝑖  𝐸[𝐺] 
1

2
  (2.21) 

 

Consequently an estimate of the color of the illuminant is obtained, 

 

𝐿𝑖  ≈  
2

 𝐸[𝐺]
 𝑎𝑖  = 𝑓 𝑎𝑖 (2.22) 

 

The color of the output pixel can now be calculated by dividing the current pixel color by 

the estimate of the illuminant, 

 

𝑜𝑖(𝑥, 𝑦) =  
𝑐𝑖(𝑥, 𝑦)

𝐿𝑖
 ≈  

𝑐𝑖(𝑥, 𝑦)

𝑓 𝑎𝑖
= 𝐺(𝑥, 𝑦) 𝑅𝑖(𝑥, 𝑦)       , (𝑥, 𝑦)  ∉ 𝑀𝑎𝑠𝑘 (2.23) 

 

The 𝑓  factor affects the intensity of the color by scaling all channels equally, if we 

assume 𝐸[𝐺] = 1, then 𝑓 = 2. A sometimes useful alternative way to estimate 𝑓 is to use a value 

of 𝑓 such that clipping of pixel intensities higher than 1 occurs for 1% of all pixels.    

 

2.5 EXPERIMENTAL PROCEDURES 

 

In order to evaluate and compare the segmentation methods, both by themselves and in 

conjunction with the color constancy methods, a set of three experiments was devised. Each of 

the experiments is design to evaluate the robustness to a specific type of illumination change. 

The changes of illumination attempt to replicate possible scenarios that can occur in MSL 

competitions, which normally take place in spaces where many times it is not possible to attain 

constant illumination conditions. The types of illumination change that are replicated by the 

experiments are respectively of intensity, geometry and color. 
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For each experiment two frames designated as A and B are captured. There is no change 

in the scene from frame A to frame B, only the illumination is modified between the captures. In 

order to obtain a metrical evaluation of the performance of the segmentation, a reference 

segmentation image is created for comparison. This reference is created manually so that the 

selected pixels correspond as closely as possible to the areas that are supposed to be 

segmented. The results of the segmentations created with the HSV intervals and the RGB picking 

methods are then compared to this reference. If a pixel in the segmentation corresponds to a pixel 

in the reference, it is considered a true positive, instead if it corresponds to a pixel that is not part 

of the reference selection, it is considered a false positive. The results are presented in standard 

precision and recall measures, where precision is the fraction of segmented pixels that are true 

positives, while recall is the fraction of reference pixels that were segmented. 

While interpreting the experimental results, there are some considerations that should be 

kept in mind. The reference is manually selected and the boundaries of the selected areas are 

fuzzy, for that reason the reference selection is somewhat subjective, i.e. it depends on the 

interpretation of the person that created it. This ambiguity, may cause some false positives to 

occur near the border of the reference area simply because the reference area might have been 

selected in a conservative manner, and the perimeter of the segmentation may be a little 

expanded in comparison to reference area. Also, because the environment is color structured the 

colors to be segmented are well separated in the chromaticity plane and the number of false 

positives is always expected to be low. Because of these reasons, a degradation of the 

segmentation effectiveness will manifest itself primarily as a decrement in the number of true 

positives with a comparatively small change in the number of false positives. It should also be 

noted that even though a recall value close to 1 is obviously desired, it doesn’t necessarily mean 

that a higher value, for example 0.85 is much better than say a value of 0.7, as both cases may 

correspond to a good detection. Considering also that the main purpose of this experiments is to 

evaluate how the segmentation holds when the illumination changes, the most meaningful 

indicator that should be considered when evaluating the results is the variation of recall values 

between frames A and B. Nevertheless the evaluation of the overall performance should not 

exclude the observation of the segmented images alongside the numerical results, leading to a 

better and more insightful interpretation of the overall results. 
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2.5.1 Experiment 1: Illumination intensity variation 

 

No Pre-Processing 

LUT Frame Precision Recall 

HSV interval 
A 0.955 0.778 

B 0.894 0.879 

RGB picking 
A 0.995 0.686 

B 0.842 0.041 

Gray-World Assumption 

LUT Frame Precision Recall 

HSV interval 
A 0.944 0.836 

B 0.857 0.910 

RGB picking 
A 0.999 0.661 

B 0.807 0.014 

Max-RGB Algorithm 

LUT Frame Precision Recall 

HSV interval 
A 0.927 0.866 

B 0.871 0.928 

RGB picking 
A 0.997 0.670 

B 0.846 0.053 

Max-RGB on a Patch 

LUT Frame Precision Recall 

HSV interval 
A 0.902 0.844 

B 0.889 0.862 

RGB picking 
A 0.994 0.695 

B 0.962 0.138 

 Table 2.2: Experiment 1 results.  

In this first experiment, the change in illumination is mostly of intensity. It is the kind of 

situation that can be experienced if for example the distribution of light sources is not uniform 

across the field. A combination of natural and fluorescent illumination was used, with the intensity 

being controlled by the changing the number of lit fluorescent lamps.  

The HSV intervals segmentation stayed consistent across the illumination change, as can 

be attested by the elevated recall values in all cases and a difference in recall values from image 

A to image B not higher than 0.101. The segmentation with the RGB picking method degraded 

to the point of being useless since the recall values in image B are very small and the recall values 

fall an average of 0.62. It can be seen on the figures 2.6 to 2.9 that the detection of the targets 

would be almost completely lost. The color constancy algorithms did not have a relevant effect in 

any of the cases.  
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Figure 2.6: Experiment 1 with no color processing. 
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Figure 2.7: Experiment 1 with Gray-World color processing. 



 

20 
 

  HSV Intervals Method RGB Picking Method 
F

ra
m

e
 A

 

   

F
ra

m
e
 B

 

   

Figure 2.8: Experiment 1 with Max-RGB color processing. 
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Figure 2.9: Experiment 1 with Max-RGB on patch color processing. 
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2.5.2 Experiment 2: Illumination geometry variation 

 

No Pre-Processing 

LUT Frame Precision Recall 
 

HSV interval 
A 0.915 0.835 

B 0.888 0.872 

RGB picking 
A 0.994 0.704 

B 0.993 0.492 

Gray-World Assumption 

LUT Frame Precision Recall 

HSV interval 
A 0.912 0.884 

B 0.906 0.901 

RGB picking 
A 0.996 0.646 

B 0.998 0.521 

Max-RGB Algorithm 

LUT Frame Precision Recall 

HSV interval 
A 0.919 0.856 

B 0.911 0.862 

RGB picking 
A 0.995 0.646 

B 0.995 0.530 

Max-RGB on a Patch 

LUT Frame Precision Recall 
 

HSV interval 
A 0.895 0.842 

B 0.856 0.812 

RGB picking 
A 0.992 0.633 

B 0.992 0.499 

Table 2.3: Experiment 2 results. 

In this case the changes in illumination are very subtle, in fact by looking at figure 2.10 it 

is hard to spot the difference between frame A and B. The illumination is a mixture of natural and 

artificial (fluorescent), with the artificial lighting kept constant in both frames. The frames A and B 

were captured with a time interval of about 1 hour this was enough time so that the angle of 

incidence of the light changed in a noticeably way, but not the color and intensity. 

 Again the recall values with the HSV intervals method stay high and suffer little change 

in all cases. In the case of the RGB picking method the quality of the segmentation did decrease 

substantially. The fact that even such a subtle change in illumination can deteriorate the 

performance of the segmentation produced in the RGB picking method, really comes to show 

how much this method is flawed. For all the color constancy methods the variation of the recall 

value is lower than in the case were no color processing is applied, however this difference is too 

small to draw any conclusions.     
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Figure 2.10: Experiment 2 with no color processing. 
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Figure 2.11: Experiment 2 with Gray-World color processing. 
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Figure 2.12: Experiment 2 with Max-RGB color processing. 
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Figure 2.13: Experiment 2 with Max-RGB on patch color processing. 
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2.5.3 Experiment 3: Illumination color variation 

No Pre-Processing 

LUT Frame Precision Recall 

HSV interval 
A 0.868 0.930 

B 0.746 0.864 

RGB picking 
A 0.996 0.747 

B 0.323 0.002 

Gray-World Assumption 

LUT Frame Precision Recall 

HSV interval 
A 0.851 0.905 

B 0.837 0.901 

RGB picking 
A 0.990 0.712 

B 0.981 0.368 

Max-RGB Algorithm 

LUT Frame Precision Recall 

HSV interval 
A 0.912 0.925 

B 0.917 0.911 

RGB picking 
A 0.996 0.743 

B 0.993 0.331 

Max-RGB on a Patch 

LUT Frame Precision Recall 

HSV interval 
A 0.879 0.928 

B 0.882 0.921 

RGB picking 
A 0.992 0.789 

B 0.979 0.447 

Table 2.4: Experiment 3 results 

In this experiment two types of artificial lighting were used, in frame A only the fluorescent 

type was used and in frame B lower color temperature tungsten halogen lamps were added. It is 

easily observed in figure 2.14 that frame A has an overall bluish appearance, whereas frame B 

has a distinctive yellowish look. This kind of scenario may occur for example in the case where 

there are windows at one end of the field. In this case the illumination on that side of the field may 

be different than on the other side since it is “contaminated” by the sunlight entering the windows. 

As in the previous cases, the recall values of the HSV intervals segmentation remain very 

consistent, especially in the cases where color constancy algorithms were used. In the case of 

the RGB picking the colors constancy methods proved to be effective, the Max-RGB on a patch 

performed particularly well, resulting in a usable segmentation, although not nearly as good as 

the segmentation obtained from the HSV intervals. In fact, when using the HSV intervals method 

and considering that the effects of all color constancy algorithms, although noticeable are minor, 

the benefits of using the color constancy may not outweigh the additional computational cost.  

  



 

25 
 

  HSV Intervals Method RGB Picking Method 
F

ra
m

e
 A

 

   

F
ra

m
e
 B

 

   

Figure 2.14: Experiment 3 with no color processing. 
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Figure 2.15: Experiment 3 with Gray-World color processing. 
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Figure 2.16: Experiment 3 with Max-RGB color processing. 
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Figure 2.17: Experiment 3 with Max-RGB on patch color processing. 
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3 GROUND-TRUTH SYSTEM 

 

A ground truth system is undoubtedly an invaluable tool in a mobile robotics laboratory. 

It is useful for evaluation, testing and data collecting purposes. In this particular case, it was 

helpful in obtaining an estimate of the process error covariance, which would otherwise be 

complicated to obtain. 

Prior to this work there was already a ground truth system in use at the laboratory. This 

system however had a number of serious problems. The biggest problem related by its users was 

the very short useful range, which forced most experiences to be conducted in a small area, not 

taking advantage of the relatively large testing ground that the soccer field provided. This short 

usable range resulted mainly from difficulties in detecting the markers attached to the robots. This 

markers consisted of a surface with different colored shapes mounted on top of the robots. Color 

segmentation had to be done for each of the colors, and the shapes tended to become flattened 

and difficult to detect as the distance from the camera increased. 

It was clear from the above reasons that the ground truth system needed to be improved, 

namely by solving the markers detection issues and consequently the detection range, ensuring 

that the system is useable across the entire field. It was also important to eliminate the need to 

use so many different colors, which becomes very cumbersome as the number of robots 

increases. The system should be made simple and quick to deploy, it should demand very little 

user intervention and should allow to be used with an arbitrary number of robots. 

The rest of this chapter is organized as follows: first the hardware components of the 

system are presented, namely the cameras and the tracking hardware attached to each robot; 

the  transformation that relates a pixel position in the images to a world point constrained to a 

plane parallel to the ground plane is derived, allowing the measurement of an obstacle’s pose; 

next, an easy and fast procedure for the estimation the measurement error variance using the 

Kabsch algorithm is proposed; finally the processing of the captured images, namely the detection 

and tracking of the markers and ultimately the production of the pose estimates is discussed . 

 

3.1 HARDWARE 

 

The developed ground truth solution is comprised of hardware and software components. 

The hardware consists of fixed position cameras, and marker devices that are mounted on each 

robot. Two fixed mounted cameras are installed, one at each end of the testing field. These 

cameras are capable of capturing images at 1294x964 pixel resolution and at a frame rate of 

about 30 fps. Each robot is equipped with tracking markers that were design to provide easily 

http://www.thesaurus.com/browse/undoubtedly


 

28 
 

detectable features across the whole span of the testing field. The apparatus mounted on each 

robot consists of a surface covered in black non-reflective material with a blue color high intensity 

diffuse LED implanted at each end. Experiments with several types of LEDs that were at the time 

available showed that only diffuse blue color LEDs provided a robust detection across the whole 

field. The requirements concerning this equipment are that all the robots have the tracking 

apparatus mounted horizontally at the same height and oriented in accordance to the robot’s 

reference frame. 

 

 

Figure 3.1: MSL robots with tracking marker apparatus. 

 

3.2 CAMERA TO WORLD TRANSFORMATION 

 

Because the motion of the robots is constrained to the ground plane, it’s possible to take 

advantage of that fact to find a unique relationship between the coordinates of point in the world 

reference frame and its respective image coordinates as long as that point is static relative to the 

robots reference frame. In this particular case this transformation allows to immediately obtain the 

world coordinates of a tracking marker by detecting its pixel position, or more precisely the 

centroid of the pixel region where it is represented.  

Consider the equation for a general pinhole camera projection, in which  (𝑥, 𝑦, 1)𝑇 is an 

image point in homogeneous coordinates and (𝑋, 𝑌, 𝑍, 1)𝑇 is the corresponding scene point in 

homogenous world coordinates, 
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𝛼 [
𝑥
𝑦
1
] =  [

𝑓 0 c𝑥 0
0 𝑓 c𝑦 0

0 0 1 0

] [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧
0 0 0 1

] [

𝑋
𝑌
𝑍
1

] (3.1) 

 

The coordinates of the world are transformed by the extrinsic parameters matrix, which 

describes the rotation and a translation from the world reference frame to the camera reference 

frame. The camera’s geometric properties are represented in the intrinsic parameter matrix, which 

is a projective mapping from 3D camera coordinates to 2D homogeneous image coordinates. 

As stated before the markers motion is restricted to a plane. Because the world reference 

frame can be chosen arbitrarily as convenient, we can set Z=0, allowing the elimination of a 

column in the extrinsic parameter matrix in equation (3.1). After some simplification we obtain, 

𝛼 [
𝑥
𝑦
1
] =  [

𝑓 0 c𝑥
0 𝑓 c𝑦
0 0 1

] [

𝑟11 𝑟12 𝑡𝑥
𝑟21 𝑟22 𝑡𝑦
𝑟31 𝑟32 𝑡𝑧

] [
𝑋
𝑌
1
] (3.2) 

 

For this particular application it’s not necessary to explicitly estimate the intrinsic and 

extrinsic parameter matrix values, so their product may be represented by a homography 𝑯, 

𝛼 [
𝑥
𝑦
1
] =  [

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33

] [
𝑋
𝑌
1
] (3.3) 

 

This transformation is invertible, thus having an estimate of its value allows converting 

world to image coordinates, or more important for this context, image coordinates to world 

coordinates using its inverse. From the expression (3.3) we get, 

𝑥 =  
ℎ11𝑋 + ℎ12𝑌 + ℎ13
ℎ31𝑋 + ℎ32𝑌 + ℎ33

 (3.4) 

𝑦 =  
ℎ21𝑋 + ℎ22𝑌 + ℎ23
ℎ31𝑋 + ℎ32𝑌 + ℎ33

 (3.5) 

 

By multiplying through by the denominator and rearranging, equations (3.4) and (3.5) 

become, 

ℎ11𝑋 + ℎ12𝑌 + ℎ13 − ℎ31𝑋𝑥 − ℎ32𝑌x − ℎ33x = 0  (3.6) 

ℎ21𝑋 + ℎ22𝑌 + ℎ23 − ℎ31𝑋𝑦 − ℎ32𝑌y − ℎ33y = 0 (3.7) 

 

This equations can be expressed in matrix format for a set of corresponding image and 

world points, 

𝑨 𝒉 =  0 (3.8) 
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[
 
 
 
 
 
 
𝑋1 𝑌1 1 0 0 0 −𝑋1𝑥1 −𝑌1𝑥1 −𝑥1
0 0 0 𝑋1 𝑌1 1 −𝑋1𝑦1 −𝑌1𝑦1 −𝑦1
𝑋2 𝑌2 1 0 0 0 −𝑋2𝑥2 −𝑌2𝑥2 −𝑥2
0 0 0 𝑋2 𝑌2 1 −𝑋2𝑦2 −𝑌2𝑦2 −𝑦2

⋮
𝑋𝑛 𝑌𝑛 1 0 0 0 −𝑋𝑛𝑥n −𝑌𝑛𝑥n −𝑥n
0 0 0 𝑋𝑛 𝑌𝑛 1 −𝑋𝑛𝑦n −𝑌𝑛𝑦n −𝑦n]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
ℎ11
ℎ12
ℎ13
ℎ21
ℎ22
ℎ23
ℎ31
ℎ32
ℎ33]

 
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
0
0
0
0
⋮
0
0]
 
 
 
 
 
 

 (3.9) 

 

For a set of 𝑛 ≥ 4  points, the least squares estimate of 𝒉 can be found by using the 

singular value decomposition (SVD) transform to decompose 𝑨𝑇𝑨, 

𝑨𝑇𝑨 =  𝑼𝑫𝑼𝑇 (3.10) 

 

The least squares estimate of 𝒉  subject to ‖𝒉‖  =  1  is given by the column of 𝑼 

associated with the smallest eigenvalue in 𝑫. 

Equation (3.1) models an ideal pinhole camera, however in a real camera with lenses 

there are distortion effects that are often too important to neglect. It is out of the scope of this work 

to provide a detailed presentation of lens distortion models and how to estimate their parameters. 

The distortion model used in this work is for convenience the one used in the OpenCV calibration 

routines. OpenCV offers calibration routines for obtaining the distortion model parameters, and 

also undistortion routines that correct an image according to the distortion model and its estimated 

parameters. This model considers two separate distortion components, radial and tangential 

distortion. The radial component is responsible for the barrel effect, which is more pronounced 

the wider the field of view of the lens. A pair of undistorted pixel coordinates  (𝑥′, y’) is calculated 

using the following expressions, 

𝑥′ = 𝑥(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6 ) (3.11) 

 y’ =  y(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6 ) (3.12) 

Where 𝑟 is the distance of the pixel to the optical center (𝑐𝑥 , 𝑐𝑦), which is also obtained 

from the OpenCV calibration. Tangential distortion occurs when the image plane is not completely 

parallel to the lenses. The model for tangential distortion is represented in the following 

expressions, 

𝑥′ = 𝑥 + (2𝑝1𝑥𝑦 + 𝑝2( 𝑟
2  + 2𝑥2 )) (3.12) 

𝑦′ = 𝑦 + (2𝑝2𝑥𝑦 + 𝑝1( 𝑟
2  + 2𝑦2 )) (3.13) 

Figure 3.2 shows the undistorted images used to estimate the homographies for the left 

and right cameras respectively. Because of the relatively large distance between cameras and 

the small size of the available checkerboard pattern available, it was not practical to capture a 
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simultaneous image of the pattern in both cameras. The checkerboard pattern was mounted on 

top of the robot at a height equal to the height of the features that will be detected. After the 

capture of the images for the left camera, the pattern was translated along its x direction with the 

help of guide wires. In this way the world points of the checkerboard points at each position can 

be expressed in the same reference frame. This means that the pixel coordinates of each camera 

are related by each respective homography transformation to the same world reference frame. 

  

Figure 3.2: Calibration images. 

3.3 MEASUREMENT ERROR VARIANCE ESTIMATION 

 

Now that we have a transformation from image points to world points, the camera can be 

used to take measurements of the world position of markers detected in the image. The camera 

sensor is not continuous and of infinite precision, the image is made up of discrete pixels and 

therefore there is an error associated with the measurements. By simple geometrical reasoning 

and inspection (objects get smaller the further they are) it is easy to conclude that the scene area 

covered by each pixel increases with the distance to the camera, it is thus natural to assume that 

the further away the measured position the larger the error. The obvious approach to the 

estimation of the variance of this error involves the measuring of a good number points across 

the whole field. The problem with this approach is that precisely positioning those points on a 

relatively large field is a very time consuming and error prone operation. For applications where 

it is deemed acceptable to sacrifice some accuracy, the alternative method for estimating the 

measurement error variance proposed in this work provides a much simpler and faster procedure. 

A few assumptions are made: it is assumed that the error probability is Gaussian distributed with 

mean 𝜇 = 0, this is the case if it is considered that all of the error is caused by the sensor 

discretization. Any fixed bias resulting of an imperfect calibration is neglected; it is assumed that 

the covariance matrix is diagonal with  𝜎11 = 𝜎22 =  𝜎  and that the value of this covariance 
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parameter 𝜎 which for simplicity will be referred simply as variance, is a function of the distance 

from measured position to the camera.  

The method is based on finding the alignment between a set of coordinates 

corresponding to corner points on a checkerboard of known dimension and a set of coordinates 

obtained from the image to world transformation of the image coordinates of that checkerboard 

corners. It is assumed that the error variance can be approximated by the mean squared deviation 

between the two aligned sets. Several sets of points are obtained by placing the checkerboard at 

various distances from the camera. Each one is aligned with the known checkerboard coordinates 

to produce a sample of the variance at a distance given by the average distance of the 

reconstructed points to the camera. In the next section the method used to align each set of 

reconstructed coordinates to the set of know corner coordinates is presented. 

3.3.1 Kabsch Algorithm 

The Kabsch algorithm is a method for solving a constrained orthogonal Procrustes 

problem that consists of finding the rotation matrix that minimizes the root mean squared deviation 

between two sets of corresponding points.  

Let the 𝑷′ be the chessboard corner points expressed in its own coordinate frame, and 

𝑸′ the respective points with world coordinates calculated using the homographic transformation 

of the image points. The problem consists of finding the transformation which most closely maps 

one group one points to the other. 

𝑷′ = [

𝑥1 𝑦1
⋮ ⋮
𝑥𝑁 𝑦𝑁

]     ,    𝑸′ = [
𝑥1
′ 𝑦1

′

⋮ ⋮
𝑥𝑁
′ 𝑦𝑁

′
]     (3.14) 

 

Before using the Kabsch algorithm if is first necessary to subtract the centroid from both sets of 

point, thus taking care of the translation part of the transformation, 

𝑷 =

[
 
 
 
 
 
 
𝑥1 − 

1

𝑁
∑𝑥𝑖

𝑁

𝑖=0

𝑦1 − 
1

𝑁
∑𝑦𝑖

𝑁

𝑖=0

⋮ ⋮

𝑥𝑁 − 
1

𝑁
∑𝑥𝑖

𝑁

𝑖=0

𝑦𝑁 − 
1

𝑁
∑𝑦𝑖

𝑁

𝑖=0 ]
 
 
 
 
 
 

    ,    𝑸 =

[
 
 
 
 
 
 
𝑥1
′ − 

1

𝑁
∑𝑥𝑖

′

𝑁

𝑖=0

𝑦1
′ − 

1

𝑁
∑𝑦𝑖

′

𝑁

𝑖=0

⋮ ⋮

𝑥𝑁
′ − 

1

𝑁
∑𝑥𝑖

′

𝑁

𝑖=0

𝑦𝑁
′ − 

1

𝑁
∑𝑦𝑖

′

𝑁

𝑖=0 ]
 
 
 
 
 
 

     (3.15) 

 

The problem of finding the rotation that best aligns 𝑷 with 𝑸 is expressed as follows, 

𝑹 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜴
‖𝑷𝜴 − 𝑸‖𝐹  , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜴𝑇𝜴 = 𝑰   𝑎𝑛𝑑   |𝜴| = 1 

(3.16) 

Where ‖. ‖𝐹 denotes Frobenius norm, and for a matrix 𝑨 with real entries is defined as, 
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‖𝑨‖𝐹 = √𝑡𝑟𝑎𝑐𝑒(𝑨
𝑇𝑨) (3.17) 

Consider the matrix 𝑴 defined as follows, 

𝑴 = 𝑷𝑇𝑸 (3.18) 

Decomposing 𝑴 using the Singular Value Decomposition (SVD) transform results in, 

𝑴 = 𝑽𝑺𝑾𝑇 (3.19) 

To ensure that the determinant of the transformation is positive, and thus ensure a right handed 

coordinate system, the following calculation is needed, 

𝑑 = 𝑠𝑖𝑔𝑛(|𝑾𝑽𝑇|) (3.20) 

  

Finally, the rotation matrix that minimizes the root mean squared deviation between the two sets 

of points is given by, 

𝑹 = 𝑾[
1 0
0 𝑑

]𝑽𝑇 (3.21) 

 

3.3.2 Estimation procedure 

Estimating the variance requires a significant amount of data in the form of world and pixel 

coordinate pairs. Placing and measuring precise positions in an area of relatively large 

dimensions as the playing field, makes this a tedious and time consuming task. In this proposed 

method this task is greatly simplified, because no precise measuring of world positions is 

necessary. A checker board pattern of known dimension was installed on top of the robot at the 

same height as the tracking marker apparatus. The robot was then moved across the field and a 

set of roughly even spaced samples was selected. It is not necessary to sample a precise location, 

but an effort should be made to get a good distribution of distances as this leads to a better 

estimation. In figure 3.3, it is possible to observe a few of the samples used to estimate the 

variance as a function of distance from the camera.  

The image coordinates of corner points of the checkerboards were extracted, and 

transformed into world coordinates. Next the extracted points in each sample are aligned with the 

known checkerboard corners coordinates. This can be observed in figure 3.4 in which the red 

points are known position of the corner points and the blue points are the detected corner points. 

It is clear just by observing the figure that the deviation between the two sets of points increases 

as the distance from the camera increases, as it was expected. The mean squared error is 

calculated and used as estimator of the variance. Next, regression is performed on the data, using 

the average of the points distance from the camera in each sample as the independent variable 

and the estimated variance as the dependent variable. Figure 3.5 shows the estimate of the 
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variance as a function of the distance from the camera, which is the result of fitting a fourth degree 

polynomial to the samples. 

  

  

Figure 3.3: examples of checkerboard images used to estimate the error variance. 

 

  

  

Figure 3.4: Detected corner points aligned with known positions. 
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The final estimate of the position 𝒙 = (𝑥, 𝑦) and error variance 𝜎2 are obtained by fusing 

the estimates from both cameras, by means of an inverse variance weighted average. Which 

corresponds to the maximum likelihood estimator. Let the position estimates from the left and 

right cameras be 𝒙𝑙 and 𝒙𝑟 and their respective variances be 𝜎𝑙
2 and 𝜎𝑟

2 then, the final variance 

and estimate are given in expressions (3.22) and (3.23). Figure 3.6 shows the value of the final 

variance as a function of the position on the field. 

 

𝜎2 = 
1

𝜎𝑙
−2 + 𝜎𝑟

−2
 (3.22) 

𝒙 = 𝜎2 (
𝒙𝑙

𝜎𝑙
2 + 

𝒙𝑟
𝜎𝑟
2
)  (3.23) 

 

 

Figure 3.5: Variance as a function of the distance from the camera. 



 

36 
 

 

Figure 3.6: Variance as function of the position of the measurement. 

 

3.4 SOFTWARE 

This section is dedicated to the processing of the collected image sequences. Some of 

the methods used in the detection and tracking of markers are similar to the ones that each robot 

uses for obstacle detection and tracking. The purpose of this section is to provide an overview of 

the sequence of operations as illustrated in figure 3.7. Nevertheless more detailed explanations 

of these methods are covered further ahead in this work. 

 

Figure 3.7: Sequence of processing operations. 

Morphological filtering 

Contour detection 

Kalman filter prediction  

Hungarian algorithm Kalman filter update 

INPUT 
Timestamped image sequence 

OUTPUT 
Pose estimates 

Segmentation 
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The first thing being addressed is the detection of the markers. As previously stated, each 

robot has a blue LED marker at both the front and back. By detecting both markers, one finds the 

full pose of the robot, its position and orientation. The segmentation system that has been 

presented in Chapter 2 is used to generate a binary image. A mask is used to eliminate the parts 

of the image that correspond to robot positions outside the playing field. This masking is 

particularly important to avoid false positives that can occur near windows. Next the result is 

subjected to morphological filtering, more precisely an opening operation, thus eliminating small 

clusters of pixels that represent false positive detections that may exist. A contour finding 

algorithm [9] is then used to identify each of the blobs that represents a marker and extract the 

respective centroids. All markers are identical and there is no a priori information about the order 

they’re going to be labeled, which is of course dependent on unknown initial conditions. Therefore 

the user must provide the correspondences between the labels attributed to the detections and 

the markers for the initial conditions. After the program processes the detection on the first image 

of the sequence the user is prompted to identify which label corresponds to the back and front of 

each robot. After this initial identification of marker pairs no further user interaction is required.  

Each marker is tracked resorting to a method which uses one Kalman filter per marker 

and the Hungarian method for associating detections between frames. Both electrical noise in the 

sensor and illumination noise in the environment cause the measurement to be noisy. Even if the 

robot is completely motionless, some oscillation is present in each marker’s detected position. 

The unknown noise variances needed for the Kalman filtering, are tuned through trial and error 

so that the filter produces a smooth output but at the same time ensuring it doesn’t respond 

sluggishly to the robot accelerations. The use of the Kalman filter allows dealing with situations 

where the detection of a marker is temporarily lost. On which case the position of the marker 

continues being predicted until the detection is restored. For each iteration the Kalman filter 

produces a prediction of the state of each tracked marker based on the previous state estimate. 

The correspondences between the predicted markers and the ones detected are found resorting 

to the Hungarian method. The algorithm receives as input the distances between each predicted 

marker position and the position of all detected markers and outputs the correspondences that 

minimize the sum of the distances between each predicted marker position and the corresponding 

detected marker position. Finally the Kalman filter update step produces the markers state 

estimate. 

During the processing of the images the program outputs a graphical display of the 

estimates, allowing the user to verify that no mishaps occur. The user can observe both the detect 

blobs and their labels on the segmented image or the original image for both cameras. Overlaid 

arrows display the position and orientation of each tracked robot as can be seen in figure 3.8. 

The program also displays the pose estimates in the world reference frame as can be 

seen in figure 3.9. The estimates obtained for each camera are shown as well as the final 

estimate. Note that the proximal and distal designation are just alternative nomenclature for the 

left and right fixed cameras respectively. That nomenclature was meant to be less confusing and 
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ambiguous than the left and right designation since the proximal and distal are relative to the user 

workstation. 

 

  

  
 

 

 

Figure 3.8: Marker detection example. 

 

Figure 3.9: Example output window of the ground-truth system.  
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4 OBSTACLE DETECTION 

 

This chapter addresses the problem of detecting obstacles, namely other robots, using 

only the image captured by the robots camera. In a multi agent environment such as MSL soccer 

the choice of sensors is somewhat limited. Active sensors, i.e. sensors that emit energy into the 

environment, such as sonar, infra-red and laser range finders are widely used in most mobile 

robotics application, for the purpose of detecting obstacles. Sensors of this type however, are 

prone to crosstalk when used simultaneously by different robots, thus rendering their 

measurements very unreliable. The detection of obstacles is completely dependent on being able 

to extract obstacle information from the camera’s image. Because being able to reliably detect 

obstacles is absolutely fundamental for the overall playing performance of the robots, it is of the 

utmost importance to have an effective and efficient vision based obstacle detection. 

The rest of this chapter is organized as follows: the robot’s omnidirectional camera is 

going to be characterized by explaining how it’s modeled and how a pixel in the image is 

corresponded to a world point in the ground plane; next, it is detailed the procedure that was used 

to estimate the error variance associated with the camera measurements; after that, the obstacle 

detection as such is addressed, the image processing methods are presented, as well as the 

heuristic filtering strategies used to extract useful obstacle information from the segmented image. 

  

4.1 CAMERA MODEL 

 

The robots are equipped with an omnidirectional dioptric vision system composed of a 

gigabit Ethernet camera with a fisheye lens, providing a field of view slightly larger than 180º. The 

camera is mounted facing downward on an elevated platform supported by thin struts, so that the 

view is minimally obstructed in all directions. 

When omnidirectional vision systems first started to be used in robotic applications they 

were most often specially made catadioptric systems, composed of a curved mirror and a 

perspective camera. This curved mirror had a well-known geometry, and it was usually fabricated 

to match a desired model. In recent times omnidirectional dioptric systems are more available 

and are a less costly solution. However, many of these omnidirectional camera systems are 

marketed for consumer applications, and most of the times no technical data concerning lens 

geometry is made available by the manufacturer. In the particular case of the cameras used in 

this work this was no exception. 

If it’s only taken into consideration the task of detecting obstacles in the ground plane, the 

problem is equivalent to finding a mapping between pixels coordinates and ground plane 
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coordinates. Furthermore assuming that the lens is symmetric around its optical axis, this problem 

is reduced to finding a mapping between a distance in pixels and a distance in the ground plane. 

This could be solve by collecting data, and performing regression to estimate the mapping 

function. 

Although the primary concern in this work is the detection of obstacles in the ground 

plane, one should consider the global utility of the omnidirectional camera and be aware of its 

uses beyond the scope of this work. The choice of a camera model must reflect and account for 

these necessities. Consider the example of the detection of the ball. Many times the ball travels 

through the air, as most robots are able to kick it off the ground. To be able to estimate the position 

of the ball a model more sophisticated than the one suggested in the previous paragraph is 

needed. An omnidirectional camera model that allows the association of a pixel position with a 

line in world space in which lie all points that are projected onto that pixel, much like in a normal 

perspective camera, can be used both for estimating the 3D position of a symmetrical object of 

known dimensions and the position of a point that belongs to a known plane. 

The OCamCalib is an industry proven and widely recognized omnidirectional camera 

calibration tool-box. It is able to calibrate most types of omnidirectional vision systems, both 

catadioptric and dioptric, as long as the camera, at least approximately, meets the requirement 

of having a single effective viewpoint. OCamCalib provides methods to calibrate a camera from 

a series of captured checkerboard images. It also provides methods to project a scene point into 

the image and conversely reconstruct the unit vector that emanates from the view point given an 

image position. 

 

Figure 4.1: Projection of scene points on the sensor plane. 

The derivation of the calibration method is beyond the scope of this work and it’s 

described in detail in [3][4][5].  Nonetheless, in order to take full advantage of the OCamCalib 

calibration it is important for the user to understand how the camera model works. 

𝑿1 

𝑿2 

𝑿3 

𝒖3
′′ 𝒖2

′′ 𝒖1
′′ 𝑆𝑒𝑛𝑠𝑜𝑟 𝑝𝑙𝑎𝑛𝑒 

𝐺𝑟𝑜𝑢𝑛𝑑 𝑝𝑙𝑎𝑛𝑒 

𝒈(𝒖2
′′) 

𝒈(𝒖1
′′) 

𝒈(𝒖3
′′) 

𝑂𝑐 
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In figure 4.1 it is possible to observe the projection of scene points into the sensor plane. 

The sensor plane is a hypothetical plane orthogonal to the lens axis. A point 𝒖′′ in the sensor 

plane, and expressed in metric coordinates, is related to a point 𝒖′ in the camera image plane, 

expressed in pixel coordinates, by means of an affine transformation as expressed in equation 

(4.1). This transformation, models the discretization process and axis misalignments. 

 

 

It be can observed in figure 4.1 that scene points are projected in the sensor plane, by an 

orthogonal projection of the intersection of the line connecting the optical center 𝑂𝑐 to the scene 

point with a surface defined by the function 𝒈. The expression (4.2) captures this relation between 

a scene point 𝑿 (in homogeneous coordinates) and a point in the sensor plane 𝒖′′. The matrix 

𝑷 =  [𝑹 | 𝒕] includes the rotation and translation that relates the scene reference frame with the 

sensor plane reference frame. 

 

 

Considering the rotational symmetry with respect to the sensor axis, let the function 𝒈 be 

defined as follows, 

 

𝒈(𝑢′′, 𝑣′′) = (𝑢′′, 𝑣′′, 𝑓(𝑢′′, 𝑣′′))𝑇 (4.3) 

 

The function 𝑓(𝑢′′, 𝑣′′) is a polynomial of degree 𝑁 as defined in the following expression, 

where  𝜌 =  √𝑢′′2 + 𝑣′′2 is the metric distance from the sensor axis. 

 

𝑓(𝑢′′, 𝑣′′) =  𝑎0 + 𝑎1𝜌 + 𝑎2𝜌
2 + …+ 𝑎𝑁𝜌

𝑁 (4.4) 

 

The relation between a scene point and an image point can be rewritten as, 

 

𝜆 [
𝑢′′

𝑣′′

𝑤′′

] = 𝜆 𝒈(𝐴𝒖′ + 𝑡) =  𝜆 [
𝐴𝒖′ + 𝑡
𝑓(𝑢′′, 𝑣′′)

]  = 𝑷 𝑿, 𝜆 > 0 (4.5) 

The calibration procedure produces the values for the polynomial coefficients 𝑎0 to 𝑎𝑁, and the 

elements of the affine transform 𝑨 and 𝒕. 

In this particular case the camera is fixed in relation to the robot’s body, and the robot motion is 

constrained to the ground plane. The robot’s reference frame X and Y axis are made coplanar 

𝒖′′ =  𝑨𝒖′ + 𝒕 (4.1) 

𝜆 𝒈(𝒖′′) =  𝜆 𝒈(𝑨𝒖′ + 𝒕) = 𝑷 𝑿, 𝜆 > 0 (4.2) 
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with the ground plane and the origin is placed at robot’s geometrical center ground coordinates. 

The gathered data consists of points in the ground plane with coordinates expressed in the robot 

reference frame and respective pixel coordinates, the extrinsic parameters estimation routines 

provided by OCamCalib were used to obtain the transformation that relates the robot reference 

frame to the camera reference frame. Having the complete calibration, we can use the 

OCamCalib’s included methods to find the unit vector emanating from the view point that is 

associated with a given image pixel. Because the transformation between the camera and the 

robot reference frame is known, the line defined by the found unit vector and the view point can 

be intersected with the ground plane to obtain the ground coordinates in respect to the robot’s 

reference frame that correspond to the image pixel coordinates. It is also possible to obtain the 

3d coordinates of the ball. By obtaining the lines that are tangent to the ball, as illustrated in figure 

4.1, and knowing its diameter, the distance of the ball’s center to the view point can be obtained 

by simple trigonometry. 

 

4.2 ESTIMATION OF THE MEASUREMENT ERROR VARIANCE  

 

The measurements of ground plane positions from pixel positions, obtained as described 

in the previous section, are obviously affected by noise. One significant source of noise has to do 

with the fact that the image represents a discretization of a continuous space. It is easy to observe 

that the furthest a pixel is from the image center, the largest the area of ground plane that is 

projected onto that pixel. It is therefore natural to assume that the variance of the measurement 

error ought to increase with the distance from the image center. In order to obtain an estimate of 

this error variance some assumptions are made: attending to the rotational symmetry of the lens 

around the optical axis and that the image plane is parallel to the ground plane, it is assumed that 

the variance depends only on the distance of the pixel to the optical center’s projection 

coordinates on the image (which were estimated during the calibration); it is assumed that the 

error probability is Gaussian distributed with mean 𝜇 = 0. The procedures starts with the collection 

of images with a checkerboard pattern placed on the ground plane at precisely measured 

distances from the optical center projection on the ground plane. Figure 4.2 shows a few 

examples of the used images. From each of this images the estimated coordinates of the pattern 

corner points are compared with the known positions, as illustrated in figure 4.3, and the mean 

squared deviation is calculated. This value is used as estimator of the variance. The samples 

consist of the average of the points distance as independent variable and the estimated variance 

as the dependent variable. Figure 4.4 shows the result of fitting a fourth degree polynomial to the 

samples, thus obtaining an estimate of the variance as a function of the distance. 
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Figure 4.2: A few of the images used for estimation of error variance, patterns at distances of 
25cm, 100cm, 250cm and 400cm. 

  

  

Figure 4.3: Measurements of pattern points obtained for the patterns positioned at multiple 
distances. 
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Figure 4.4:  Estimate of the ground plane position measurement error variance as a function of 
distance. 

 

4.3 DETECTION AND CLASSIFICATION. 

This section deals with the process of extracting obstacle information, namely position 

and type of obstacle, from the omnidirectional image. The first step in this process is to segment 

the image as described in Chapter 2. Three colors are relevant for obstacle detection: black, 

magenta and cyan. While the robots chassis should be mostly of black color, the magenta and 

cyan colors are used as team identifiers. After the image is segmented, morphological filtering is 

performed, more specifically an opening operation. This filtering stage is meant to eliminate small 

disconnected blobs which merely represent noise and smooth out the significant blobs, and can 

be loosely interpreted as low pass filtering of obstacle information. A morphological opening 

operation is composed of an erosion operation followed by a dilation operation, performed on 

each pixel 𝑃(𝑥, 𝑦), as defined in equations (4.6) and (4.7) respectively, where 𝑃′′(𝑥, 𝑦) represents 

the final pixel result. These operations use a small binary image as a structuring element 𝐸. A 5x5 

pixel square proved adequate for this application. 

 

𝑃′(𝑥, 𝑦) =  Min
(𝑥′,𝑦′): 𝐸(𝑥′,𝑦′)≠0

𝑃(𝑥 + 𝑥′, 𝑦 + 𝑦′) (4.6) 

  
𝑃′′(𝑥, 𝑦) =  Max

(𝑥′,𝑦′): 𝐸(𝑥′,𝑦′)≠0
𝑃′(𝑥 + 𝑥′, 𝑦 + 𝑦′) (4.7) 
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The detection scheme relies on a ray casting method instead of explicit identification and 

labeling of blobs. The former method is a lot more computationally efficient, and in this particular 

application the pixels significant to the detection of an obstacle’s position are the part of the blob’s 

boundary pixels that is visible from the robot’s center. This pixels are the ones that correspond to 

positions in the ground plane, for which a coordinate transformation is available. A small downside 

of using ray casting is that as rays get further from the robot’s center they get further apart, 

consequently increasing the detection error variance. However, because this happens at 

distances from the robot center where the measurement resolution is already low, this detrimental 

effect can for practical purposes be neglected.  

Several rays are casted radially from the robot’s geometrical center with an angular 

resolution of one degree, as depicted in figure 4.5. An image mask is used to make sure the rays 

don’t intersect the robots body, including the uprights that support the camera assembly. 

 Each ray is checked pixel by pixel from the robots center to the outside, until the ray ends 

or a pixel that was segmented as part of an obstacle is found, in which case the ray continues to 

be checked until the end or a pixel that was not segmented as part of an obstacle is found. The 

distance from the first pixel to the second is called the detection length. Adjacent rays in which a 

detection was registered are then grouped together, resulting in a set of obstacle candidates. 

Further filtering to exclude certain candidates is then necessary in order to avoid false 

positive detections. Some common objects that can be found in the playing field, such as cables, 

pieces of duct tape, seams in the green field and even trash may be incorrectly identified as an 

obstacle. Some heuristics were devised to exclude this detections from the set of candidates. 

First, the extremities of all candidates are trimmed, by excluding the first rays from both sides until 

a ray is found whose detection length is above a certain threshold.  Next, objects in which a large 

percentage of the rays have a detection length below a certain threshold are discarded. Finally, 

an area criteria discards candidates for which the sum of the detection lengths is below a certain 

threshold. 

It was defined that each detected obstacle is to be represented by a distance and a width 

from the robot’s center. It can equally be represented by two points corresponding to vertices of 

an isosceles triangle with two edges collinear with the rays at the extremities of the detected 

obstacle and with the other edge tangent to the blob, as illustrated in figure 4.6. 

At this stage a classification procedure is performed on each of the obstacles to try to 

identify whether it is a robot and of which team. Three classes of obstacles are defined, one for 

each team and one undefined obstacle class. An undefined obstacle, is an obstacle that is 

significant to navigation and avoidance purposes but was not classified as being a robot belonging 

to either the cyan or magenta teams.    

The classification of the detected obstacles, follows a simple procedure. For each 

obstacle the distance in between the two points that represent it is checked to see if it is 

approximate, within a certain tolerance, to the expected diameter of a robot which is limited by 
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MSL soccer rules. If not, the obstacle is immediately classified as an undefined obstacle. On the 

other hand, if the width of the obstacle is consistent with a robot’s width, the obstacle has to be 

subjected to further classification to try to identify which team it belongs to.   

 

 

Figure 4.5: Ray-casting detection 

A circular area of the image is chosen for each obstacle that is centered near to the 

centroid of the robots color identifier blob if one exists. Notice the position and shape of the color 

identifier is not set by the rules and varies from one team to another, so the radius of this circular 

area must be generous enough to allow for this variation.  If the percentage of pixels in that circular 

area that were segmented to a team color is above a certain threshold then the obstacle is 

classified as a robot belonging to that team. Otherwise the obstacle classification defaults to 

undefined. The distance 𝐷  and radius 𝑅  of the circular area used for color classification are 

obtained by the following very simple heuristics, 

𝐷 = 𝛼(𝑑 + 𝑤) (4.8) 

 
𝑅 =  𝛽𝑤 (4.9) 

 

Where 𝑑 and 𝑤 are the obstacle width and distance respectively, and the linear factors 𝛼 and 𝛽 

are determined experimentally. 
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One issue remains to be addressed. It’s the situation that occurs when two obstacles are 

closer to each other than the width of the robot, i.e. the gap between obstacles does not allow the 

robot to pass. In this case the narrow gap constitutes a de facto obstacle to the motion of the 

robot and so a new obstacle of undefined class in included in the detection output. If any of the 

obstacles that compose this new merged obstacle has been classified as a robot it still gets to be 

included in the detection output, otherwise if it was classified as undefined it is excluded. This 

merging process is done iteratively until there are no more obstacles to be merged.  

 

 

Figure 4.6: Detection example. 

 
As an example, consider the case presented in the previous figure.  In this example there 

are two robot obstacles, represented by the grey ovals on the right hand side. On the left is 

represented the observer robot and its geometric center 𝑂 from where the rays are casted. The 

position of each of the detected obstacles is defined by two points 𝑃𝑖. The green circles are the 

color classification areas. In this particular case the system would output the following detection 

results: 

 

  Object delimited by the world coordinates of 𝑃1 and 𝑃2, classified as a robot by the 

distance between the world coordinates 𝑃1 and 𝑃2 and further classified as a member of 
magenta team by analysis of the pixels centered around 𝐶1. 
 

 Object delimited by the world coordinates of 𝑃3 and 𝑃4, classified as a robot by the 
distance between the world coordinates 𝑃3 and 𝑃4 and further classified as a member of 

cyan team by analysis of the pixels centered around 𝐶2. 
 

 Object delimited by the world coordinates of 𝑃1 and 𝑃4, classified as an undefined 

obstacle, created after verifying that the distance between the coordinates of 𝑃2 and 𝑃3 
is narrower than the width of a robot. 

 

𝑂 

𝑃1 

𝑃3 

𝑃2 

𝑃4 

𝐶 1
⬚

 

𝐶 2
⬚
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5 OBSTACLE TRACKING 

 

5.1 INTRODUCTION 

 

Up until this point, all the focus has been on extracting obstacle information from an 

image, which is information concerning the instant the image was captured. This chapter is 

concerned with the motion of the obstacles over time, as perceived by the observer robot. Many 

higher level tasks such as obstacle avoidance, ball passing and interception, amongst other, can 

greatly benefit from having some knowledge about the motion of the obstacles and being able to 

anticipate their state further in time. This added level of insight, on what is a very dynamic 

environment, allows the implementation and use of more sophisticated playing behaviors. 

Additionally, more accurate state estimates can be obtained by combining the instantaneous state 

observations with the predicted state based on past state estimates and control inputs, provided 

that there is some previous knowledge on the noise characteristics of both the observations and 

the predictions. Furthermore, having the ability to predict an obstacle state means that even if an 

obstacle is temporarily lost from detection, for example when occluded by another, it is still 

possible to keep tracking it so that when eventually the observations are resumed that obstacle 

can be correctly identified as the one previously lost from detection.  

The remainder of this chapter is laid out as follows. Initially, the model of the dynamics of 

the obstacles is derived. This model is used to predict the state evolution, by considering the 

previous state estimate, the velocity controls on the observer robot and the elapsed time. Next, 

the method used to estimate the error covariance associated with the state predictions generated 

by the model of the dynamics is addressed.  After that, the Kalman filter is presented. This 

recursive optimal estimator, uses a prediction of the current state, and the current state 

observations to produce an optimal state estimation. However, to be able to do this it needs to be 

able to known which predictions correspond to each of the observations. This problem can be 

modeled as an assignment optimization problem, which is then solved resorting to the well-known 

Hungarian algorithm. Finally, at the end of this chapter an illustrative example is presented, where 

all components work together in a game scenario. 

 

5.2 MODEL OF THE DYNAMICS 

 

The velocity of an obstacle in relation to the observer robot can be decomposed in three 

components: velocity of the target’s own motion in relation to the observer, an apparent velocity 

caused by the linear motion of the observer robots reference frame and apparent velocity caused 
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by the observer’s robot angular velocity. In the example illustrated in figure 5.1 we can observe 

the velocity component vectors. If the observer robot travels with velocity 𝒗𝒐 in relation to the 

world reference frame, then a static landmark that it observes appears to be moving in the 

opposite direction with velocity−𝒗𝒐. In a similar way, if the reference frame of the observer robot 

rotates with angular velocity 𝝎𝟎 , any static landmark it observes will appear to be orbiting around 

its origin in the opposite direction with tangential velocity 𝒗𝜔. 

 

 

Figure 5.1: Obstacle velocity components. 

The velocity of an object moving under uniform circular motion with an angular velocity 𝝎 

and radius 𝒓 is given by,  

𝒗 = 𝝎 × 𝒓 (5.1) 

The component of the target’s velocity due to the angular velocity of the observer robot 

and assuming constant velocity is given by, 

𝒗𝑤 = −𝝎𝒐 × 𝒓 (5.2) 

This equation can be written as the formal determinant, 

𝒗𝜔 = |

𝒙 𝒚 𝒛
0 0 −𝜔
𝑥𝑡 𝑦𝑡 0

| =  𝜔𝑦𝑡𝒙 −  𝜔𝑥𝑡𝒚   (5.3) 

Adding all three components the velocity we obtain,  

𝒗 = [
𝑣𝑥  
𝑣𝑦
] =  [

𝑣𝑡𝑥 − 𝑣𝑜𝑥 +  𝜔𝑦𝑡  
𝑣𝑡𝑦 − 𝑣𝑜𝑦 −  𝜔𝑥𝑡

] (5.4) 

  

𝒙 

𝒚 

(𝑥𝑡 , 𝑦𝑡) 

𝒗𝑡 

𝒗𝑜 

−𝒗𝑜 

𝒗𝜔 

𝝎𝒐 

Target 

Observer 
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Taking the time derivative under the assumption of constant velocities, we obtain,  

�̇� =  [
𝑣�̇�  
𝑣�̇�
] =  [

 𝜔𝑣𝑦𝑡  
−𝜔𝑣𝑥𝑡

] (5.5) 

The continuous time space-state model, for a state 𝒙 = ( 𝑥𝑡  , 𝑦𝑡  , 𝑣𝑡𝑥 , 𝑣𝑡𝑦)
𝑇  expressed in 

the observer robot’s reference frame is, 

�̇� = 𝑨𝒙 + 𝑩𝒖 (5.6) 

 

 𝑨 = [

0 𝜔 1 0
−𝜔 0 0 1
0 0 0 𝜔
0 0 −𝜔 0

]            𝑩 = [

−1 0
0 −1
0 0
0 0

] (5.7) 

 

It is now necessary to obtain a discrete time model. The method used here, for 

discretization of a continuous system, is described in [12], and is as follows, 

�̇�(𝑘) =  𝜱𝒗(𝑘 − 1) +  𝜞𝒖(𝑘) (5.8) 

 

 𝜱 =  𝒆𝑨𝑇 = 𝑰 + 𝑨𝑇 + 
𝑨𝟐𝑇2

2!
+ 
𝑨𝟑𝑇3

3!
+ ⋯  (5.9) 

 

𝜞 =  ∑(
𝑨𝒌𝑇𝑘+1

(𝑘 + 1)!
)

∞

𝒌=𝟎

𝑩 =  𝑨−1 (𝜱 − 𝑰)𝑩 (5.10) 

 

The series (5.9) can be separated into its even and odd components, 

𝜱𝑒𝑣𝑒𝑛 = ∑
(−1)𝑛𝑇2𝑛𝜔2𝑛−1

(2𝑛)!

∞

𝑛=0

[

𝜔 0 0 −2𝑛
0 𝜔 2𝑛 0
0 0 𝜔 0
0 0 0 𝜔

] (5.11) 

 

𝜱𝑜𝑑𝑑 = ∑
(−1)𝑛𝑇2𝑛+1𝜔2𝑛

(2𝑛 + 1)!

∞

𝑛=0

[

0 𝜔 (2𝑛 + 1) 0

−𝜔 0 0 (2𝑛 + 1)
0 0 0 𝜔
0 0 −𝜔 0

] 
(5.12) 

 

Identifying in the above equations the Maclaurin’s series for the cosine and sine functions 

and recombining the even and odd parts, 

𝜱 =  [

𝑐𝑜𝑠 (𝜃) 𝑠𝑖𝑛 (𝜃) 𝑇𝑐𝑜𝑠 (𝜃) 𝑇𝑠𝑖𝑛(𝜃)

−𝑠𝑖𝑛 (𝜃) 𝑐𝑜𝑠 (𝜃) −𝑇𝑠𝑖𝑛(𝜃) 𝑇𝑐𝑜𝑠 (𝜃)
0 0 𝑐𝑜𝑠 (𝜃) 𝑠𝑖𝑛 (𝜃)

0 0 −𝑠𝑖𝑛 (𝜃) 𝑐𝑜𝑠 (𝜃)

] (5.13) 
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Applying a similar reasoning we obtain the discrete input matrix and also the complete 

model of the dynamics of the obstacles. 

𝜞 =  

[
 
 
 
 
 

−

−
𝑇

𝜃
𝑠𝑖𝑛 (𝜃)

𝑇

𝜃
(𝑐𝑜𝑠(𝜃) − 1)

𝑇

𝜃
(𝑐𝑜𝑠(𝜃) − 1)

𝑇

𝜃
𝑠𝑖𝑛 (𝜃)

0 0
0 0 ]

 
 
 
 
 

 (5.14) 

 

5.3 PROCESS ERROR COVARIANCE 

 

This section deals with the estimation of the error covariance associated with the model 

of the dynamics of the obstacles derived in the previous section. The method presented here 

relies on the ground-truth system presented in Chapter 3. The first step in the process is to collect 

a significant amount of experimental data. This data is composed of the robot’s camera captured 

images, velocity controls, odometry data, and the images captured from the ground-truth system 

cameras. All the machines involved in data capture must be synchronized across the network, 

and all the captured data timestamped. With the concern of statistical significance, it should be 

ensured that the collected datasets contain a lot of variety.  In this particular case, both the 

observer robot and the target obstacles performed a diverse collection of different motion 

patterns. These patterns included rectangular and circular figures of varying size, performed at 

different velocities, and with the robots at different distances.  

Each collected dataset is processed by the ground truth system to obtain a list of 

timestamped positions for each robot. Using this information, and assuming constant velocities, 

the ground-truth estimate of the obstacle state is then constructed according to the following 

equation, 

 

𝑺(𝑘) =  

[
 
 
 
 
 
 

𝑥𝑡𝑎𝑟(𝑘) − 𝑥𝑜𝑏𝑠(𝑘)

𝑦𝑡𝑎𝑟(𝑘) − 𝑦𝑜𝑏𝑠(𝑘)

(𝑥𝑡𝑎𝑟(𝑘 + 1) − 𝑥𝑜𝑏𝑠(𝑘 + 1)) − (𝑥𝑡𝑎𝑟(𝑘) − 𝑥𝑜𝑏𝑠(𝑘))

𝑡(𝑘 + 1) − 𝑡(𝑘)

(𝑦𝑡𝑎𝑟(𝑘 + 1) − 𝑦𝑜𝑏𝑠(𝑘 + 1)) − (𝑦𝑡𝑎𝑟(𝑘) − 𝑦𝑜𝑏𝑠(𝑘))

𝑡(𝑘 + 1) − 𝑡(𝑘) ]
 
 
 
 
 
 

 (5.15) 

 

Where 𝑥𝑡𝑎𝑟, 𝑦𝑡𝑎𝑟 , 𝑥𝑜𝑏𝑠 and 𝑦𝑜𝑏𝑠 are the coordinates in the world reference frame of the 

obstacle robot and the observer robot respectively, and 𝑡(𝑘) is the timestamp associated with the 

kth sample. 

The prediction error values are dependent on many variables. It is impractical and 

unnecessary to take many of this variables into consideration. For convenience only two of this 
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variables, that were perceived to be the most significant, were considered. This variables are the 

time period between iterations and the magnitude of the targets velocity in relation to the observer. 

After each dataset is processed the error values are organized into bins according to the values 

of this variables. 

Notice that the ground-truth values are noisy measurements of real positions. It is 

assumed that on average the error in the state estimated from ground-truth measurements is 

much smaller than the error in the state predicted from the model of the dynamics. The ground-

truth error is thus considered insignificant, and the measurements are treated as the real position 

values. The error is then calculated according to equation (5.16). This error is calculated for 

different sampling time intervals by varying the value of 𝑛. 

 

𝑬𝒏(𝑘) = 𝑺(𝑘𝑛) − (𝜱𝑺((𝑘 − 1)𝑛) +  𝜞𝒖(𝑘𝑛)) (5.16) 

 

The error variances for the both coordinates of the position are assumed to be equal. The same 

is assumed for the velocity. The position and velocity variances are then estimated using the 

mean squared error (MSE). The results as a function of the obstacle velocity magnitude and the 

sampling period are present in the tables 5.1 and 5.2. It can be observed in these tables that the 

behavior of the variances is for the most part what would be expected, the increase of the 

sampling period as well as the increase in the obstacle velocity, cause an increase in the error 

variances. 

 

Position Error Variance 

𝑠 × 10−3 ;  𝑚𝑠−1 0 ≤ ‖𝒗‖ < 1 1 ≤ ‖𝒗‖ < 2 2 ≤ ‖𝒗‖ < 3 3 ≤ ‖𝒗‖ 

0 < 𝑇 < 50 0.000439532 0.00211673 0.00485432 0.0141425 

50 ≤ 𝑇 < 200 0.00384609 0.0262091 0.0623425 0.17625 

200 ≤ 𝑇 < 500 0.0208261 0.151046 0.286312 0.81821 

500 ≤ 𝑇 0.0533175 0.375216 0.829724 1.88844 

Table 5.1: Position error variance results. 

Velocity Error Variance 

𝑠 × 10−3 ;  𝑚𝑠−1 0 ≤ ‖𝒗‖ < 1 1 ≤ ‖𝒗‖ < 2 2 ≤ ‖𝒗‖ < 3 3 ≤ ‖𝒗‖ 

0 < 𝑇 < 50 0.0927498 0.199694 0.274756 0.372132 

50 ≤ 𝑇 < 200 0.0759916 0.219989 0.766296 0.83813 

200 ≤ 𝑇 < 500 0.0402036 0.284529 1.84588 2.53957 

500 ≤ 𝑇 0.0492175 0.406586 2.8862 6.94383 

Table 5.2: Velocity error variance results. 
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5.4 KALMAN FILTER 

 

The state estimation is performed resorting to the Kalman filter, a well know optimal linear 

estimator. This estimator is optimal in the sense that if the noise is Gaussian distributed it 

minimizes the mean squared error of the estimated parameters. It is adequate for real time 

applications since it is a recursive estimator, i.e., new measurements are processed as they 

arrive. The derivation of the Kalman filter is involved and beyond the scope of this work. However, 

the brief explanation presented here should be enough for an intuitive and practical understanding 

on how the Kalman filter works. For an in-depth introduction to the Kalman filter and its 

applications refer to [6] and [11]. 

Using a Kalman filter for state estimation is advantageous for multiple reasons. First, by 

doing a weighted average between the observations and the predicted state, it produces a more 

accurate state estimate than it would be obtained by the sensor observations alone. Second, it 

assists in the data association task by allowing the observed obstacles to be associated with the 

predicted states of the tracked obstacles, instead of associating them with their previous state 

estimation. 

The Kalman filter algorithm can be divided in two steps, the prediction step and the 

measurement update step. The first two equations constitute the time update or prediction. In 

equation (5.17) the previously derived model of the dynamics is used to predict the current state. 

This prediction 𝒙𝑘
− is called the prior estimate. The error covariance is also projected ahead in 

(5.18), where 𝑸 represents the process error covariance addressed in the previous section. 

 

𝒙𝑘
− =  𝜱𝒙𝑘−1 +  𝜞𝒖𝑘−1 (5.17) 

 

𝑷𝑘
− =  𝜱𝑷𝑘−1𝜱

𝑇 +  𝑸 (5.18) 

  

The next three equations constitute the measurement update step. In equation (5.19) the 

Kalman gain 𝑲𝑘 is calculated. This gain is used to weight the average between the predicted state 

and the measurement. The matrix 𝑯  represents the relation between the state and the 

measurement. In this case only the first two elements of the state, the position of the target, are 

measured. Matrix 𝑯 is therefore a 4x4 matrix off zeros except for the first two elements of the 

diagonal which are ones. Next the posterior estimate 𝒙𝑘 is calculated in equation (5.20) where 

the quantity 𝒛𝑘 −  𝑯𝒙𝑘
− is called the innovation. Finally in equation (5.21) the error covariance is 

also updated. 

𝑲𝑘 = 𝑷𝑘
−𝑯𝑇(𝑯𝑷𝑘

−𝑯𝑇 + 𝑹)−1 (5.19) 

𝒙𝑘 = 𝒙𝑘
− + 𝑲𝑘(𝒛𝑘 −  𝑯𝒙𝑘

−) (5.20) 
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𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯) 𝑷𝑘
− (5.21) 

5.5 DATA ASSOCIATION 

 

In order to be able to perform the measurement update step of the Kalman filter it’s 

necessary to know which of the observed obstacles corresponds to each of the predicted ones. 

This can be modeled as an assignment problem which is solvable using the well know Hungarian 

algorithm. Modern implementations of this algorithm can achieve a time complexity of 𝑂(𝑛3), 

being adequate for real-time applications in case the number of correspondences is not very 

large. A thorough description on assignment problems and the Hungarian algorithm can be found 

in [15].  

The data association is done per obstacle class, meaning detected obstacles of one class 

are matched with the tracked obstacles of the same class. For each class a table of costs is 

created to be used as the input of the Hungarian algorithm. In this case the Euclidean distance 

proved adequate to be chosen as cost function. Other cost functions, such as the Mahalanobis 

distance, which takes into account the error variance, can be used if deemed necessary.  

Three different situations need to be account for. First is the case when the number of 

detected obstacles 𝑁 is the same as the number of predictions 𝑀. This situation results in a cost 

table of the type show in table 5.3, where 𝑑𝑖  denotes the ith detected obstacle, 𝑝𝑖  the ith 

prediction, and ‖𝑷i − 𝑫i‖ the distance between their positions. The table 5.4 represents another 

possible situation, which is to have more detections that predictions. Meaning that new obstacles 

that weren’t previously being tracked are now detected. In this case dummy predictions need to 

be included as extra columns in the cost matrix so that the matrix becomes square. All costs in 

the dummy columns are made equal to the largest of the previously calculated costs. The final 

situation is represented in table 5.5, and corresponds to the case when the number of predictions 

is higher that the number of detections. This corresponds to the case when some obstacles that 

were being tracked are lost from detection but have not yet been discarded from the list of tracked 

obstacles. In this case the matrix needs to be made square by inserting dummy rows with all cost 

entries equal to the largest calculated cost. In any case the resulting cost matrix is used as input 

for the Hungarian algorithm, which in turn calculates and outputs the correspondences between 

observation and predictions, such that it minimizes the sum of the costs 

 𝑝1 𝑝2 ⋯ 𝑝𝑀 

𝑑1 ‖𝑷1 − 𝑫1‖ ‖𝑷2 − 𝑫1‖ ⋯ ‖𝑷𝑀 − 𝑫1‖ 

𝑑2 ‖𝑷1 − 𝑫2‖ ‖𝑷2 − 𝑫2‖ ⋯ ‖𝑷𝑀 − 𝑫2‖ 

⋮ ⋮ ⋮ ⋮ ⋮ 

𝑑𝑁 ‖𝑷1 − 𝑫𝑛‖ ‖𝑷2 −𝑫𝑛‖ ⋯ ‖𝑷𝑀 − 𝑫𝑁‖ 

Table 5.3: Cost table with same number of detection and predictions. 
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 ⋯ 𝑝𝑀 𝑑𝑢𝑚𝑚𝑦𝑀+1 ⋯ 𝑑𝑢𝑚𝑚𝑦𝑁  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑑𝑀 ⋯ ‖𝑷𝑀 −𝑫𝑀‖ max
𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ ⋯ max

𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ 

𝑑𝑀+1 ⋯ ‖𝑷𝑀 −𝑫𝑀+1‖ max
𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ ⋯ max

𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑑𝑁 ⋯ ‖𝑷𝑀 − 𝑫𝑁‖ max
𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ ⋯ max

𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ 

Table 5.4: Cost table with more detections than predictions. 

 

 ⋯ 𝑝𝑁 𝑝𝑁+1 ⋯ 𝑝𝑀  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑑𝑁 ⋯ ‖𝑷𝑁 −𝑫𝑁‖ ‖𝑷𝑁+1 − 𝑫𝑁‖ ⋯ ‖𝑷𝑀 −𝑫𝑁‖ 

𝑑𝑢𝑚𝑚𝑦𝑁+1 ⋯ max
𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ max

𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ ⋯ max

𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑑𝑢𝑚𝑚𝑦𝑀 ⋯ max
𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ max

𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ ⋯ max

𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ 

Table 5.5: Cost table with more predictions than detections. 

 

5.6 INSERTION AND REMOVAL OF TRACKED OBSTACLES 

 

After the data association step, each entry in a class obstacle list represents one of three 

cases: it can be a new obstacle, such as when the number of detected objects of a given class is 

higher than the obstacles already being tracked for that class; it can be an already tracked 

obstacle that was associated with a detected obstacle or it can be an already tracked obstacle 

that was not associated with any of the detected obstacles, this can happen when the number of 

detected obstacles is lower that the number of tracked obstacles. A tracked obstacle which is no 

longer being detected cannot remain indefinitely in the list. The following algorithm contains the 

rules for the removal of obstacles no longer being detected 

 

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠: 

(5.22)     𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑖𝑛 𝑙𝑖𝑠𝑡(𝑐𝑙𝑎𝑠𝑠): 

        𝑖𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑖𝑠 𝑛𝑒𝑤: 
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            𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒. 𝑡𝑡𝑙 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑡𝑡𝑙(𝑐𝑙𝑎𝑠𝑠); 

        𝑒𝑙𝑠𝑒: 

            𝑖𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑤𝑎𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑: 

                𝑖𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒. 𝑡𝑡𝑙 ! = 𝑚𝑎𝑥_𝑡𝑡𝑙(𝑐𝑙𝑎𝑠𝑠): 

                    𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡(𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒. 𝑡𝑡𝑙); 

            𝑒𝑙𝑠𝑒: 

                𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡(𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒. 𝑡𝑡𝑙); 

        𝑖𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒. 𝑡𝑡𝑙 == 0: 

            𝑙𝑖𝑠𝑡(𝑐𝑙𝑎𝑠𝑠). 𝑟𝑒𝑚𝑜𝑣𝑒(𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒) 

 

Each obstacle has associated with it a time to live (TTL) value, that is updated with every iteration 

of the detection system. On the creation of a new obstacle an initial TTL value is set depending 

on its class. With each system iteration the TTL value is either incremented (up to a maximum) if 

the obstacle was detected, or decremented otherwise. If an object TTL reaches 0, that object is 

removed from the respective list. The initial and maximum TTL values for each class have to be 

chosen judiciously, so that a good balance between a quick rejection of spurious false positives 

and retention of tracks during temporary loss of detection is achieved. 

 

5.7 EXPERIMENTAL PROCEDURES 

The experiments that were carried out had two main purposes. First it was necessary to 

adjust the values of the various parameters of the detection and tracking, and second the 

evaluation of the performance of the system as whole once the parameters were optimally tuned. 

The followed methodology was informal, consisting mostly on trying to reproduce as good as 

possible real game scenarios, identifying problems as they occurred and trying to mitigate them 

by adjusting parameters on a trial and error basis. Special attention was dedicated to cases that 

were expected to be problematic, such as of heterogeneous lighting conditions and clustering of 

obstacles. Overall the system has performed very well, producing the desired output in the vast 

majority of tested cases.  

The example that follows was chosen because although simple, it clearly illustrates the 

working of the various components of system in dealing with a common yet potentially challenging 

situation. In this example two obstacles are initially detected and classified as members of the 

cyan team. The obstacles are attributed labels 1 and 2 of the cyan class. This initial configuration 

can be observed in figure 5.2, where on the left side is shown the omnidirectional cameras image 

and on the right the system output.  
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Figure 5.2: Tracking example – Frame 1. 

In figure 5.3 it can be observed that as the obstacles move towards each other, the 

obstacle closer to the observer, cyan 2, starts to occlude the one that is further away, and the 

system no longer detects two separate robots. Instead an obstacle of undefined class is detected 

and is given the label 7. Even thou cyan obstacle 1 and 2 are no longer detected they are no 

discarded and their state continues to be predicted according to the motion model.  

 

  

Figure 5.3: Tracking example – Frame 2. 

Next, in figure 5.4 the cyan obstacle 1 gets completely occluded by cyan obstacle 2 the 

systems recognizes the latter and discards the undefined obstacle. 
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Figure 5.4: Tracking example – Frame 3. 

When cyan obstacle 1 starts to pop in from behind cyan obstacle 2, as can be observed 

in figure 5.5 the system detects once again an undefined obstacle and assigns it label 8. The two 

cyan obstacles continue being tracked. 

 

  

Figure 5.5: Tracking example – Frame 4. 

Figure 5.6 represents the final configuration of this example. All undefined obstacles have 

been discarded. The detection of the two obstacles has been resumed and their label is the same 

as originally attributed.  

Throughout this example the targets have been correctly tracked, even when not detected 

the state of the object continued to be predicted and when the detection was resumed the 

obstacles where correctly identified with their original label. 
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Figure 5.6: Tracking example – Frame 5. 
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6 CONCLUSIONS AND FUTURE WORK 

 

6.1 CONCLUSIONS 

 

Each of the previous chapters has addressed the development of an individual 

component of what was the ultimate goal of this work, a complete obstacle tracking system for 

MSL robots. It is the purpose of this section to elaborate some conclusions and final 

considerations on both the individual components and the system as a whole. These conclusions, 

although qualitative for the most part were as much as possible supported on the observation of 

experimental results. It should be noted, that considering the myriad of possible state 

configurations and variables found in actual MSL soccer matches and considering also the limited 

laboratorial resources available during the development of this work, namely the small number of 

available robots, the tests represent isolated and specific conditions, which may not represent the 

full spectrum of conditions (robot configurations, light conditions, background noise, etc.)  That 

may be found in actual MSL matches. It is evidently difficult or impossible to predict every situation 

that may present itself as difficult or problematic to the system. However, an honest effort was 

made in trying to test scenarios that intuition deemed as potential problematic. In other words the 

tests were not tailored to accommodate any weaknesses in the system, so that it produced the 

desired results. Instead, the applied methodology was to use the tests to try to reveal potential 

weaknesses in the system so they could be corrected whenever possible or at the very least 

identified and characterized. 

Whenever it applies, the presented conclusions take into account the evaluation criteria 

described on the following points in order of importance: 

 Effectiveness of the solution in solving the specified problem. 

 Improvement over any previous implemented solutions. 

 Quality of the software implementation, namely regarding user experience and 

extensibility of the solutions to accommodate future improvements and new functionality. 

In Chapter 2 the color segmentation system was presented. Being a fundamental 

component on which many other system components depend, a trustable color segmentation is 

of paramount importance. An unreliable segmentation systems will propagate its faults to higher 

level systems, having a big detrimental impact on the global performance. Prior to this work the 

color segmentation had been a major source of reported problems that were observed during 

MSL matches. The previous system also lacked functionality and was cumbersome to use (a very 

limited tool was used to created single color LUTs). The color segmentation system that was 

developed in this work greatly improves over the previous solution. All of this issues have been 
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corrected in this new solution, which is more reliable, performant and user friendly. The patent 

lack of robustness to illumination changes has been largely mitigated and it was clearly shown 

that it originated from a fundamental misconception that was inherent to the previous system. The 

LUTCreator, which is the interface of the color segmentation system, is a ROS integrated color 

segmentation application that was developed to be a generic, functional and uncomplicated tool. 

It has been welcomed by peers as a useful tool for their color segmentation needs. 

The Ground-truth system was presented in Chapter 3. Although not directly involved in 

the robots online task of detecting and tracking obstacles, a ground truth system is a valuable 

resource, namely for its use in the estimation of noise characteristics. Therefore the development 

of a ground-truth system was deemed relevant and pertinent in the scope of this work. Before this 

work there was already a working ground-truth system. That system however presented several 

limitations, particularly with regard to the detection range, which vastly reduced its usefulness. 

The ground-truth system developed for this work greatly improves on the limitations of previous 

system. It allows for the use of the test field in its full extension, while previously only a small area 

could be used due to problems in the detection. The adopted hardware markers along with the 

user friendly interface, makes the system less cumbersome to use, reducing the setup time 

especially when multiple robots are tracked. In the previous work each robot had a uniquely 

colored marker and had to be individually segmented. The devised method used for fast 

estimation the error covariance of the estimates worked well, proving to be a viable alternative, 

especially under time constrains, and as long as the loss of accuracy is acceptable. 

Chapter 4 was dedicated to the detection and classification of obstacles. The previous 

solution was based on blob detection and an area classifier, which could only crudely classify a 

detected obstacle as being a robot or not, not being able to identify which team it belongs to. 

Furthermore it showed problems dealing with blobs corresponding to overlapped robots or very 

close obstacles. The solution developed in this work differs greatly from the previous solution 

because it is not based on blob detection instead it relies on ray casting. This method allows for 

better heuristic filtering strategies and has shown to provide a more robust detection even in high 

noise environment.  The detection system is now also capable of distinguishing an adversary from 

a team mate using the team identification colors and it is capable of dealing with situations where 

the gap between detected obstacles is too narrow for the robot to pass in-between. In which case 

it creates compound obstacles improving the obstacle avoidance algorithms and avoiding 

unnecessary collisions.  

 The obstacle tracking task was dealt with in Chapter 5. Its purpose is to provide reliable 

estimates of the obstacles state by combining the state measurements obtained as described in 

Chapter 4 with the previously obtained state estimates. At first glance, the adopted solution is 

similar to the previous implemented solution, however on closer inspection, profound changes 

become apparent. Both solutions rely on the use of a Kalman filter per target obstacle, however 

the previous solution used one Kalman filter bank for all the tracked obstacles whereas in this 

solution three Kalman filter banks are used, one per each class off obstacles, simplifying the data 
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association task. The approach to data association has also been modified. Whereas before data 

association was performed in a greedy fashion, it is now performed resorting to the Hungarian 

method, resulting in more a reliable data association that combined with an effective false positive 

filtering doesn’t have a negative effect on the computational efficiency of the system. This solution 

has shown experimentally to be able to deal effectively with challenging situations such as 

temporary occlusion or clustering of obstacles in the image.   

Finally, on a global level the above elements integrate into a successful system that 

performs according to the desired specifications, performing real-time robust detection 

classification and tracking of obstacles in the MSL environment. The system has perform well 

under the available testing conditions which aimed to reproduce, to the extent that was possible, 

real MSL match conditions, not shunning from challenging light conditions and cluttered 

environment situations. 

Overall these conclusions can be summarized in the following observations:  

 The initial proposed objectives were achieved, i.e. the solution does solve the problem as it 

was originally specified. 

 The solution improves on previously existing system. Both on the individual component level 

and as an integrated system the current system works significantly better than before. 

Considering that this is a relatively low level system on which other important higher level 

systems are dependent (such as obstacle avoidance and some components of decision 

making) it is expectable that this improvement is to some degree reflected on the overall 

playing performance of the robots. 

 The development of the software, was mindful from the conception all through the 

implementation, on respecting the principles of usability, scalability and adaptability of the 

solution.  Through the use of object oriented code architecture and profuse configuration 

options, the software is easy to use as well to maintain and develop, allowing for further 

expansion of its feature set.   
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6.2 FUTURE WORK  

 

From the previous section it is clearly established that the system which was implemented 

works appropriately and the meets all the specified criteria. Nevertheless there is ample room for 

improvement and this section provides a brief exploration of some of different avenues for further 

development. When considering the ways the system can evolve, it can be argued that one can 

distinguish between work meant to improve the effectiveness and or the efficiency of the current 

solutions or work that is meant to expand the current system by expanding or altering the current 

functionality. This distinction is not strict, and it has more to do with the strategic objectives. Whilst 

the first approach may me more pragmatic in the sense of competition results, the former may be 

more aligned with the production of academic and research work. Ideally the development effort 

should as much as possible aim to serve both of this purposes. In the following suggestions I tried 

to accommodate both of this approaches. 

Regarding the color segmentation topic, there is work that can be done to improve some 

of the computational performance parameters, such as time performance and CPU load. Most of 

the image processing steps in the segmentation algorithm are per pixel operations. These 

operations, namely the color conversion and the topological filtering stage, could take advantage 

of parallel programming processing. Using parallel computing platforms such as CUDA or 

OpenCL one could harness the power of the computer’s GPU. This might result in a significant 

improvement in speed performance and perhaps more importantly decrease in CPU load, 

effectively eliminating the potential bottleneck caused by the image processing tasks. In the 

current implementation some of the OpenCV GPU module functions have been used, namely for 

the color conversion with very good results. However to take full advantage of the GPU a custom 

implementation would be necessary. Considering the good performance that is currently achieved 

it is debatable whether this would be worth the effort. 

Regarding new functionality that can be implemented concerning the subject of the color 

segmentation, the immediate option would be to explore on the topic automatic color 

segmentation.  Even though there is nothing wrong from a practical standpoint with the manually 

selected segmentation that is used, automatic color segmentation is an interesting problem and 

an active research topic. The automatic color segmentation methods could also be combined with 

the manual method. For example, one could use the automatic methods for the tracking of the 

manually selected color intervals in case of severe illumination changes. This means that besides 

being interesting from a research perspective, this could have a real-world impact on the 

robustness of the color segmentation. Common approaches to automatic color segmentation 

usually rely on the detection and tracking of modes in some chromaticity representation of the 

image. These could be used to adjust the HSV segmentation intervals in response to a dynamic 

illumination. 
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The detection system’s purpose is to detect obstacles inside the playing field. In ideal 

conditions the playing field is completely surrounded by a small white wall that helps to isolate the 

playing field from the outside environment. Often times however, this wall is inexistent or 

incomplete or there are objects and clutter in the margins of the field (for example replacement or 

broken robots). This means that the environment outside the field lines may constitute a source 

of image noise which can result in false positive detections. One way to alleviate this problem 

could be to make the obstacle detection system aware of the robot’s pose in the field by integrating 

information from the location system. The current localization system deployed by the robots uses 

a Monte Carlo Location algorithm, which has shown to work very well in practice. If the robot 

possesses a good estimate of its location in the playing field, and considering that the detection 

algorithm detects the contour of the robot in the ground plane, the search range can be narrowed 

in order to exclude anything outside the field. This would reduce the number of false positive 

detections, resulting in a more accurate and faster detection and tracking system. 

One desirable addition to the detection system, would be the ability to detect the 

orientation of a detected obstacle, and by doing so obtain its full pose characterization. Generic 

pose recognition methods usually rely on the detection of some type of robust features intrinsic 

to the object. However MSL soccer robots usually have a very symmetrical chassis and don’t 

possess very distinct orientation features. Consequently the typical feature detection methods 

perform poorly in this application. One solution would be to add identifiable features to the robot 

chassis that would be easily detected. However the robot with these added features must still 

comply with the MSL competition rules, which seriously limits our options. It is also important to 

bear in mind that due to the nature of the omnidirectional camera, image resolution diminishes 

very strongly with the distance from the camera, and distortion effects are very pronounced. The 

work to be developed would consist of devising some type of hardware features to be added to 

the robots and the respective detection software. These features should be compliant with MSL 

soccer rules and be easy to detect across a good distance range. A suggestion to approach this 

problem is to experiment with very simple shapes such as colored bars of varying length and 

variable separation so that even if only a few of this bars were detected one could still infer the 

orientation of the robot. Given that pose measurements would be most likely very noisy and 

somewhat unreliable, one could use a Kalman filter for the orientation angle alone or possibly 

extend the model of the dynamics of the target robot to include its full pose.  

Quite often, during MSL matches many previously undetected problems arise. The 

manifestation of this problems may seriously undermine the team’s performance and have a 

deleterious effect on the overall competitiveness. MSL robot teams are complex systems and it’s 

easy for software bugs or flawed algorithms to go undetected during testing. Many times a flaw 

in one subsystem is only reveled when that subsystem interacts with another and the effects of 

the flaw are propagated. It is in this context that a comprehensive simulation platform becomes 

an invaluable tool, provided that it is able to reproduce the robotic systems and game 

environments with enough degree of realism. Such a platform would bring a new depth of insight 
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into the development status of the project, aiding in the early detection of potential problems, 

prioritization of work and the promotion of good development practices. One of the biggest 

challenges in the development of a simulation platform for MSL is the simulation of the robot’s 

omnidirectional camera. The robot’s omnidirectional camera is the main, if not the only, sensor 

the robot possesses. Not simulating it narrows the scope of the simulation mostly to high level 

decision making, reducing the worth of the simulation environment. Omnidirectional cameras like 

the ones the robots possess are non-standard, and most of the established robotics simulation 

frameworks typically don’t offer simulation models for this type of camera, as they mostly only 

provide models for the common projective type cameras. The camera model that was adopted 

for this work and introduced in Chapter 4 is particularly suitable to be simulated. One could use 

the geometric model to generate a revolution surface whose profile would be given by the 

calibration and then use an orthographic camera to generate the image. Tests conducted in 

Blender 3D software showed promising results, the only problem being the render time required 

by the ray-traced reflections.  The Blender 3D software has a lot of potential for the development 

of a robotics simulation platform as this software is open source, it is well document and has an 

active community. It is also highly configurable and scriptable via the integrated python interpreter. 

Additionally there is some functionally for dome projection already implemented in Blender 

[13][14], which could be used as a starting point for adaptation or inspiration. 

The suggestions presented in this section are just that, mere suggestions not a 

comprehensive list off all the possibilities, but merely a few relatively small projects, that are 

realistically achievable, and that I believe would make useful contributions. One thing is certain, 

there is ample room for improvement and expansion, for this is a project of an open and flexible 

nature. The challenge most often lies in finding the optimal compromise between a cornucopia of 

exiting ideas and the inevitable constraints, both technical and logistical. Anyway, all of that 

contributes to the charm and enthusiasm of working in robotics. The kind of enthusiasm that I had 

the privilege to experience in the making of this modest work. 
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