

Obstacle Tracking in a Dynamic Environment

Application to Robot Soccer

Pedro César Alves Guerreiro Godinho Agostinho

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor: Professor Pedro Manuel Urbano de Almeida Lima

Examination Committee

Chairperson:
Supervisor:

Members of the Committee:

Month and Year

i

RESUMO

No contexto de futebol robótico, uma das tarefas fundamentais que cada robot deverá

ser capaz de realizar é a deteção de obstáculos que o rodeiam. Para além de um conhecimento

instantâneo da posição dos obstáculos, é também de grande utilidade caracterizar e prever a

sua evolução no tempo, permitindo assim um melhor planeamento de ações. Adicionalmente

deverá ser capaz de classificar os obstáculos detetados, identificando os que correspondem a

outros robots e a equipa a que pertencem.

O objetivo desta tese é pois o desenvolvimento de um sistema robusto de deteção,

classificação e seguimento de obstáculos para robots da liga média de futebol robótico. O

sistema foi separado nos seus constituintes, sendo cada um tratado individualmente.

Inicialmente foi abordado o problema da segmentação por cor, sendo dado enfase à

robustez perante alterações na iluminação. De seguida foi desenvolvido um sistema de ground-

truth, que não participando durante o jogo nas tarefas de deteção e seguimento, é no entanto

relevante no âmbito deste trabalho, uma vez que é indispensável para a estimação de estatísticas

de erro necessárias para o seguimento. Seguidamente discutem-se as tarefas da deteção e

classificação propriamente ditas. Primeiro é abordado o modelo da câmara omnidirecional e

seguidamente de que forma a imagem é processada de modo a extrair a posição dos obstáculos.

Por último é discutido o procedimento para efetuar o seguimento dos obstáculos. Sendo

abordados o filtro de Kalman, o algoritmo Húngaro para associação de dados e as regras de

inserção e retirada de um obstáculo.

PALAVRAS-CHAVE: Segmentação por cor; deteção de obstáculos; seguimento de múltiplos

objetos; futebol robótico; câmara omnidirecional; Sistema de ground-truth.

ii

iii

ABSTRACT

In the context of robot soccer, one of the fundamental tasks that each robot must be able

to accomplish is the detection of its surrounding obstacles. Besides the knowledge of the

instantaneous position of the obstacles, it’s of great utility to characterize and predict their

evolution with time, which allows for more sophisticated action planning. Additionally the robot

should be able to classify the detected obstacles, identifying the ones that correspond to other

robots and which team they belong to.

The objective of this thesis is thus the development of a robust system for the detection,

classification and tracking of obstacles for robots of the middle sized robot soccer league. The

system has been separated in its subsystems, and each one addressed individually.

Initially it was addressed the problem of color segmentation, with special emphasis on

the robustness to illumination changes. Next, it was developed a ground-truth system, that

although not directly involved in the detection and tracking during matches, it was indispensable

for the estimation of error statistics of which the tracking is dependent. The detection and

classification specific tasks are then address. Starting with the omnidirectional camera model

followed by the image processing method used to extract obstacle positions. The final part deals

with the obstacle tracking. The Kalman filter is presented, followed by the Hungarian algorithm

used for data association and finally the rules for insertion and removal of obstacles from the

tracking lists.

KEYWORDS: Color segmentation; Ground-truth system; Multiple object tracking; Obstacle

detection; Omnidirectional camera; Robot soccer.

iv

v

LIST OF FIGURES

Figure 1.1: From left to right: MSL robot; Omni-directional camera detail; MSL robots in the

laboratory test field, with ground-truth markers installed. ... 2

Figure 1.2: System overview ... 3

Figure 2.1: (a) RGB color space; (b) HSV color space; (c) Morphing of hexagon in chromaticity

plane. Images by Jacob Rus used under CC BY license. ... 6

Figure 2.2: (a) Raw image ; (b) binary image resulting from the RBG picking method; (c) binary

image resulting from the HSV intervals ; (d) LUT produced with the RBG picking method; (e)

LUT produced by HSV intervals. ... 8

Figure 2.3: (a) Input Frame; (b) Output Frame .. 9

Figure 2.4: LUTCreator control panel. ... 10

Figure 2.5: Examples of the effect of the Max-RGB algorithm on the histogram. 14

Figure 2.6: Experiment 1 with no color processing. .. 19

Figure 2.7: Experiment 1 with Gray-World color processing. .. 19

Figure 2.8: Experiment 1 with Max-RGB color processing. .. 20

Figure 2.9: Experiment 1 with Max-RGB on patch color processing. ... 20

Figure 2.10: Experiment 2 with no color processing. .. 22

Figure 2.11: Experiment 2 with Gray-World color processing. .. 22

Figure 2.12: Experiment 2 with Max-RGB color processing. .. 23

Figure 2.13: Experiment 2 with Max-RGB on patch color processing. 23

Figure 2.14: Experiment 3 with no color processing. .. 25

Figure 2.15: Experiment 3 with Gray-World color processing. .. 25

Figure 2.16: Experiment 3 with Max-RGB color processing. .. 26

Figure 2.17: Experiment 3 with Max-RGB on patch color processing. 26

Figure 3.1: MSL robots with tracking marker apparatus. .. 28

Figure 3.2: Calibration images. ... 31

Figure 3.3: examples of checkerboard images used to estimate the error variance. 34

Figure 3.4: Detected corner points aligned with known positions. .. 34

Figure 3.5: Variance as a function of the distance from the camera. .. 35

Figure 3.6: Variance as function of the position of the measurement. .. 36

Figure 3.7: Sequence of processing operations. ... 36

Figure 3.8: Marker detection example. .. 38

Figure 3.9: Example output window of the ground-truth system. .. 38

Figure 4.1: Projection of scene points on the sensor plane. ... 40

file:///C:/Users/Pedro/Desktop/docs_revision/main.docx%23_Toc448100967
file:///C:/Users/Pedro/Desktop/docs_revision/main.docx%23_Toc448100967

vi

Figure 4.2: A few of the images used for estimation of error variance, patterns at distances of

25cm, 100cm, 250cm and 400cm. .. 43

Figure 4.3: Measurements of pattern points obtained for the patterns positioned at multiple

distances. .. 43

Figure 4.4: Estimate of the ground plane position measurement error variance as a function of

distance. .. 44

Figure 4.5: Ray-casting detection.. 46

Figure 4.6: Detection example. ... 47

Figure 5.1: Obstacle velocity components. ... 50

Figure 5.2: Tracking example – Frame 1. ... 58

Figure 5.3: Tracking example – Frame 2. ... 58

Figure 5.4: Tracking example – Frame 3. ... 59

Figure 5.5: Tracking example – Frame 4. ... 59

Figure 5.6: Tracking example – Frame 5. ... 60

vii

LIST OF TABLES

Table 2.1: Average color segmentation processing times .. 11

Table 2.2: Experiment 1 results... 18

Table 2.3: Experiment 2 results... 21

Table 2.4: Experiment 3 results ... 24

Table 5.1: Position error variance results. ... 53

Table 5.2: Velocity error variance results. ... 53

Table 5.3: Cost table with same number of detection and predictions. 55

Table 5.4: Cost table with more detections than predictions. ... 56

Table 5.5: Cost table with more predictions than detections. ... 56

viii

ix

TABLE OF CONTENTS

Resumo .. i

Palavras-chave: .. i

Abstract ... iii

Keywords ... iii

1 Introduction .. 1

1.1 Background ... 1

1.2 Development setup.. 2

1.3 System overview and Thesis structure.. 3

2 Image Segmentation ... 5

2.1 Introduction .. 5

2.2 HSV color model .. 5

2.3 Segmentation method ... 7

2.3.1 LUTCreator application.. 9

2.4 Color constancy ... 11

2.4.1 Sensor model .. 12

2.4.2 Max-RGB algorithm ... 12

2.4.3 Gray-world assumption.. 15

2.5 Experimental Procedures .. 16

2.5.1 Experiment 1: Illumination intensity variation .. 18

2.5.2 Experiment 2: Illumination geometry variation .. 21

2.5.3 Experiment 3: Illumination color variation.. 24

3 Ground-Truth System .. 27

3.1 Hardware ... 27

3.2 Camera to world Transformation ... 28

3.3 Measurement Error Variance Estimation .. 31

3.3.1 Kabsch Algorithm .. 32

3.3.2 Estimation procedure ... 33

3.4 Software .. 36

4 Obstacle Detection .. 39

4.1 Camera model ... 39

4.2 Estimation of the Measurement error variance ... 42

4.3 Detection and classification. .. 44

5 Obstacle Tracking.. 49

5.1 Introduction .. 49

5.2 Model of the Dynamics .. 49

5.3 Process error covariance .. 52

5.4 Kalman filter ... 54

5.5 Data association .. 55

x

5.6 Insertion and removal of tracked obstacles ... 56

5.7 Experimental procedures .. 57

6 Conclusions and future work ... 61

6.1 Conclusions ... 61

6.2 Future work .. 64

Blibliography .. 67

1

1 INTRODUCTION

1.1 BACKGROUND

Mobile autonomous robotics is a multi-disciplinary field of engineering, encompassing

and interfacing a vast range of areas of knowledge. Robot Systems may be very complex and

composed of many subsystems that must interconnect and work together seamlessly. It is in this

context that robot soccer and in particular RoboCup medium sized league (MSL) robot soccer

competitions stand out as an invaluable research and development tool. MSL competitions

constitute a challenging and holistic application for mobile robotics and are an exceptional testing

ground for the development of new methods and algorithms. The adversarial and competitive

nature of robot soccer, not only adds an element of excitement for the researcher but also forces

her/him to validate the produced work in an environment other than a controlled laboratory setting.

This contributes to bridge the gap between theoretical research and real world applications.

 An MSL robot must perform and integrate a vast number of tasks, ranging from low level

hardware control, all the way to high level decision making in a cooperative multi-agent

environment. The performance of some fundamental tasks such as navigation, obstacle

avoidance or ball passing, depends strongly on the ability of the robot to be aware of obstacles in

its surrounding environment. Additionally to being aware of the presence of the obstacle, it is also

desirable to possess a characterization of its motion over time, which will allow to predict its

evolution, even in case of intermittent detection. A detected obstacle should also be classified as

to whether it is a robot, and if so, which team does it belong to. This work is concerned with the

task of detecting, classifying and tracking of obstacles in the MSL competition environment.

The MSL soccer regulations impose a color structured environment, for example: the

robots chassis should be predominantly black, cyan and magenta are used as team identifying

color, the ball should be yellow, the field should be green, etc. To take full advantage of this color

structure for the purpose of obstacle detection, it was identified the necessity to develop a robust

color segmentation solution. Additionally, the development of a ground-truth system was

considered relevant for its usefulness in the estimation of noise statistics. The color segmentation

and the ground-truth subsystems were designed to be as generic as possible, allowing their utility

to extend beyond the immediate scope of this work.

2

1.2 DEVELOPMENT SETUP

The development of this work demanded a good deal of data collecting and

experimentation. For that purpose, the following laboratory equipment was put at disposal: half

green playing field with white markings, with dimensions of approximately 12x9m; one fully

operational MSL robot; a few other MSL robots at different levels of operability; two ceiling

mounted fixed cameras at each end of the field for ground-truth purposes.

Figure 1.1 shows details of MSL robots of the type that was used and the laboratory

environment. This robot has a three wheel omnidirectional drive system, with powerful motors

that provide high acceleration and the ability to reach top speeds of about 3m/s. Each motor is

equipped with an optical incremental encoder. The main sensor that the robot is equipped with is

am omnidirectional camera. This camera is fitted with a fish eye lens having a field of view

exceeding 180°. It captures frames at an average rate of 15 fps and is interfaced via Gigabit

Ethernet. The robot is allowed to be equipped with other types of sensors such as ultrasonic or

laser range finders. However, these type of active sensors are vulnerable to cross-talk when used

simultaneously by different robots. It was found that problems associated with this type of sensor

for this particular application outweigh their utility, and thus the option of their use was discarded.

Figure 1.1: From left to right: MSL robot; Omni-directional camera detail; MSL robots in the
laboratory test field, with ground-truth markers installed.

The Robots middleware is based on the ROS framework. The obstacle tracking system

was implemented as a ROS package and it relies on the use of ROS topics for data transmission.

The following data is used as input: raw camera image topic, linear and angular velocity

commands topic, incremental odometry topic. After each iteration the obstacle tracking system

publishes to a topic that describes the current tracked obstacles. This information will then be

used by higher level subsystems such as obstacle avoidance and others, which are out of the

scope of this work.

3

1.3 SYSTEM OVERVIEW AND THESIS STRUCTURE

In figure 1.2 is depicted a high level diagram of the whole system. There are offline and

online components of the system. The online components operate during the course of the soccer

match, processing real-time sensor and control information. These components depend on

configuration and calibration data generated by the offline components.

Figure 1.2: System overview

In the next chapters of this work, the system’s individual components are addressed in

the following manner:

 In Chapter 2 the problem of color segmentation is addressed. The HSV color model is
presented and its advantages explained. The LUTCreator, a ROS integrated color
segmentation application is presented and compared to previously used method. The
problem of color constancy is discussed and some methods are proposed. Experimental
procedures are described and the results interpreted.

 Chapter 3 deals with the Ground-truth system. First the transformation from camera
coordinates to world coordinates is derived. A procedure for fast estimation of position error
covariance using the Kabsch algorithm is suggested. The processing of the images for
detection and tracking of the markers is described.

Offline Online

LUTCreator

Application

Ground Truth System

Segmentation

Detection

Tracking

Noise Statistics

Color

LUT

Obstacles
state

estimations

Omni-directional Camera

Calibration Procedures

Velocity
Commands

Image to World

Transformation

Omnidirectional
camera image

Inputs

Output

4

 Chapter 4 deals with the detection and classification of obstacles. The adopted model for
omnidirectional camera model is presented. The procedure for estimating the measurement
error covariance is described. Next, the image processing tasks are addressed, namely the
ray casting detection method and the heuristic filtering strategies.

 Chapter 5 focuses on the obstacle tracking system. First the model of the dynamics is derived.
The Kalman filter is discussed, as well as the procedure for estimating the process error
covariance. The Hungarian Algorithm and its application in this context are presented. Finally
the heuristic rules that control the insertion and removal of tracked obstacles are addressed.

 In Chapter 6 the results from previous chapters are synthetized and final conclusions are
presented. A few avenues for future work are proposed, contemplating both the improvement
of current solutions and the expansion of functionality.

5

2 IMAGE SEGMENTATION

2.1 INTRODUCTION

Segmenting an image consists of identifying groups of pixels that share some common

attribute. In this particular case, the objective is identifying which pixels represent obstacles in

general and in particular MSL soccer robots. MSL rules impose a color structured environment,

where robots should be predominantly black with the colors cyan and magenta being used for

team identification. Thus it's only natural to take advantage of this environmental constraint and

chose color as the attribute used for segmenting an image.

The rest of this chapter is organized as follows: first the HSV color model is formally

introduced, and its advantages explained. Methodologies for creating an RGB look-up-table for

segmentation are analyzed and compared. The LUTCreator application is presented. The

problem of color constancy is addressed and a few methods of implementation are derived.

Finally, a set of experimental procedures are described. These are designed to evaluate the

performance and robustness of the segmentation methods. The experimental results are

presented and interpreted.

2.2 HSV COLOR MODEL

The RGB color model is a convenient machine representation of color, however there is

no direct correspondence between RGB values and the psychological perception of color as the

relation between red, green and blue channels in not intuitive. A color model more perceptually

orientated is the HSV color model, which stands for hue, saturation and value. The HSV model

encodes chromaticity in the hue and saturation, whereas brightness is encoded in the value

parameter. The hue parameter in particular has great affinity with the visual sensation of color,

and this is why the HSV model is particularly relevant for applications that require selection of

color through human perception.

The HSV color space results of a geometrical nonlinear transformation of the RGB color

space. The RGB color space is represented in a Cartesian space in which the red, green, and

blue components are aligned with the coordinate axes. The RGB to HSV transformation will

transform this Cartesian space into a cylindrical coordinate space in which the hue parameter will

be represented in the angular coordinate, the saturation in the radial distance and the value in the

6

height. Figures 2.1(a) and 2.1(b) show the gamut of colors in the RGB and HSV spaces

respectively.

To obtain the hue coordinate H, the color point in RGB space is projected into a plane

designated as chromaticity plane. This plane is perpendicular to the axis of the grays which

contains the black (0,0,0) and the white point (1,1,1). This projection of the RGB cube results in

a hexagon in the chromaticity plane which is then morphed into a circle. The projected RBG cube

and subsequent morphing is depicted in figure 2.1 (c). The way the hue parameter 𝐻 is obtained

from an RGB is expressed in the equations (2.1) to (2.4).

𝑀 = max(𝑅, 𝐺, 𝐵) (2.1)

𝑚 = 𝑚𝑖𝑛(𝑅, 𝐺, 𝐵) (2.2)

(a) (b)

(c)

Figure 2.1: (a) RGB color space; (b) HSV color space; (c) Morphing of hexagon in chromaticity
plane. Images by Jacob Rus used under CC BY license.

http://commons.wikimedia.org/wiki/User:Jacobolus

7

𝐻′ =

{

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑖𝑓 𝑀 = 𝑚
𝐺 − 𝐵

𝑀 −𝑚
 𝑚𝑜𝑑6, 𝑖𝑓 𝑀 = 𝑅

𝐵 − 𝑅

𝑀 −𝑚
 + 2, 𝑖𝑓 𝑀 = 𝐺

𝑅 − 𝐺

𝑀 −𝑚
 + 4, 𝑖𝑓 𝑀 = 𝐵

 (2.3)

𝐻 = 𝐻′ × 60° (2.4)

The saturation parameter 𝑆 and the value parameter 𝑉 are given respectively by

equations (2.5) and (2.6).

𝑆 =
𝑀 −𝑚

𝑀
 (2.5)

𝑉 = 𝑀 (2.6)

2.3 SEGMENTATION METHOD

The need for real-time performance makes computational efficiency an important

concern. An RGB lookup table (LUT) is one of the fastest methods for color segmentation,

because for each pixel all it takes is accessing an array position indexed by the pixel RGB

component values (some mapping between RGB components and LUT indexes may be

necessary depending on the ranges, but that can also be implemented via an array). The problem

then lies on how to create the LUT. Prior to this work the method that was being used consisted

of selecting the pixels that belong to the area that is desired to be segmented and inserting their

RGB values in the LUT, from hereafter this method is referred as RGB picking method. This

approach however has shown in practice to perform inconsistently. The problem with this method

stems from the fundamental misconception that the selected RGB values are a representation of

the perceptional notion of color. Instead these selected RGB values are a function of the lighting

conditions presented at the time. Because of that, even though the segmentation might be very

good in the conditions in which the LUT was created, even a small alteration in the lighting

conditions will substantially degrade the quality of the segmentation produced by that LUT. A

better alternative to selecting pixels is to select range intervals in HSV color space. As stated

before, this allows to make a selection that better represents the visual sensation of color, which

being the intended discriminating characteristic results in a more robust segmentation.

8

As an example consider the case showed in figure 2.2, observe that in figure 2.2(a) two

cyan areas are present. Note that the one further away is in a recessed area and therefore

appears a little darker than the one closer to the camera.

Figure 2.2: (a) Raw image ; (b) binary image resulting from the RBG picking method; (c) binary
image resulting from the HSV intervals ; (d) LUT produced with the RBG picking method; (e) LUT

produced by HSV intervals.

Figures 2.2(d) and 2.2(e) are each graphical representations of a LUT in RGB color

space. The colored volumes represent the RGB values that correspond to the color selected for

segmentation. Two LUTs were created, one created with the RGB picking method and the other

with the HSV intervals method. In figures 2.2(b) and 2.2(c) it can be observed that both methods

seem to produce good results, this observation is however misleading. Analyzing and comparing

the morphology of the LUTs created by both methods helps to obtain a better insight on the

performance differences. For the LUT created by selecting the HSV intervals, the rectangular

volume in HSV space defined by the selected interval values, corresponds to a well-defined

wedge shaped volume that resembles a truncated pyramid in the RGB color space. Visualizing

the LUT created by the RGB picking it is clear that it is composed of disconnected irregular

shapes. It is possible to recognize two distinct areas corresponding to the two cyan areas in the

image. So the LUT created with the RGB picking method includes the RGB values visible in the

current frame, while in the LUT created with the HSV intervals method those values are included

in a bounding region . Furthermore this method allows easy control of the margin of this bounding

region which can be expanded (carefully so that it doesn’t intersect another color region) so that

(a) (b) (c)

D

E
(d) (e)

9

the same RGB values will still be bounded by the region, even if the illumination conditions are

moderately altered.

2.3.1 LUTCreator application

For the purpose of selecting the HSV intervals, it was recognized the need for a

specialized software application. The usefulness of such software spans beyond the application

addressed in this work, and therefore this software was designed for general use. The task of

interactively tuning the HSV interval ranges for multiple colors would be very cumbersome to do

without resorting to a graphical user interface (GUI), and so it was deemed necessary do design

one, which culminated in the development of the LUTCreator application.

The LUTCreator GUI uses the QT framework and features custom-made graphical control

elements. These widgets consist of colored slider bars with handles for lower and upper values

which have shown in practice to provide a very intuitive, quick and controllable way of selecting

channel intervals. The application allows an arbitrary number of colors to be selected. These

colors are displayed in a list with several features for organization. Being integrated in the ROS

middleware, LUTCreator subscribes to an image topic and publishes a segmented image to

another topic. This segmented image is an 8 bit grayscale image in which each pixel values is the

assigned color code. The working sessions can be saved and later loaded for easy and quick

editing. Of course, the LUTCreator application also exports LUT files with options for resolution

and format.

Figure 2.3: (a) Input Frame; (b) Output Frame

(a) (b)

10

Figure 2.4: LUTCreator control panel.

There are several ways in which the LUTCreator is able to be used in an online

application, first it can be used directly in the ROS topic pipeline, that is if the GUI overhead is not

a problem for that particular application. In most cases however, CPU is too precious of a resource

to be wasted unnecessarily, and a small API can also be used to import and use a LUTCreator

LUT file or session file. Using a LUT file provides the fastest segmentation, however it has some

minor drawbacks such as having to export (which usually takes a few seconds) and keep large a

LUT file, and in case one decides to make the LUT smaller, the decreased resolution will have an

impact on the accuracy of the segmentation. It is also possible to use a session file, which is a

file that contains only the information that is displayed in the LUTCreator control panel such as

the HSV interval values. Being very lightweight and fast to save/load, makes them a convenient

albeit less computationally efficient alternative to using a LUT file. The segmentation using the

session file requires color conversion from the camera RGB to an HSV representation for every

frame, and each pixel has to be checked to see if the value falls in any of the selected intervals.

3

11

These are per-pixel operations and can take advantage of GPU parallel processing. In table 2.1

are presented the average segmentation processing times on an Intel Core i73610QM CPU and

an NVIDIA GeForce GT 650M GPU. It can be observed that the average segmentation time using

a session file is about an order of magnitude greater than the average segmentation time using a

LUT. However, when using the GPU to compute the color conversion, this difference gets

significantly reduced. Note that the GPU via the CUDA platform is used in this example only to

compute the RGB to HSV conversion using an available OpenCV method from the GPU module.

The results from a custom-made implementation are expected to be even better.

Method LUT file Session file
Session file with

CUDA accelerated
color conversion

Average Time (500 samples) 0.002943 s 0.028129 s 0.009993 s

Table 2.1: Average color segmentation processing times

2.4 COLOR CONSTANCY

Color constancy is the ability to distinguish a color of an object, invariant of the color of

the illuminant. Many strategies have been proposed to computationally achieve (although not

necessarily mimic) this ability of the human visual system. Most approaches to this problem

consist of finding an estimate of the scene illuminant color and then perform the chromatic

adaptation, so that the output scene colors are perceived as if under some desired illuminant,

usually achromatic.

The reason for addressing in this context the topic of color constancy arises from

situations that often occur in the MSL environment, which have the potential to degrade the

performance of the color segmentation. For example, one situation that may occur due to the

relative large dimensions of the field, is non-uniform illumination. Consider for example the

situation where there are windows located at one end of the field, in this case depending on type

of artificial light sources and on the time of day there may be a considerable difference in color of

the illumination from one end of the field to the other. For the sake of simplicity and computational

performance, the algorithms presented here make the assumption of the presence of only one

illuminant. The previous situation can however be accepted in this category, if the transition of

illumination is smooth. In this case, as the illumination color changes progressively in space, the

illumination may be considered as locally uniform. Another situation that may occur is a change

in the illuminant color over time, this occurs in for natural illumination, in which its color depends

on the time of day, but it may also happen with some artificial light sources. Consequently it may

happen that a color segmentation system that was calibrated at some point in time, has its

performance progressively degraded over time.

12

There are a vast number of proposed algorithms, however the objective is merely to

evaluate the impact of color constancy techniques on the robustness of the color segmentation

and not to exhaustively evaluate color constancy methods. Because of that, only two techniques

were chosen for testing, the Max-RGB method, and the Gray-World assumption. The reason this

methods were chosen in detriment of others is twofold, first these are perhaps the most

popularized methods and are commonly used as a benchmark for testing, second they have the

lowest computational cost. For a thorough expose on the topic of color constancy and its

applications refer to [1] and [2].

2.4.1 Sensor model

Before introducing the color constancy methods it’s necessary to describe the adopted

sensor model. The formalism used in the derivation follows as described in [1]. In equation (2.7)

is represented the model for the intensity 𝑰 of a general sensor at position 𝒙𝐼 under uniform

illumination. The factor 𝐺(𝒙𝑂𝑏𝑗) represents the object lighting geometry factor, which depends on

the position 𝒙𝑂𝑏𝑗 , 𝑅(𝜆, 𝒙𝑂𝑏𝑗) is the reflectance of the object that depends on 𝒙𝑂𝑏𝑗 and on the

wavelength 𝜆 , 𝐿(𝜆) is the radiance of the light source and finally 𝑺(𝜆) is the sensitivity of the

sensors.

𝑰(𝒙𝐼) = 𝐺(𝒙𝑂𝑏𝑗)∫𝑅(𝜆, 𝒙𝑂𝑏𝑗)𝐿(𝜆)𝑺(𝜆)𝑑𝜆 (2.7)

This model can be greatly simplified if the sensitivity of the sensors is considered to be of

very narrow band, such that it can be modeled as a delta function. If we consider three sensors

with sensitivity given by a delta function at 𝜆𝑖 with 𝑖 ∈ {𝑟, 𝑔, 𝑏} each corresponding to

wavelengths in the red, green and blue parts of the spectrum respectively. The simplified model

thus becomes:

𝐼𝑖(𝑥, 𝑦) = 𝐺(𝑥, 𝑦)𝑅𝑖(𝑥, 𝑦)𝐿𝑖 (2.8)

2.4.2 Max-RGB algorithm

The Max-RGB algorithm relies on the idea that there is some bright patch in the image

and that color of the pixels belonging to that patch can be used as an estimate of the color of the

illuminant. In practice is not necessary to identify any patch in the image, only to search all pixels

for the maximum intensity value for each channel. Those maximum values are assumed to be

part of the supposed bright patch, and thus the color they represent should be the color of the

illuminant.

13

A white patch should reflect the maximum light possible for each band, if 𝑅𝑖(𝑥, 𝑦) = 1 for

𝑖 ∈ {𝑟, 𝑔, 𝑏} and let 𝐺(𝑥, 𝑦) = 1 i.e. the patch surface normal is oriented perpendicular to the

camera, then the sensor captures the color of the illuminant.

𝐼𝑖(𝑥, 𝑦) = 𝐿𝑖 , (𝑥, 𝑦) ∉ 𝑀𝑎𝑠𝑘 (2.9)

The omnidirectional image contains a black vignette that correspond to areas of the

sensor that don't receive any light from the lens. The values of the pixels in this area should not

be included in the calculations. The set 𝑀𝑎𝑠𝑘 contains all the pixel positions that correspond to

areas outside the useful part of the image.

Assuming a linear relationship between the response of the sensor and pixel colors,

where 𝑐𝑖(𝑥, 𝑦) is the pixel color for each channel 𝑖 ∈ {𝑟, 𝑔, 𝑏}

𝑐𝑖(𝑥, 𝑦) = 𝐺(𝑥, 𝑦)𝑅𝑖(𝑥, 𝑦)𝐿𝑖 , (𝑥, 𝑦) ∉ 𝑀𝑎𝑠𝑘 (2.10)

For every channel the maximum value is found,

𝐿𝑖,𝑚𝑎𝑥 = max
𝑥,𝑦

{𝑐𝑖(𝑥, 𝑦)} , (𝑥, 𝑦) ∉ 𝑀𝑎𝑠𝑘
(2.11)

Each maximum value is used to scale the respective channel values so that the range of

values in that channel becomes [0,1], consequently eliminating the effects of the color of the

illuminant.

𝑜𝑖(𝑥, 𝑦) =
𝑐𝑖(𝑥, 𝑦)

𝐿𝑖,𝑚𝑎𝑥
= 𝐺(𝑥, 𝑦)𝑅𝑖(𝑥, 𝑦) , (𝑥, 𝑦) ∉ 𝑀𝑎𝑠𝑘 (2.12)

In in first row of histograms in figure 2.5 it is possible to observe an example of what

happens to the histogram of the RGB channels. On the left is depicted the original histogram for

one channel where it can be observed that the maximum pixel value is less than 1. On the right

we can observe the histogram after the Max-RGB algorithm is applied, where it appears to have

been "stretched" across the entire tonal range. If this is done for the three channels, and assuming

that the brightest values in the histogram are indeed the representation of some white object in

the scene, the white objects will actually appear white in the image, i.e. will have an RBG value

of (1,1,1).

14

This simplistic approach may work well for most cases, but if sensor noise of even

specular reflections are present in the image in the form of bright pixel intensities, these may be

incorrectly assumed to represent the white color and this results in an incorrect estimation of the

illuminant. This situation is depicted in the middle row of histograms in figure 2.5, in which the

small island in the histogram (exaggerated in size for clarity) represents noise. To prevent this,

instead of using 𝐿𝑖,𝑚𝑎𝑥 as the estimate of the illuminant, the histogram 𝐻𝑖(𝑘) is computed for

each channel and the estimate 𝐿𝑖 is chosen such that the number of pixels with intensity higher

or equal that the intensity at bin 𝑗𝑖 is at least a percentage 𝑝 of the total number of unmasked

pixels 𝑛. This is expressed (2.13) and (2.14) where 𝑛𝑏 is the number of bins in the histogram.

𝐿𝑖 = 𝑐𝑖(𝑗𝑖) (2.13)

𝑝𝑛 ≤ ∑ 𝐻𝑖(𝑘)

𝑛𝑏

𝑘=𝑗𝑖

 𝑎𝑛𝑑 𝑝𝑛 ≥ ∑ 𝐻𝑖(𝑘)

𝑛𝑏

𝑘=𝑗𝑖+1

 (2.14)

The example at the bottom row of figure 2.5 illustrates this idea, where the histogram gets

scaled beyond the tonal range and the pixels in red have their values clipped. The percentage

value 𝑝 is selected in a way that provides good robustness to noise but at the same time

minimizes the clipping, a value of 1% is adequate most of the times.

Figure 2.5: Examples of the effect of the Max-RGB algorithm on the histogram.

𝑏𝑖𝑛 𝑗𝑖

𝐶𝑙𝑖𝑝𝑝𝑖𝑛𝑔 𝑜𝑐𝑐𝑢𝑟𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒 𝑝𝑖𝑥𝑒𝑙𝑠

Noise values

15

In this particular application there is a considerable amount of frame area that is occupied

by the image of the robot’s chassis directly under the camera. Thus another ad hoc variation of

this algorithm consists on restricting the search for the maximum pixel values to a selection of

pixels that corresponds to the image of a small (about 10x10 cm) checkerboard pattern fixed to

the robot in a way that is not visible to other robots and thus still complies with the MSL rules.

This version of the algorithm will be hereafter as designated as Max-RGB on a patch.

2.4.3 Gray-world assumption

Possibly the most popular white balance method, it is not so much an algorithm as it is

an idea from which have spawned several different algorithms, the derivation that ensues is

according to the one found in [1] . The idea is that under most conditions the average color of a

scene is a neutral gray color. Therefore the average pixel color 𝑎𝑖 can be used for obtaining an

estimate of the color of the illuminant 𝐿𝑖, as indicated in the following expressions where 𝑛 is the

number of unmasked pixels.

𝑎𝑖 =
1

𝑛
 ∑𝑐𝑖(𝑥, 𝑦) , (𝑥, 𝑦) ∉ 𝑀𝑎𝑠𝑘

𝑥,𝑦

(2.15)

 =
1

𝑛
 ∑𝐺(𝑥, 𝑦)𝑅𝑖(𝑥, 𝑦)𝐿𝑖 , (𝑥, 𝑦) ∉ 𝑀𝑎𝑠𝑘

𝑥,𝑦

(2.16)

 = 𝐿𝑖
1

𝑛
 ∑𝐺(𝑥, 𝑦)𝑅𝑖(𝑥, 𝑦)

𝑥,𝑦

 , (𝑥, 𝑦) ∉ 𝑀𝑎𝑠𝑘
(2.17)

Both the geometry factor 𝐺 and the reflectance 𝑅𝑖 can be considered as independent

random variables, as there is no correlation between the shape and the color of an object. If there

are many different colors in the scene it’s reasonable to assume that the reflectance 𝑅𝑖 is

uniformly distributed in the range [0, 1].

𝐸[𝐺𝑅𝑖] = 𝐸[𝐺]𝐸[𝑅𝑖] = 𝐸[𝐺] (∫ 𝑥 𝑑𝑥
1

0

) = 𝐸[𝐺]
1

2
 (2.18)

For a large 𝑛 the average color becomes:

16

 𝑎𝑖 = 𝐿𝑖
1

𝑛
 ∑𝐺(𝑥, 𝑦)𝑅𝑖(𝑥, 𝑦)

𝑥,𝑦

 , (𝑥, 𝑦) ∉ 𝑀𝑎𝑠𝑘
(2.19)

 ≈ 𝐿𝑖 𝐸[𝐺𝑅𝑖] (2.20)

 = 𝐿𝑖 𝐸[𝐺]
1

2
 (2.21)

Consequently an estimate of the color of the illuminant is obtained,

𝐿𝑖 ≈
2

 𝐸[𝐺]
 𝑎𝑖 = 𝑓 𝑎𝑖 (2.22)

The color of the output pixel can now be calculated by dividing the current pixel color by

the estimate of the illuminant,

𝑜𝑖(𝑥, 𝑦) =
𝑐𝑖(𝑥, 𝑦)

𝐿𝑖
 ≈

𝑐𝑖(𝑥, 𝑦)

𝑓 𝑎𝑖
= 𝐺(𝑥, 𝑦) 𝑅𝑖(𝑥, 𝑦) , (𝑥, 𝑦) ∉ 𝑀𝑎𝑠𝑘 (2.23)

The 𝑓 factor affects the intensity of the color by scaling all channels equally, if we

assume 𝐸[𝐺] = 1, then 𝑓 = 2. A sometimes useful alternative way to estimate 𝑓 is to use a value

of 𝑓 such that clipping of pixel intensities higher than 1 occurs for 1% of all pixels.

2.5 EXPERIMENTAL PROCEDURES

In order to evaluate and compare the segmentation methods, both by themselves and in

conjunction with the color constancy methods, a set of three experiments was devised. Each of

the experiments is design to evaluate the robustness to a specific type of illumination change.

The changes of illumination attempt to replicate possible scenarios that can occur in MSL

competitions, which normally take place in spaces where many times it is not possible to attain

constant illumination conditions. The types of illumination change that are replicated by the

experiments are respectively of intensity, geometry and color.

17

For each experiment two frames designated as A and B are captured. There is no change

in the scene from frame A to frame B, only the illumination is modified between the captures. In

order to obtain a metrical evaluation of the performance of the segmentation, a reference

segmentation image is created for comparison. This reference is created manually so that the

selected pixels correspond as closely as possible to the areas that are supposed to be

segmented. The results of the segmentations created with the HSV intervals and the RGB picking

methods are then compared to this reference. If a pixel in the segmentation corresponds to a pixel

in the reference, it is considered a true positive, instead if it corresponds to a pixel that is not part

of the reference selection, it is considered a false positive. The results are presented in standard

precision and recall measures, where precision is the fraction of segmented pixels that are true

positives, while recall is the fraction of reference pixels that were segmented.

While interpreting the experimental results, there are some considerations that should be

kept in mind. The reference is manually selected and the boundaries of the selected areas are

fuzzy, for that reason the reference selection is somewhat subjective, i.e. it depends on the

interpretation of the person that created it. This ambiguity, may cause some false positives to

occur near the border of the reference area simply because the reference area might have been

selected in a conservative manner, and the perimeter of the segmentation may be a little

expanded in comparison to reference area. Also, because the environment is color structured the

colors to be segmented are well separated in the chromaticity plane and the number of false

positives is always expected to be low. Because of these reasons, a degradation of the

segmentation effectiveness will manifest itself primarily as a decrement in the number of true

positives with a comparatively small change in the number of false positives. It should also be

noted that even though a recall value close to 1 is obviously desired, it doesn’t necessarily mean

that a higher value, for example 0.85 is much better than say a value of 0.7, as both cases may

correspond to a good detection. Considering also that the main purpose of this experiments is to

evaluate how the segmentation holds when the illumination changes, the most meaningful

indicator that should be considered when evaluating the results is the variation of recall values

between frames A and B. Nevertheless the evaluation of the overall performance should not

exclude the observation of the segmented images alongside the numerical results, leading to a

better and more insightful interpretation of the overall results.

18

2.5.1 Experiment 1: Illumination intensity variation

No Pre-Processing

LUT Frame Precision Recall

HSV interval
A 0.955 0.778

B 0.894 0.879

RGB picking
A 0.995 0.686

B 0.842 0.041

Gray-World Assumption

LUT Frame Precision Recall

HSV interval
A 0.944 0.836

B 0.857 0.910

RGB picking
A 0.999 0.661

B 0.807 0.014

Max-RGB Algorithm

LUT Frame Precision Recall

HSV interval
A 0.927 0.866

B 0.871 0.928

RGB picking
A 0.997 0.670

B 0.846 0.053

Max-RGB on a Patch

LUT Frame Precision Recall

HSV interval
A 0.902 0.844

B 0.889 0.862

RGB picking
A 0.994 0.695

B 0.962 0.138

 Table 2.2: Experiment 1 results.

In this first experiment, the change in illumination is mostly of intensity. It is the kind of

situation that can be experienced if for example the distribution of light sources is not uniform

across the field. A combination of natural and fluorescent illumination was used, with the intensity

being controlled by the changing the number of lit fluorescent lamps.

The HSV intervals segmentation stayed consistent across the illumination change, as can

be attested by the elevated recall values in all cases and a difference in recall values from image

A to image B not higher than 0.101. The segmentation with the RGB picking method degraded

to the point of being useless since the recall values in image B are very small and the recall values

fall an average of 0.62. It can be seen on the figures 2.6 to 2.9 that the detection of the targets

would be almost completely lost. The color constancy algorithms did not have a relevant effect in

any of the cases.

19

 HSV Intervals Method RGB Picking Method
F

ra
m

e
 A

F
ra

m
e
 B

Figure 2.6: Experiment 1 with no color processing.

 HSV Intervals Method RGB Picking Method

F
ra

m
e
 A

F
ra

m
e
 B

Figure 2.7: Experiment 1 with Gray-World color processing.

20

 HSV Intervals Method RGB Picking Method
F

ra
m

e
 A

F
ra

m
e
 B

Figure 2.8: Experiment 1 with Max-RGB color processing.

 HSV Intervals Method RGB Picking Method

F
ra

m
e
 A

F
ra

m
e
 B

Figure 2.9: Experiment 1 with Max-RGB on patch color processing.

21

2.5.2 Experiment 2: Illumination geometry variation

No Pre-Processing

LUT Frame Precision Recall

HSV interval
A 0.915 0.835

B 0.888 0.872

RGB picking
A 0.994 0.704

B 0.993 0.492

Gray-World Assumption

LUT Frame Precision Recall

HSV interval
A 0.912 0.884

B 0.906 0.901

RGB picking
A 0.996 0.646

B 0.998 0.521

Max-RGB Algorithm

LUT Frame Precision Recall

HSV interval
A 0.919 0.856

B 0.911 0.862

RGB picking
A 0.995 0.646

B 0.995 0.530

Max-RGB on a Patch

LUT Frame Precision Recall

HSV interval
A 0.895 0.842

B 0.856 0.812

RGB picking
A 0.992 0.633

B 0.992 0.499

Table 2.3: Experiment 2 results.

In this case the changes in illumination are very subtle, in fact by looking at figure 2.10 it

is hard to spot the difference between frame A and B. The illumination is a mixture of natural and

artificial (fluorescent), with the artificial lighting kept constant in both frames. The frames A and B

were captured with a time interval of about 1 hour this was enough time so that the angle of

incidence of the light changed in a noticeably way, but not the color and intensity.

 Again the recall values with the HSV intervals method stay high and suffer little change

in all cases. In the case of the RGB picking method the quality of the segmentation did decrease

substantially. The fact that even such a subtle change in illumination can deteriorate the

performance of the segmentation produced in the RGB picking method, really comes to show

how much this method is flawed. For all the color constancy methods the variation of the recall

value is lower than in the case were no color processing is applied, however this difference is too

small to draw any conclusions.

22

 HSV Intervals Method RGB Picking Method
F

ra
m

e
 A

F
ra

m
e
 B

Figure 2.10: Experiment 2 with no color processing.

 HSV Intervals Method RGB Picking Method

F
ra

m
e
 A

F
ra

m
e
 B

Figure 2.11: Experiment 2 with Gray-World color processing.

23

 HSV Intervals Method RGB Picking Method
F

ra
m

e
 A

F
ra

m
e
 B

Figure 2.12: Experiment 2 with Max-RGB color processing.

 HSV Intervals Method RGB Picking Method

F
ra

m
e
 A

F
ra

m
e
 B

Figure 2.13: Experiment 2 with Max-RGB on patch color processing.

24

2.5.3 Experiment 3: Illumination color variation

No Pre-Processing

LUT Frame Precision Recall

HSV interval
A 0.868 0.930

B 0.746 0.864

RGB picking
A 0.996 0.747

B 0.323 0.002

Gray-World Assumption

LUT Frame Precision Recall

HSV interval
A 0.851 0.905

B 0.837 0.901

RGB picking
A 0.990 0.712

B 0.981 0.368

Max-RGB Algorithm

LUT Frame Precision Recall

HSV interval
A 0.912 0.925

B 0.917 0.911

RGB picking
A 0.996 0.743

B 0.993 0.331

Max-RGB on a Patch

LUT Frame Precision Recall

HSV interval
A 0.879 0.928

B 0.882 0.921

RGB picking
A 0.992 0.789

B 0.979 0.447

Table 2.4: Experiment 3 results

In this experiment two types of artificial lighting were used, in frame A only the fluorescent

type was used and in frame B lower color temperature tungsten halogen lamps were added. It is

easily observed in figure 2.14 that frame A has an overall bluish appearance, whereas frame B

has a distinctive yellowish look. This kind of scenario may occur for example in the case where

there are windows at one end of the field. In this case the illumination on that side of the field may

be different than on the other side since it is “contaminated” by the sunlight entering the windows.

As in the previous cases, the recall values of the HSV intervals segmentation remain very

consistent, especially in the cases where color constancy algorithms were used. In the case of

the RGB picking the colors constancy methods proved to be effective, the Max-RGB on a patch

performed particularly well, resulting in a usable segmentation, although not nearly as good as

the segmentation obtained from the HSV intervals. In fact, when using the HSV intervals method

and considering that the effects of all color constancy algorithms, although noticeable are minor,

the benefits of using the color constancy may not outweigh the additional computational cost.

25

 HSV Intervals Method RGB Picking Method
F

ra
m

e
 A

F
ra

m
e
 B

Figure 2.14: Experiment 3 with no color processing.

 HSV Intervals Method RGB Picking Method

F
ra

m
e
 A

F
ra

m
e
 B

Figure 2.15: Experiment 3 with Gray-World color processing.

26

 HSV Intervals Method RGB Picking Method
F

ra
m

e
 A

F
ra

m
e
 B

Figure 2.16: Experiment 3 with Max-RGB color processing.

 HSV Intervals Method RGB Picking Method

F
ra

m
e
 A

F
ra

m
e
 B

Figure 2.17: Experiment 3 with Max-RGB on patch color processing.

27

3 GROUND-TRUTH SYSTEM

A ground truth system is undoubtedly an invaluable tool in a mobile robotics laboratory.

It is useful for evaluation, testing and data collecting purposes. In this particular case, it was

helpful in obtaining an estimate of the process error covariance, which would otherwise be

complicated to obtain.

Prior to this work there was already a ground truth system in use at the laboratory. This

system however had a number of serious problems. The biggest problem related by its users was

the very short useful range, which forced most experiences to be conducted in a small area, not

taking advantage of the relatively large testing ground that the soccer field provided. This short

usable range resulted mainly from difficulties in detecting the markers attached to the robots. This

markers consisted of a surface with different colored shapes mounted on top of the robots. Color

segmentation had to be done for each of the colors, and the shapes tended to become flattened

and difficult to detect as the distance from the camera increased.

It was clear from the above reasons that the ground truth system needed to be improved,

namely by solving the markers detection issues and consequently the detection range, ensuring

that the system is useable across the entire field. It was also important to eliminate the need to

use so many different colors, which becomes very cumbersome as the number of robots

increases. The system should be made simple and quick to deploy, it should demand very little

user intervention and should allow to be used with an arbitrary number of robots.

The rest of this chapter is organized as follows: first the hardware components of the

system are presented, namely the cameras and the tracking hardware attached to each robot;

the transformation that relates a pixel position in the images to a world point constrained to a

plane parallel to the ground plane is derived, allowing the measurement of an obstacle’s pose;

next, an easy and fast procedure for the estimation the measurement error variance using the

Kabsch algorithm is proposed; finally the processing of the captured images, namely the detection

and tracking of the markers and ultimately the production of the pose estimates is discussed .

3.1 HARDWARE

The developed ground truth solution is comprised of hardware and software components.

The hardware consists of fixed position cameras, and marker devices that are mounted on each

robot. Two fixed mounted cameras are installed, one at each end of the testing field. These

cameras are capable of capturing images at 1294x964 pixel resolution and at a frame rate of

about 30 fps. Each robot is equipped with tracking markers that were design to provide easily

http://www.thesaurus.com/browse/undoubtedly

28

detectable features across the whole span of the testing field. The apparatus mounted on each

robot consists of a surface covered in black non-reflective material with a blue color high intensity

diffuse LED implanted at each end. Experiments with several types of LEDs that were at the time

available showed that only diffuse blue color LEDs provided a robust detection across the whole

field. The requirements concerning this equipment are that all the robots have the tracking

apparatus mounted horizontally at the same height and oriented in accordance to the robot’s

reference frame.

Figure 3.1: MSL robots with tracking marker apparatus.

3.2 CAMERA TO WORLD TRANSFORMATION

Because the motion of the robots is constrained to the ground plane, it’s possible to take

advantage of that fact to find a unique relationship between the coordinates of point in the world

reference frame and its respective image coordinates as long as that point is static relative to the

robots reference frame. In this particular case this transformation allows to immediately obtain the

world coordinates of a tracking marker by detecting its pixel position, or more precisely the

centroid of the pixel region where it is represented.

Consider the equation for a general pinhole camera projection, in which (𝑥, 𝑦, 1)𝑇 is an

image point in homogeneous coordinates and (𝑋, 𝑌, 𝑍, 1)𝑇 is the corresponding scene point in

homogenous world coordinates,

29

𝛼 [
𝑥
𝑦
1
] = [

𝑓 0 c𝑥 0
0 𝑓 c𝑦 0

0 0 1 0

] [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧
0 0 0 1

] [

𝑋
𝑌
𝑍
1

] (3.1)

The coordinates of the world are transformed by the extrinsic parameters matrix, which

describes the rotation and a translation from the world reference frame to the camera reference

frame. The camera’s geometric properties are represented in the intrinsic parameter matrix, which

is a projective mapping from 3D camera coordinates to 2D homogeneous image coordinates.

As stated before the markers motion is restricted to a plane. Because the world reference

frame can be chosen arbitrarily as convenient, we can set Z=0, allowing the elimination of a

column in the extrinsic parameter matrix in equation (3.1). After some simplification we obtain,

𝛼 [
𝑥
𝑦
1
] = [

𝑓 0 c𝑥
0 𝑓 c𝑦
0 0 1

] [

𝑟11 𝑟12 𝑡𝑥
𝑟21 𝑟22 𝑡𝑦
𝑟31 𝑟32 𝑡𝑧

] [
𝑋
𝑌
1
] (3.2)

For this particular application it’s not necessary to explicitly estimate the intrinsic and

extrinsic parameter matrix values, so their product may be represented by a homography 𝑯,

𝛼 [
𝑥
𝑦
1
] = [

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33

] [
𝑋
𝑌
1
] (3.3)

This transformation is invertible, thus having an estimate of its value allows converting

world to image coordinates, or more important for this context, image coordinates to world

coordinates using its inverse. From the expression (3.3) we get,

𝑥 =
ℎ11𝑋 + ℎ12𝑌 + ℎ13
ℎ31𝑋 + ℎ32𝑌 + ℎ33

 (3.4)

𝑦 =
ℎ21𝑋 + ℎ22𝑌 + ℎ23
ℎ31𝑋 + ℎ32𝑌 + ℎ33

 (3.5)

By multiplying through by the denominator and rearranging, equations (3.4) and (3.5)

become,

ℎ11𝑋 + ℎ12𝑌 + ℎ13 − ℎ31𝑋𝑥 − ℎ32𝑌x − ℎ33x = 0 (3.6)

ℎ21𝑋 + ℎ22𝑌 + ℎ23 − ℎ31𝑋𝑦 − ℎ32𝑌y − ℎ33y = 0 (3.7)

This equations can be expressed in matrix format for a set of corresponding image and

world points,

𝑨 𝒉 = 0 (3.8)

30

[

𝑋1 𝑌1 1 0 0 0 −𝑋1𝑥1 −𝑌1𝑥1 −𝑥1
0 0 0 𝑋1 𝑌1 1 −𝑋1𝑦1 −𝑌1𝑦1 −𝑦1
𝑋2 𝑌2 1 0 0 0 −𝑋2𝑥2 −𝑌2𝑥2 −𝑥2
0 0 0 𝑋2 𝑌2 1 −𝑋2𝑦2 −𝑌2𝑦2 −𝑦2

⋮
𝑋𝑛 𝑌𝑛 1 0 0 0 −𝑋𝑛𝑥n −𝑌𝑛𝑥n −𝑥n
0 0 0 𝑋𝑛 𝑌𝑛 1 −𝑋𝑛𝑦n −𝑌𝑛𝑦n −𝑦n]

[

ℎ11
ℎ12
ℎ13
ℎ21
ℎ22
ℎ23
ℎ31
ℎ32
ℎ33]

=

[

0
0
0
0
⋮
0
0]

 (3.9)

For a set of 𝑛 ≥ 4 points, the least squares estimate of 𝒉 can be found by using the

singular value decomposition (SVD) transform to decompose 𝑨𝑇𝑨,

𝑨𝑇𝑨 = 𝑼𝑫𝑼𝑇 (3.10)

The least squares estimate of 𝒉 subject to ‖𝒉‖ = 1 is given by the column of 𝑼

associated with the smallest eigenvalue in 𝑫.

Equation (3.1) models an ideal pinhole camera, however in a real camera with lenses

there are distortion effects that are often too important to neglect. It is out of the scope of this work

to provide a detailed presentation of lens distortion models and how to estimate their parameters.

The distortion model used in this work is for convenience the one used in the OpenCV calibration

routines. OpenCV offers calibration routines for obtaining the distortion model parameters, and

also undistortion routines that correct an image according to the distortion model and its estimated

parameters. This model considers two separate distortion components, radial and tangential

distortion. The radial component is responsible for the barrel effect, which is more pronounced

the wider the field of view of the lens. A pair of undistorted pixel coordinates (𝑥′, y’) is calculated

using the following expressions,

𝑥′ = 𝑥(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) (3.11)

 y’ = y(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) (3.12)

Where 𝑟 is the distance of the pixel to the optical center (𝑐𝑥 , 𝑐𝑦), which is also obtained

from the OpenCV calibration. Tangential distortion occurs when the image plane is not completely

parallel to the lenses. The model for tangential distortion is represented in the following

expressions,

𝑥′ = 𝑥 + (2𝑝1𝑥𝑦 + 𝑝2(𝑟
2 + 2𝑥2)) (3.12)

𝑦′ = 𝑦 + (2𝑝2𝑥𝑦 + 𝑝1(𝑟
2 + 2𝑦2)) (3.13)

Figure 3.2 shows the undistorted images used to estimate the homographies for the left

and right cameras respectively. Because of the relatively large distance between cameras and

the small size of the available checkerboard pattern available, it was not practical to capture a

31

simultaneous image of the pattern in both cameras. The checkerboard pattern was mounted on

top of the robot at a height equal to the height of the features that will be detected. After the

capture of the images for the left camera, the pattern was translated along its x direction with the

help of guide wires. In this way the world points of the checkerboard points at each position can

be expressed in the same reference frame. This means that the pixel coordinates of each camera

are related by each respective homography transformation to the same world reference frame.

Figure 3.2: Calibration images.

3.3 MEASUREMENT ERROR VARIANCE ESTIMATION

Now that we have a transformation from image points to world points, the camera can be

used to take measurements of the world position of markers detected in the image. The camera

sensor is not continuous and of infinite precision, the image is made up of discrete pixels and

therefore there is an error associated with the measurements. By simple geometrical reasoning

and inspection (objects get smaller the further they are) it is easy to conclude that the scene area

covered by each pixel increases with the distance to the camera, it is thus natural to assume that

the further away the measured position the larger the error. The obvious approach to the

estimation of the variance of this error involves the measuring of a good number points across

the whole field. The problem with this approach is that precisely positioning those points on a

relatively large field is a very time consuming and error prone operation. For applications where

it is deemed acceptable to sacrifice some accuracy, the alternative method for estimating the

measurement error variance proposed in this work provides a much simpler and faster procedure.

A few assumptions are made: it is assumed that the error probability is Gaussian distributed with

mean 𝜇 = 0, this is the case if it is considered that all of the error is caused by the sensor

discretization. Any fixed bias resulting of an imperfect calibration is neglected; it is assumed that

the covariance matrix is diagonal with 𝜎11 = 𝜎22 = 𝜎 and that the value of this covariance

32

parameter 𝜎 which for simplicity will be referred simply as variance, is a function of the distance

from measured position to the camera.

The method is based on finding the alignment between a set of coordinates

corresponding to corner points on a checkerboard of known dimension and a set of coordinates

obtained from the image to world transformation of the image coordinates of that checkerboard

corners. It is assumed that the error variance can be approximated by the mean squared deviation

between the two aligned sets. Several sets of points are obtained by placing the checkerboard at

various distances from the camera. Each one is aligned with the known checkerboard coordinates

to produce a sample of the variance at a distance given by the average distance of the

reconstructed points to the camera. In the next section the method used to align each set of

reconstructed coordinates to the set of know corner coordinates is presented.

3.3.1 Kabsch Algorithm

The Kabsch algorithm is a method for solving a constrained orthogonal Procrustes

problem that consists of finding the rotation matrix that minimizes the root mean squared deviation

between two sets of corresponding points.

Let the 𝑷′ be the chessboard corner points expressed in its own coordinate frame, and

𝑸′ the respective points with world coordinates calculated using the homographic transformation

of the image points. The problem consists of finding the transformation which most closely maps

one group one points to the other.

𝑷′ = [

𝑥1 𝑦1
⋮ ⋮
𝑥𝑁 𝑦𝑁

] , 𝑸′ = [
𝑥1
′ 𝑦1

′

⋮ ⋮
𝑥𝑁
′ 𝑦𝑁

′
] (3.14)

Before using the Kabsch algorithm if is first necessary to subtract the centroid from both sets of

point, thus taking care of the translation part of the transformation,

𝑷 =

[

𝑥1 −

1

𝑁
∑𝑥𝑖

𝑁

𝑖=0

𝑦1 −
1

𝑁
∑𝑦𝑖

𝑁

𝑖=0

⋮ ⋮

𝑥𝑁 −
1

𝑁
∑𝑥𝑖

𝑁

𝑖=0

𝑦𝑁 −
1

𝑁
∑𝑦𝑖

𝑁

𝑖=0]

 , 𝑸 =

[

𝑥1
′ −

1

𝑁
∑𝑥𝑖

′

𝑁

𝑖=0

𝑦1
′ −

1

𝑁
∑𝑦𝑖

′

𝑁

𝑖=0

⋮ ⋮

𝑥𝑁
′ −

1

𝑁
∑𝑥𝑖

′

𝑁

𝑖=0

𝑦𝑁
′ −

1

𝑁
∑𝑦𝑖

′

𝑁

𝑖=0]

 (3.15)

The problem of finding the rotation that best aligns 𝑷 with 𝑸 is expressed as follows,

𝑹 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜴
‖𝑷𝜴 − 𝑸‖𝐹 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜴𝑇𝜴 = 𝑰 𝑎𝑛𝑑 |𝜴| = 1

(3.16)

Where ‖. ‖𝐹 denotes Frobenius norm, and for a matrix 𝑨 with real entries is defined as,

33

‖𝑨‖𝐹 = √𝑡𝑟𝑎𝑐𝑒(𝑨
𝑇𝑨) (3.17)

Consider the matrix 𝑴 defined as follows,

𝑴 = 𝑷𝑇𝑸 (3.18)

Decomposing 𝑴 using the Singular Value Decomposition (SVD) transform results in,

𝑴 = 𝑽𝑺𝑾𝑇 (3.19)

To ensure that the determinant of the transformation is positive, and thus ensure a right handed

coordinate system, the following calculation is needed,

𝑑 = 𝑠𝑖𝑔𝑛(|𝑾𝑽𝑇|) (3.20)

Finally, the rotation matrix that minimizes the root mean squared deviation between the two sets

of points is given by,

𝑹 = 𝑾[
1 0
0 𝑑

]𝑽𝑇 (3.21)

3.3.2 Estimation procedure

Estimating the variance requires a significant amount of data in the form of world and pixel

coordinate pairs. Placing and measuring precise positions in an area of relatively large

dimensions as the playing field, makes this a tedious and time consuming task. In this proposed

method this task is greatly simplified, because no precise measuring of world positions is

necessary. A checker board pattern of known dimension was installed on top of the robot at the

same height as the tracking marker apparatus. The robot was then moved across the field and a

set of roughly even spaced samples was selected. It is not necessary to sample a precise location,

but an effort should be made to get a good distribution of distances as this leads to a better

estimation. In figure 3.3, it is possible to observe a few of the samples used to estimate the

variance as a function of distance from the camera.

The image coordinates of corner points of the checkerboards were extracted, and

transformed into world coordinates. Next the extracted points in each sample are aligned with the

known checkerboard corners coordinates. This can be observed in figure 3.4 in which the red

points are known position of the corner points and the blue points are the detected corner points.

It is clear just by observing the figure that the deviation between the two sets of points increases

as the distance from the camera increases, as it was expected. The mean squared error is

calculated and used as estimator of the variance. Next, regression is performed on the data, using

the average of the points distance from the camera in each sample as the independent variable

and the estimated variance as the dependent variable. Figure 3.5 shows the estimate of the

34

variance as a function of the distance from the camera, which is the result of fitting a fourth degree

polynomial to the samples.

Figure 3.3: examples of checkerboard images used to estimate the error variance.

Figure 3.4: Detected corner points aligned with known positions.

35

The final estimate of the position 𝒙 = (𝑥, 𝑦) and error variance 𝜎2 are obtained by fusing

the estimates from both cameras, by means of an inverse variance weighted average. Which

corresponds to the maximum likelihood estimator. Let the position estimates from the left and

right cameras be 𝒙𝑙 and 𝒙𝑟 and their respective variances be 𝜎𝑙
2 and 𝜎𝑟

2 then, the final variance

and estimate are given in expressions (3.22) and (3.23). Figure 3.6 shows the value of the final

variance as a function of the position on the field.

𝜎2 =
1

𝜎𝑙
−2 + 𝜎𝑟

−2
 (3.22)

𝒙 = 𝜎2 (
𝒙𝑙

𝜎𝑙
2 +

𝒙𝑟
𝜎𝑟
2
) (3.23)

Figure 3.5: Variance as a function of the distance from the camera.

36

Figure 3.6: Variance as function of the position of the measurement.

3.4 SOFTWARE

This section is dedicated to the processing of the collected image sequences. Some of

the methods used in the detection and tracking of markers are similar to the ones that each robot

uses for obstacle detection and tracking. The purpose of this section is to provide an overview of

the sequence of operations as illustrated in figure 3.7. Nevertheless more detailed explanations

of these methods are covered further ahead in this work.

Figure 3.7: Sequence of processing operations.

Morphological filtering

Contour detection

Kalman filter prediction

Hungarian algorithm Kalman filter update

INPUT
Timestamped image sequence

OUTPUT
Pose estimates

Segmentation

37

The first thing being addressed is the detection of the markers. As previously stated, each

robot has a blue LED marker at both the front and back. By detecting both markers, one finds the

full pose of the robot, its position and orientation. The segmentation system that has been

presented in Chapter 2 is used to generate a binary image. A mask is used to eliminate the parts

of the image that correspond to robot positions outside the playing field. This masking is

particularly important to avoid false positives that can occur near windows. Next the result is

subjected to morphological filtering, more precisely an opening operation, thus eliminating small

clusters of pixels that represent false positive detections that may exist. A contour finding

algorithm [9] is then used to identify each of the blobs that represents a marker and extract the

respective centroids. All markers are identical and there is no a priori information about the order

they’re going to be labeled, which is of course dependent on unknown initial conditions. Therefore

the user must provide the correspondences between the labels attributed to the detections and

the markers for the initial conditions. After the program processes the detection on the first image

of the sequence the user is prompted to identify which label corresponds to the back and front of

each robot. After this initial identification of marker pairs no further user interaction is required.

Each marker is tracked resorting to a method which uses one Kalman filter per marker

and the Hungarian method for associating detections between frames. Both electrical noise in the

sensor and illumination noise in the environment cause the measurement to be noisy. Even if the

robot is completely motionless, some oscillation is present in each marker’s detected position.

The unknown noise variances needed for the Kalman filtering, are tuned through trial and error

so that the filter produces a smooth output but at the same time ensuring it doesn’t respond

sluggishly to the robot accelerations. The use of the Kalman filter allows dealing with situations

where the detection of a marker is temporarily lost. On which case the position of the marker

continues being predicted until the detection is restored. For each iteration the Kalman filter

produces a prediction of the state of each tracked marker based on the previous state estimate.

The correspondences between the predicted markers and the ones detected are found resorting

to the Hungarian method. The algorithm receives as input the distances between each predicted

marker position and the position of all detected markers and outputs the correspondences that

minimize the sum of the distances between each predicted marker position and the corresponding

detected marker position. Finally the Kalman filter update step produces the markers state

estimate.

During the processing of the images the program outputs a graphical display of the

estimates, allowing the user to verify that no mishaps occur. The user can observe both the detect

blobs and their labels on the segmented image or the original image for both cameras. Overlaid

arrows display the position and orientation of each tracked robot as can be seen in figure 3.8.

The program also displays the pose estimates in the world reference frame as can be

seen in figure 3.9. The estimates obtained for each camera are shown as well as the final

estimate. Note that the proximal and distal designation are just alternative nomenclature for the

left and right fixed cameras respectively. That nomenclature was meant to be less confusing and

38

ambiguous than the left and right designation since the proximal and distal are relative to the user

workstation.

Figure 3.8: Marker detection example.

Figure 3.9: Example output window of the ground-truth system.

39

4 OBSTACLE DETECTION

This chapter addresses the problem of detecting obstacles, namely other robots, using

only the image captured by the robots camera. In a multi agent environment such as MSL soccer

the choice of sensors is somewhat limited. Active sensors, i.e. sensors that emit energy into the

environment, such as sonar, infra-red and laser range finders are widely used in most mobile

robotics application, for the purpose of detecting obstacles. Sensors of this type however, are

prone to crosstalk when used simultaneously by different robots, thus rendering their

measurements very unreliable. The detection of obstacles is completely dependent on being able

to extract obstacle information from the camera’s image. Because being able to reliably detect

obstacles is absolutely fundamental for the overall playing performance of the robots, it is of the

utmost importance to have an effective and efficient vision based obstacle detection.

The rest of this chapter is organized as follows: the robot’s omnidirectional camera is

going to be characterized by explaining how it’s modeled and how a pixel in the image is

corresponded to a world point in the ground plane; next, it is detailed the procedure that was used

to estimate the error variance associated with the camera measurements; after that, the obstacle

detection as such is addressed, the image processing methods are presented, as well as the

heuristic filtering strategies used to extract useful obstacle information from the segmented image.

4.1 CAMERA MODEL

The robots are equipped with an omnidirectional dioptric vision system composed of a

gigabit Ethernet camera with a fisheye lens, providing a field of view slightly larger than 180º. The

camera is mounted facing downward on an elevated platform supported by thin struts, so that the

view is minimally obstructed in all directions.

When omnidirectional vision systems first started to be used in robotic applications they

were most often specially made catadioptric systems, composed of a curved mirror and a

perspective camera. This curved mirror had a well-known geometry, and it was usually fabricated

to match a desired model. In recent times omnidirectional dioptric systems are more available

and are a less costly solution. However, many of these omnidirectional camera systems are

marketed for consumer applications, and most of the times no technical data concerning lens

geometry is made available by the manufacturer. In the particular case of the cameras used in

this work this was no exception.

If it’s only taken into consideration the task of detecting obstacles in the ground plane, the

problem is equivalent to finding a mapping between pixels coordinates and ground plane

40

coordinates. Furthermore assuming that the lens is symmetric around its optical axis, this problem

is reduced to finding a mapping between a distance in pixels and a distance in the ground plane.

This could be solve by collecting data, and performing regression to estimate the mapping

function.

Although the primary concern in this work is the detection of obstacles in the ground

plane, one should consider the global utility of the omnidirectional camera and be aware of its

uses beyond the scope of this work. The choice of a camera model must reflect and account for

these necessities. Consider the example of the detection of the ball. Many times the ball travels

through the air, as most robots are able to kick it off the ground. To be able to estimate the position

of the ball a model more sophisticated than the one suggested in the previous paragraph is

needed. An omnidirectional camera model that allows the association of a pixel position with a

line in world space in which lie all points that are projected onto that pixel, much like in a normal

perspective camera, can be used both for estimating the 3D position of a symmetrical object of

known dimensions and the position of a point that belongs to a known plane.

The OCamCalib is an industry proven and widely recognized omnidirectional camera

calibration tool-box. It is able to calibrate most types of omnidirectional vision systems, both

catadioptric and dioptric, as long as the camera, at least approximately, meets the requirement

of having a single effective viewpoint. OCamCalib provides methods to calibrate a camera from

a series of captured checkerboard images. It also provides methods to project a scene point into

the image and conversely reconstruct the unit vector that emanates from the view point given an

image position.

Figure 4.1: Projection of scene points on the sensor plane.

The derivation of the calibration method is beyond the scope of this work and it’s

described in detail in [3][4][5]. Nonetheless, in order to take full advantage of the OCamCalib

calibration it is important for the user to understand how the camera model works.

𝑿1

𝑿2

𝑿3

𝒖3
′′ 𝒖2

′′ 𝒖1
′′ 𝑆𝑒𝑛𝑠𝑜𝑟 𝑝𝑙𝑎𝑛𝑒

𝐺𝑟𝑜𝑢𝑛𝑑 𝑝𝑙𝑎𝑛𝑒

𝒈(𝒖2
′′)

𝒈(𝒖1
′′)

𝒈(𝒖3
′′)

𝑂𝑐

41

In figure 4.1 it is possible to observe the projection of scene points into the sensor plane.

The sensor plane is a hypothetical plane orthogonal to the lens axis. A point 𝒖′′ in the sensor

plane, and expressed in metric coordinates, is related to a point 𝒖′ in the camera image plane,

expressed in pixel coordinates, by means of an affine transformation as expressed in equation

(4.1). This transformation, models the discretization process and axis misalignments.

It be can observed in figure 4.1 that scene points are projected in the sensor plane, by an

orthogonal projection of the intersection of the line connecting the optical center 𝑂𝑐 to the scene

point with a surface defined by the function 𝒈. The expression (4.2) captures this relation between

a scene point 𝑿 (in homogeneous coordinates) and a point in the sensor plane 𝒖′′. The matrix

𝑷 = [𝑹 | 𝒕] includes the rotation and translation that relates the scene reference frame with the

sensor plane reference frame.

Considering the rotational symmetry with respect to the sensor axis, let the function 𝒈 be

defined as follows,

𝒈(𝑢′′, 𝑣′′) = (𝑢′′, 𝑣′′, 𝑓(𝑢′′, 𝑣′′))𝑇 (4.3)

The function 𝑓(𝑢′′, 𝑣′′) is a polynomial of degree 𝑁 as defined in the following expression,

where 𝜌 = √𝑢′′2 + 𝑣′′2 is the metric distance from the sensor axis.

𝑓(𝑢′′, 𝑣′′) = 𝑎0 + 𝑎1𝜌 + 𝑎2𝜌
2 + …+ 𝑎𝑁𝜌

𝑁 (4.4)

The relation between a scene point and an image point can be rewritten as,

𝜆 [
𝑢′′

𝑣′′

𝑤′′

] = 𝜆 𝒈(𝐴𝒖′ + 𝑡) = 𝜆 [
𝐴𝒖′ + 𝑡
𝑓(𝑢′′, 𝑣′′)

] = 𝑷 𝑿, 𝜆 > 0 (4.5)

The calibration procedure produces the values for the polynomial coefficients 𝑎0 to 𝑎𝑁, and the

elements of the affine transform 𝑨 and 𝒕.

In this particular case the camera is fixed in relation to the robot’s body, and the robot motion is

constrained to the ground plane. The robot’s reference frame X and Y axis are made coplanar

𝒖′′ = 𝑨𝒖′ + 𝒕 (4.1)

𝜆 𝒈(𝒖′′) = 𝜆 𝒈(𝑨𝒖′ + 𝒕) = 𝑷 𝑿, 𝜆 > 0 (4.2)

42

with the ground plane and the origin is placed at robot’s geometrical center ground coordinates.

The gathered data consists of points in the ground plane with coordinates expressed in the robot

reference frame and respective pixel coordinates, the extrinsic parameters estimation routines

provided by OCamCalib were used to obtain the transformation that relates the robot reference

frame to the camera reference frame. Having the complete calibration, we can use the

OCamCalib’s included methods to find the unit vector emanating from the view point that is

associated with a given image pixel. Because the transformation between the camera and the

robot reference frame is known, the line defined by the found unit vector and the view point can

be intersected with the ground plane to obtain the ground coordinates in respect to the robot’s

reference frame that correspond to the image pixel coordinates. It is also possible to obtain the

3d coordinates of the ball. By obtaining the lines that are tangent to the ball, as illustrated in figure

4.1, and knowing its diameter, the distance of the ball’s center to the view point can be obtained

by simple trigonometry.

4.2 ESTIMATION OF THE MEASUREMENT ERROR VARIANCE

The measurements of ground plane positions from pixel positions, obtained as described

in the previous section, are obviously affected by noise. One significant source of noise has to do

with the fact that the image represents a discretization of a continuous space. It is easy to observe

that the furthest a pixel is from the image center, the largest the area of ground plane that is

projected onto that pixel. It is therefore natural to assume that the variance of the measurement

error ought to increase with the distance from the image center. In order to obtain an estimate of

this error variance some assumptions are made: attending to the rotational symmetry of the lens

around the optical axis and that the image plane is parallel to the ground plane, it is assumed that

the variance depends only on the distance of the pixel to the optical center’s projection

coordinates on the image (which were estimated during the calibration); it is assumed that the

error probability is Gaussian distributed with mean 𝜇 = 0. The procedures starts with the collection

of images with a checkerboard pattern placed on the ground plane at precisely measured

distances from the optical center projection on the ground plane. Figure 4.2 shows a few

examples of the used images. From each of this images the estimated coordinates of the pattern

corner points are compared with the known positions, as illustrated in figure 4.3, and the mean

squared deviation is calculated. This value is used as estimator of the variance. The samples

consist of the average of the points distance as independent variable and the estimated variance

as the dependent variable. Figure 4.4 shows the result of fitting a fourth degree polynomial to the

samples, thus obtaining an estimate of the variance as a function of the distance.

43

Figure 4.2: A few of the images used for estimation of error variance, patterns at distances of
25cm, 100cm, 250cm and 400cm.

Figure 4.3: Measurements of pattern points obtained for the patterns positioned at multiple
distances.

44

Figure 4.4: Estimate of the ground plane position measurement error variance as a function of
distance.

4.3 DETECTION AND CLASSIFICATION.

This section deals with the process of extracting obstacle information, namely position

and type of obstacle, from the omnidirectional image. The first step in this process is to segment

the image as described in Chapter 2. Three colors are relevant for obstacle detection: black,

magenta and cyan. While the robots chassis should be mostly of black color, the magenta and

cyan colors are used as team identifiers. After the image is segmented, morphological filtering is

performed, more specifically an opening operation. This filtering stage is meant to eliminate small

disconnected blobs which merely represent noise and smooth out the significant blobs, and can

be loosely interpreted as low pass filtering of obstacle information. A morphological opening

operation is composed of an erosion operation followed by a dilation operation, performed on

each pixel 𝑃(𝑥, 𝑦), as defined in equations (4.6) and (4.7) respectively, where 𝑃′′(𝑥, 𝑦) represents

the final pixel result. These operations use a small binary image as a structuring element 𝐸. A 5x5

pixel square proved adequate for this application.

𝑃′(𝑥, 𝑦) = Min
(𝑥′,𝑦′): 𝐸(𝑥′,𝑦′)≠0

𝑃(𝑥 + 𝑥′, 𝑦 + 𝑦′) (4.6)

𝑃′′(𝑥, 𝑦) = Max

(𝑥′,𝑦′): 𝐸(𝑥′,𝑦′)≠0
𝑃′(𝑥 + 𝑥′, 𝑦 + 𝑦′) (4.7)

45

The detection scheme relies on a ray casting method instead of explicit identification and

labeling of blobs. The former method is a lot more computationally efficient, and in this particular

application the pixels significant to the detection of an obstacle’s position are the part of the blob’s

boundary pixels that is visible from the robot’s center. This pixels are the ones that correspond to

positions in the ground plane, for which a coordinate transformation is available. A small downside

of using ray casting is that as rays get further from the robot’s center they get further apart,

consequently increasing the detection error variance. However, because this happens at

distances from the robot center where the measurement resolution is already low, this detrimental

effect can for practical purposes be neglected.

Several rays are casted radially from the robot’s geometrical center with an angular

resolution of one degree, as depicted in figure 4.5. An image mask is used to make sure the rays

don’t intersect the robots body, including the uprights that support the camera assembly.

 Each ray is checked pixel by pixel from the robots center to the outside, until the ray ends

or a pixel that was segmented as part of an obstacle is found, in which case the ray continues to

be checked until the end or a pixel that was not segmented as part of an obstacle is found. The

distance from the first pixel to the second is called the detection length. Adjacent rays in which a

detection was registered are then grouped together, resulting in a set of obstacle candidates.

Further filtering to exclude certain candidates is then necessary in order to avoid false

positive detections. Some common objects that can be found in the playing field, such as cables,

pieces of duct tape, seams in the green field and even trash may be incorrectly identified as an

obstacle. Some heuristics were devised to exclude this detections from the set of candidates.

First, the extremities of all candidates are trimmed, by excluding the first rays from both sides until

a ray is found whose detection length is above a certain threshold. Next, objects in which a large

percentage of the rays have a detection length below a certain threshold are discarded. Finally,

an area criteria discards candidates for which the sum of the detection lengths is below a certain

threshold.

It was defined that each detected obstacle is to be represented by a distance and a width

from the robot’s center. It can equally be represented by two points corresponding to vertices of

an isosceles triangle with two edges collinear with the rays at the extremities of the detected

obstacle and with the other edge tangent to the blob, as illustrated in figure 4.6.

At this stage a classification procedure is performed on each of the obstacles to try to

identify whether it is a robot and of which team. Three classes of obstacles are defined, one for

each team and one undefined obstacle class. An undefined obstacle, is an obstacle that is

significant to navigation and avoidance purposes but was not classified as being a robot belonging

to either the cyan or magenta teams.

The classification of the detected obstacles, follows a simple procedure. For each

obstacle the distance in between the two points that represent it is checked to see if it is

approximate, within a certain tolerance, to the expected diameter of a robot which is limited by

46

MSL soccer rules. If not, the obstacle is immediately classified as an undefined obstacle. On the

other hand, if the width of the obstacle is consistent with a robot’s width, the obstacle has to be

subjected to further classification to try to identify which team it belongs to.

Figure 4.5: Ray-casting detection

A circular area of the image is chosen for each obstacle that is centered near to the

centroid of the robots color identifier blob if one exists. Notice the position and shape of the color

identifier is not set by the rules and varies from one team to another, so the radius of this circular

area must be generous enough to allow for this variation. If the percentage of pixels in that circular

area that were segmented to a team color is above a certain threshold then the obstacle is

classified as a robot belonging to that team. Otherwise the obstacle classification defaults to

undefined. The distance 𝐷 and radius 𝑅 of the circular area used for color classification are

obtained by the following very simple heuristics,

𝐷 = 𝛼(𝑑 + 𝑤) (4.8)

𝑅 = 𝛽𝑤 (4.9)

Where 𝑑 and 𝑤 are the obstacle width and distance respectively, and the linear factors 𝛼 and 𝛽

are determined experimentally.

47

One issue remains to be addressed. It’s the situation that occurs when two obstacles are

closer to each other than the width of the robot, i.e. the gap between obstacles does not allow the

robot to pass. In this case the narrow gap constitutes a de facto obstacle to the motion of the

robot and so a new obstacle of undefined class in included in the detection output. If any of the

obstacles that compose this new merged obstacle has been classified as a robot it still gets to be

included in the detection output, otherwise if it was classified as undefined it is excluded. This

merging process is done iteratively until there are no more obstacles to be merged.

Figure 4.6: Detection example.

As an example, consider the case presented in the previous figure. In this example there

are two robot obstacles, represented by the grey ovals on the right hand side. On the left is

represented the observer robot and its geometric center 𝑂 from where the rays are casted. The

position of each of the detected obstacles is defined by two points 𝑃𝑖. The green circles are the

color classification areas. In this particular case the system would output the following detection

results:

 Object delimited by the world coordinates of 𝑃1 and 𝑃2, classified as a robot by the

distance between the world coordinates 𝑃1 and 𝑃2 and further classified as a member of
magenta team by analysis of the pixels centered around 𝐶1.

 Object delimited by the world coordinates of 𝑃3 and 𝑃4, classified as a robot by the
distance between the world coordinates 𝑃3 and 𝑃4 and further classified as a member of

cyan team by analysis of the pixels centered around 𝐶2.

 Object delimited by the world coordinates of 𝑃1 and 𝑃4, classified as an undefined

obstacle, created after verifying that the distance between the coordinates of 𝑃2 and 𝑃3
is narrower than the width of a robot.

𝑂

𝑃1

𝑃3

𝑃2

𝑃4

𝐶 1
⬚

𝐶 2
⬚

48

49

5 OBSTACLE TRACKING

5.1 INTRODUCTION

Up until this point, all the focus has been on extracting obstacle information from an

image, which is information concerning the instant the image was captured. This chapter is

concerned with the motion of the obstacles over time, as perceived by the observer robot. Many

higher level tasks such as obstacle avoidance, ball passing and interception, amongst other, can

greatly benefit from having some knowledge about the motion of the obstacles and being able to

anticipate their state further in time. This added level of insight, on what is a very dynamic

environment, allows the implementation and use of more sophisticated playing behaviors.

Additionally, more accurate state estimates can be obtained by combining the instantaneous state

observations with the predicted state based on past state estimates and control inputs, provided

that there is some previous knowledge on the noise characteristics of both the observations and

the predictions. Furthermore, having the ability to predict an obstacle state means that even if an

obstacle is temporarily lost from detection, for example when occluded by another, it is still

possible to keep tracking it so that when eventually the observations are resumed that obstacle

can be correctly identified as the one previously lost from detection.

The remainder of this chapter is laid out as follows. Initially, the model of the dynamics of

the obstacles is derived. This model is used to predict the state evolution, by considering the

previous state estimate, the velocity controls on the observer robot and the elapsed time. Next,

the method used to estimate the error covariance associated with the state predictions generated

by the model of the dynamics is addressed. After that, the Kalman filter is presented. This

recursive optimal estimator, uses a prediction of the current state, and the current state

observations to produce an optimal state estimation. However, to be able to do this it needs to be

able to known which predictions correspond to each of the observations. This problem can be

modeled as an assignment optimization problem, which is then solved resorting to the well-known

Hungarian algorithm. Finally, at the end of this chapter an illustrative example is presented, where

all components work together in a game scenario.

5.2 MODEL OF THE DYNAMICS

The velocity of an obstacle in relation to the observer robot can be decomposed in three

components: velocity of the target’s own motion in relation to the observer, an apparent velocity

caused by the linear motion of the observer robots reference frame and apparent velocity caused

50

by the observer’s robot angular velocity. In the example illustrated in figure 5.1 we can observe

the velocity component vectors. If the observer robot travels with velocity 𝒗𝒐 in relation to the

world reference frame, then a static landmark that it observes appears to be moving in the

opposite direction with velocity−𝒗𝒐. In a similar way, if the reference frame of the observer robot

rotates with angular velocity 𝝎𝟎 , any static landmark it observes will appear to be orbiting around

its origin in the opposite direction with tangential velocity 𝒗𝜔.

Figure 5.1: Obstacle velocity components.

The velocity of an object moving under uniform circular motion with an angular velocity 𝝎

and radius 𝒓 is given by,

𝒗 = 𝝎 × 𝒓 (5.1)

The component of the target’s velocity due to the angular velocity of the observer robot

and assuming constant velocity is given by,

𝒗𝑤 = −𝝎𝒐 × 𝒓 (5.2)

This equation can be written as the formal determinant,

𝒗𝜔 = |

𝒙 𝒚 𝒛
0 0 −𝜔
𝑥𝑡 𝑦𝑡 0

| = 𝜔𝑦𝑡𝒙 − 𝜔𝑥𝑡𝒚 (5.3)

Adding all three components the velocity we obtain,

𝒗 = [
𝑣𝑥
𝑣𝑦
] = [

𝑣𝑡𝑥 − 𝑣𝑜𝑥 + 𝜔𝑦𝑡
𝑣𝑡𝑦 − 𝑣𝑜𝑦 − 𝜔𝑥𝑡

] (5.4)

𝒙

𝒚

(𝑥𝑡 , 𝑦𝑡)

𝒗𝑡

𝒗𝑜

−𝒗𝑜

𝒗𝜔

𝝎𝒐

Target

Observer

51

Taking the time derivative under the assumption of constant velocities, we obtain,

�̇� = [
𝑣�̇�
𝑣�̇�
] = [

 𝜔𝑣𝑦𝑡
−𝜔𝑣𝑥𝑡

] (5.5)

The continuous time space-state model, for a state 𝒙 = (𝑥𝑡 , 𝑦𝑡 , 𝑣𝑡𝑥 , 𝑣𝑡𝑦)
𝑇 expressed in

the observer robot’s reference frame is,

�̇� = 𝑨𝒙 + 𝑩𝒖 (5.6)

 𝑨 = [

0 𝜔 1 0
−𝜔 0 0 1
0 0 0 𝜔
0 0 −𝜔 0

] 𝑩 = [

−1 0
0 −1
0 0
0 0

] (5.7)

It is now necessary to obtain a discrete time model. The method used here, for

discretization of a continuous system, is described in [12], and is as follows,

�̇�(𝑘) = 𝜱𝒗(𝑘 − 1) + 𝜞𝒖(𝑘) (5.8)

 𝜱 = 𝒆𝑨𝑇 = 𝑰 + 𝑨𝑇 +
𝑨𝟐𝑇2

2!
+
𝑨𝟑𝑇3

3!
+ ⋯ (5.9)

𝜞 = ∑(
𝑨𝒌𝑇𝑘+1

(𝑘 + 1)!
)

∞

𝒌=𝟎

𝑩 = 𝑨−1 (𝜱 − 𝑰)𝑩 (5.10)

The series (5.9) can be separated into its even and odd components,

𝜱𝑒𝑣𝑒𝑛 = ∑
(−1)𝑛𝑇2𝑛𝜔2𝑛−1

(2𝑛)!

∞

𝑛=0

[

𝜔 0 0 −2𝑛
0 𝜔 2𝑛 0
0 0 𝜔 0
0 0 0 𝜔

] (5.11)

𝜱𝑜𝑑𝑑 = ∑
(−1)𝑛𝑇2𝑛+1𝜔2𝑛

(2𝑛 + 1)!

∞

𝑛=0

[

0 𝜔 (2𝑛 + 1) 0

−𝜔 0 0 (2𝑛 + 1)
0 0 0 𝜔
0 0 −𝜔 0

]
(5.12)

Identifying in the above equations the Maclaurin’s series for the cosine and sine functions

and recombining the even and odd parts,

𝜱 = [

𝑐𝑜𝑠 (𝜃) 𝑠𝑖𝑛 (𝜃) 𝑇𝑐𝑜𝑠 (𝜃) 𝑇𝑠𝑖𝑛(𝜃)

−𝑠𝑖𝑛 (𝜃) 𝑐𝑜𝑠 (𝜃) −𝑇𝑠𝑖𝑛(𝜃) 𝑇𝑐𝑜𝑠 (𝜃)
0 0 𝑐𝑜𝑠 (𝜃) 𝑠𝑖𝑛 (𝜃)

0 0 −𝑠𝑖𝑛 (𝜃) 𝑐𝑜𝑠 (𝜃)

] (5.13)

52

Applying a similar reasoning we obtain the discrete input matrix and also the complete

model of the dynamics of the obstacles.

𝜞 =

[

−

−
𝑇

𝜃
𝑠𝑖𝑛 (𝜃)

𝑇

𝜃
(𝑐𝑜𝑠(𝜃) − 1)

𝑇

𝜃
(𝑐𝑜𝑠(𝜃) − 1)

𝑇

𝜃
𝑠𝑖𝑛 (𝜃)

0 0
0 0]

 (5.14)

5.3 PROCESS ERROR COVARIANCE

This section deals with the estimation of the error covariance associated with the model

of the dynamics of the obstacles derived in the previous section. The method presented here

relies on the ground-truth system presented in Chapter 3. The first step in the process is to collect

a significant amount of experimental data. This data is composed of the robot’s camera captured

images, velocity controls, odometry data, and the images captured from the ground-truth system

cameras. All the machines involved in data capture must be synchronized across the network,

and all the captured data timestamped. With the concern of statistical significance, it should be

ensured that the collected datasets contain a lot of variety. In this particular case, both the

observer robot and the target obstacles performed a diverse collection of different motion

patterns. These patterns included rectangular and circular figures of varying size, performed at

different velocities, and with the robots at different distances.

Each collected dataset is processed by the ground truth system to obtain a list of

timestamped positions for each robot. Using this information, and assuming constant velocities,

the ground-truth estimate of the obstacle state is then constructed according to the following

equation,

𝑺(𝑘) =

[

𝑥𝑡𝑎𝑟(𝑘) − 𝑥𝑜𝑏𝑠(𝑘)

𝑦𝑡𝑎𝑟(𝑘) − 𝑦𝑜𝑏𝑠(𝑘)

(𝑥𝑡𝑎𝑟(𝑘 + 1) − 𝑥𝑜𝑏𝑠(𝑘 + 1)) − (𝑥𝑡𝑎𝑟(𝑘) − 𝑥𝑜𝑏𝑠(𝑘))

𝑡(𝑘 + 1) − 𝑡(𝑘)

(𝑦𝑡𝑎𝑟(𝑘 + 1) − 𝑦𝑜𝑏𝑠(𝑘 + 1)) − (𝑦𝑡𝑎𝑟(𝑘) − 𝑦𝑜𝑏𝑠(𝑘))

𝑡(𝑘 + 1) − 𝑡(𝑘)]

 (5.15)

Where 𝑥𝑡𝑎𝑟, 𝑦𝑡𝑎𝑟 , 𝑥𝑜𝑏𝑠 and 𝑦𝑜𝑏𝑠 are the coordinates in the world reference frame of the

obstacle robot and the observer robot respectively, and 𝑡(𝑘) is the timestamp associated with the

kth sample.

The prediction error values are dependent on many variables. It is impractical and

unnecessary to take many of this variables into consideration. For convenience only two of this

53

variables, that were perceived to be the most significant, were considered. This variables are the

time period between iterations and the magnitude of the targets velocity in relation to the observer.

After each dataset is processed the error values are organized into bins according to the values

of this variables.

Notice that the ground-truth values are noisy measurements of real positions. It is

assumed that on average the error in the state estimated from ground-truth measurements is

much smaller than the error in the state predicted from the model of the dynamics. The ground-

truth error is thus considered insignificant, and the measurements are treated as the real position

values. The error is then calculated according to equation (5.16). This error is calculated for

different sampling time intervals by varying the value of 𝑛.

𝑬𝒏(𝑘) = 𝑺(𝑘𝑛) − (𝜱𝑺((𝑘 − 1)𝑛) + 𝜞𝒖(𝑘𝑛)) (5.16)

The error variances for the both coordinates of the position are assumed to be equal. The same

is assumed for the velocity. The position and velocity variances are then estimated using the

mean squared error (MSE). The results as a function of the obstacle velocity magnitude and the

sampling period are present in the tables 5.1 and 5.2. It can be observed in these tables that the

behavior of the variances is for the most part what would be expected, the increase of the

sampling period as well as the increase in the obstacle velocity, cause an increase in the error

variances.

Position Error Variance

𝑠 × 10−3 ; 𝑚𝑠−1 0 ≤ ‖𝒗‖ < 1 1 ≤ ‖𝒗‖ < 2 2 ≤ ‖𝒗‖ < 3 3 ≤ ‖𝒗‖

0 < 𝑇 < 50 0.000439532 0.00211673 0.00485432 0.0141425

50 ≤ 𝑇 < 200 0.00384609 0.0262091 0.0623425 0.17625

200 ≤ 𝑇 < 500 0.0208261 0.151046 0.286312 0.81821

500 ≤ 𝑇 0.0533175 0.375216 0.829724 1.88844

Table 5.1: Position error variance results.

Velocity Error Variance

𝑠 × 10−3 ; 𝑚𝑠−1 0 ≤ ‖𝒗‖ < 1 1 ≤ ‖𝒗‖ < 2 2 ≤ ‖𝒗‖ < 3 3 ≤ ‖𝒗‖

0 < 𝑇 < 50 0.0927498 0.199694 0.274756 0.372132

50 ≤ 𝑇 < 200 0.0759916 0.219989 0.766296 0.83813

200 ≤ 𝑇 < 500 0.0402036 0.284529 1.84588 2.53957

500 ≤ 𝑇 0.0492175 0.406586 2.8862 6.94383

Table 5.2: Velocity error variance results.

54

5.4 KALMAN FILTER

The state estimation is performed resorting to the Kalman filter, a well know optimal linear

estimator. This estimator is optimal in the sense that if the noise is Gaussian distributed it

minimizes the mean squared error of the estimated parameters. It is adequate for real time

applications since it is a recursive estimator, i.e., new measurements are processed as they

arrive. The derivation of the Kalman filter is involved and beyond the scope of this work. However,

the brief explanation presented here should be enough for an intuitive and practical understanding

on how the Kalman filter works. For an in-depth introduction to the Kalman filter and its

applications refer to [6] and [11].

Using a Kalman filter for state estimation is advantageous for multiple reasons. First, by

doing a weighted average between the observations and the predicted state, it produces a more

accurate state estimate than it would be obtained by the sensor observations alone. Second, it

assists in the data association task by allowing the observed obstacles to be associated with the

predicted states of the tracked obstacles, instead of associating them with their previous state

estimation.

The Kalman filter algorithm can be divided in two steps, the prediction step and the

measurement update step. The first two equations constitute the time update or prediction. In

equation (5.17) the previously derived model of the dynamics is used to predict the current state.

This prediction 𝒙𝑘
− is called the prior estimate. The error covariance is also projected ahead in

(5.18), where 𝑸 represents the process error covariance addressed in the previous section.

𝒙𝑘
− = 𝜱𝒙𝑘−1 + 𝜞𝒖𝑘−1 (5.17)

𝑷𝑘
− = 𝜱𝑷𝑘−1𝜱

𝑇 + 𝑸 (5.18)

The next three equations constitute the measurement update step. In equation (5.19) the

Kalman gain 𝑲𝑘 is calculated. This gain is used to weight the average between the predicted state

and the measurement. The matrix 𝑯 represents the relation between the state and the

measurement. In this case only the first two elements of the state, the position of the target, are

measured. Matrix 𝑯 is therefore a 4x4 matrix off zeros except for the first two elements of the

diagonal which are ones. Next the posterior estimate 𝒙𝑘 is calculated in equation (5.20) where

the quantity 𝒛𝑘 − 𝑯𝒙𝑘
− is called the innovation. Finally in equation (5.21) the error covariance is

also updated.

𝑲𝑘 = 𝑷𝑘
−𝑯𝑇(𝑯𝑷𝑘

−𝑯𝑇 + 𝑹)−1 (5.19)

𝒙𝑘 = 𝒙𝑘
− + 𝑲𝑘(𝒛𝑘 − 𝑯𝒙𝑘

−) (5.20)

55

𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯) 𝑷𝑘
− (5.21)

5.5 DATA ASSOCIATION

In order to be able to perform the measurement update step of the Kalman filter it’s

necessary to know which of the observed obstacles corresponds to each of the predicted ones.

This can be modeled as an assignment problem which is solvable using the well know Hungarian

algorithm. Modern implementations of this algorithm can achieve a time complexity of 𝑂(𝑛3),

being adequate for real-time applications in case the number of correspondences is not very

large. A thorough description on assignment problems and the Hungarian algorithm can be found

in [15].

The data association is done per obstacle class, meaning detected obstacles of one class

are matched with the tracked obstacles of the same class. For each class a table of costs is

created to be used as the input of the Hungarian algorithm. In this case the Euclidean distance

proved adequate to be chosen as cost function. Other cost functions, such as the Mahalanobis

distance, which takes into account the error variance, can be used if deemed necessary.

Three different situations need to be account for. First is the case when the number of

detected obstacles 𝑁 is the same as the number of predictions 𝑀. This situation results in a cost

table of the type show in table 5.3, where 𝑑𝑖 denotes the ith detected obstacle, 𝑝𝑖 the ith

prediction, and ‖𝑷i − 𝑫i‖ the distance between their positions. The table 5.4 represents another

possible situation, which is to have more detections that predictions. Meaning that new obstacles

that weren’t previously being tracked are now detected. In this case dummy predictions need to

be included as extra columns in the cost matrix so that the matrix becomes square. All costs in

the dummy columns are made equal to the largest of the previously calculated costs. The final

situation is represented in table 5.5, and corresponds to the case when the number of predictions

is higher that the number of detections. This corresponds to the case when some obstacles that

were being tracked are lost from detection but have not yet been discarded from the list of tracked

obstacles. In this case the matrix needs to be made square by inserting dummy rows with all cost

entries equal to the largest calculated cost. In any case the resulting cost matrix is used as input

for the Hungarian algorithm, which in turn calculates and outputs the correspondences between

observation and predictions, such that it minimizes the sum of the costs

 𝑝1 𝑝2 ⋯ 𝑝𝑀

𝑑1 ‖𝑷1 − 𝑫1‖ ‖𝑷2 − 𝑫1‖ ⋯ ‖𝑷𝑀 − 𝑫1‖

𝑑2 ‖𝑷1 − 𝑫2‖ ‖𝑷2 − 𝑫2‖ ⋯ ‖𝑷𝑀 − 𝑫2‖

⋮ ⋮ ⋮ ⋮ ⋮

𝑑𝑁 ‖𝑷1 − 𝑫𝑛‖ ‖𝑷2 −𝑫𝑛‖ ⋯ ‖𝑷𝑀 − 𝑫𝑁‖

Table 5.3: Cost table with same number of detection and predictions.

56

 ⋯ 𝑝𝑀 𝑑𝑢𝑚𝑚𝑦𝑀+1 ⋯ 𝑑𝑢𝑚𝑚𝑦𝑁

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑑𝑀 ⋯ ‖𝑷𝑀 −𝑫𝑀‖ max
𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ ⋯ max

𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖

𝑑𝑀+1 ⋯ ‖𝑷𝑀 −𝑫𝑀+1‖ max
𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ ⋯ max

𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑑𝑁 ⋯ ‖𝑷𝑀 − 𝑫𝑁‖ max
𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ ⋯ max

𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖

Table 5.4: Cost table with more detections than predictions.

 ⋯ 𝑝𝑁 𝑝𝑁+1 ⋯ 𝑝𝑀

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑑𝑁 ⋯ ‖𝑷𝑁 −𝑫𝑁‖ ‖𝑷𝑁+1 − 𝑫𝑁‖ ⋯ ‖𝑷𝑀 −𝑫𝑁‖

𝑑𝑢𝑚𝑚𝑦𝑁+1 ⋯ max
𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ max

𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ ⋯ max

𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑑𝑢𝑚𝑚𝑦𝑀 ⋯ max
𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ max

𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖ ⋯ max

𝑖,𝑗
‖𝑷𝑖 − 𝑫𝑗‖

Table 5.5: Cost table with more predictions than detections.

5.6 INSERTION AND REMOVAL OF TRACKED OBSTACLES

After the data association step, each entry in a class obstacle list represents one of three

cases: it can be a new obstacle, such as when the number of detected objects of a given class is

higher than the obstacles already being tracked for that class; it can be an already tracked

obstacle that was associated with a detected obstacle or it can be an already tracked obstacle

that was not associated with any of the detected obstacles, this can happen when the number of

detected obstacles is lower that the number of tracked obstacles. A tracked obstacle which is no

longer being detected cannot remain indefinitely in the list. The following algorithm contains the

rules for the removal of obstacles no longer being detected

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠:

(5.22) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑖𝑛 𝑙𝑖𝑠𝑡(𝑐𝑙𝑎𝑠𝑠):

 𝑖𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑖𝑠 𝑛𝑒𝑤:

57

 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒. 𝑡𝑡𝑙 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑡𝑡𝑙(𝑐𝑙𝑎𝑠𝑠);

 𝑒𝑙𝑠𝑒:

 𝑖𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑤𝑎𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑:

 𝑖𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒. 𝑡𝑡𝑙 ! = 𝑚𝑎𝑥_𝑡𝑡𝑙(𝑐𝑙𝑎𝑠𝑠):

 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡(𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒. 𝑡𝑡𝑙);

 𝑒𝑙𝑠𝑒:

 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡(𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒. 𝑡𝑡𝑙);

 𝑖𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒. 𝑡𝑡𝑙 == 0:

 𝑙𝑖𝑠𝑡(𝑐𝑙𝑎𝑠𝑠). 𝑟𝑒𝑚𝑜𝑣𝑒(𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒)

Each obstacle has associated with it a time to live (TTL) value, that is updated with every iteration

of the detection system. On the creation of a new obstacle an initial TTL value is set depending

on its class. With each system iteration the TTL value is either incremented (up to a maximum) if

the obstacle was detected, or decremented otherwise. If an object TTL reaches 0, that object is

removed from the respective list. The initial and maximum TTL values for each class have to be

chosen judiciously, so that a good balance between a quick rejection of spurious false positives

and retention of tracks during temporary loss of detection is achieved.

5.7 EXPERIMENTAL PROCEDURES

The experiments that were carried out had two main purposes. First it was necessary to

adjust the values of the various parameters of the detection and tracking, and second the

evaluation of the performance of the system as whole once the parameters were optimally tuned.

The followed methodology was informal, consisting mostly on trying to reproduce as good as

possible real game scenarios, identifying problems as they occurred and trying to mitigate them

by adjusting parameters on a trial and error basis. Special attention was dedicated to cases that

were expected to be problematic, such as of heterogeneous lighting conditions and clustering of

obstacles. Overall the system has performed very well, producing the desired output in the vast

majority of tested cases.

The example that follows was chosen because although simple, it clearly illustrates the

working of the various components of system in dealing with a common yet potentially challenging

situation. In this example two obstacles are initially detected and classified as members of the

cyan team. The obstacles are attributed labels 1 and 2 of the cyan class. This initial configuration

can be observed in figure 5.2, where on the left side is shown the omnidirectional cameras image

and on the right the system output.

58

Figure 5.2: Tracking example – Frame 1.

In figure 5.3 it can be observed that as the obstacles move towards each other, the

obstacle closer to the observer, cyan 2, starts to occlude the one that is further away, and the

system no longer detects two separate robots. Instead an obstacle of undefined class is detected

and is given the label 7. Even thou cyan obstacle 1 and 2 are no longer detected they are no

discarded and their state continues to be predicted according to the motion model.

Figure 5.3: Tracking example – Frame 2.

Next, in figure 5.4 the cyan obstacle 1 gets completely occluded by cyan obstacle 2 the

systems recognizes the latter and discards the undefined obstacle.

59

Figure 5.4: Tracking example – Frame 3.

When cyan obstacle 1 starts to pop in from behind cyan obstacle 2, as can be observed

in figure 5.5 the system detects once again an undefined obstacle and assigns it label 8. The two

cyan obstacles continue being tracked.

Figure 5.5: Tracking example – Frame 4.

Figure 5.6 represents the final configuration of this example. All undefined obstacles have

been discarded. The detection of the two obstacles has been resumed and their label is the same

as originally attributed.

Throughout this example the targets have been correctly tracked, even when not detected

the state of the object continued to be predicted and when the detection was resumed the

obstacles where correctly identified with their original label.

60

Figure 5.6: Tracking example – Frame 5.

61

6 CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

Each of the previous chapters has addressed the development of an individual

component of what was the ultimate goal of this work, a complete obstacle tracking system for

MSL robots. It is the purpose of this section to elaborate some conclusions and final

considerations on both the individual components and the system as a whole. These conclusions,

although qualitative for the most part were as much as possible supported on the observation of

experimental results. It should be noted, that considering the myriad of possible state

configurations and variables found in actual MSL soccer matches and considering also the limited

laboratorial resources available during the development of this work, namely the small number of

available robots, the tests represent isolated and specific conditions, which may not represent the

full spectrum of conditions (robot configurations, light conditions, background noise, etc.) That

may be found in actual MSL matches. It is evidently difficult or impossible to predict every situation

that may present itself as difficult or problematic to the system. However, an honest effort was

made in trying to test scenarios that intuition deemed as potential problematic. In other words the

tests were not tailored to accommodate any weaknesses in the system, so that it produced the

desired results. Instead, the applied methodology was to use the tests to try to reveal potential

weaknesses in the system so they could be corrected whenever possible or at the very least

identified and characterized.

Whenever it applies, the presented conclusions take into account the evaluation criteria

described on the following points in order of importance:

 Effectiveness of the solution in solving the specified problem.

 Improvement over any previous implemented solutions.

 Quality of the software implementation, namely regarding user experience and

extensibility of the solutions to accommodate future improvements and new functionality.

In Chapter 2 the color segmentation system was presented. Being a fundamental

component on which many other system components depend, a trustable color segmentation is

of paramount importance. An unreliable segmentation systems will propagate its faults to higher

level systems, having a big detrimental impact on the global performance. Prior to this work the

color segmentation had been a major source of reported problems that were observed during

MSL matches. The previous system also lacked functionality and was cumbersome to use (a very

limited tool was used to created single color LUTs). The color segmentation system that was

developed in this work greatly improves over the previous solution. All of this issues have been

62

corrected in this new solution, which is more reliable, performant and user friendly. The patent

lack of robustness to illumination changes has been largely mitigated and it was clearly shown

that it originated from a fundamental misconception that was inherent to the previous system. The

LUTCreator, which is the interface of the color segmentation system, is a ROS integrated color

segmentation application that was developed to be a generic, functional and uncomplicated tool.

It has been welcomed by peers as a useful tool for their color segmentation needs.

The Ground-truth system was presented in Chapter 3. Although not directly involved in

the robots online task of detecting and tracking obstacles, a ground truth system is a valuable

resource, namely for its use in the estimation of noise characteristics. Therefore the development

of a ground-truth system was deemed relevant and pertinent in the scope of this work. Before this

work there was already a working ground-truth system. That system however presented several

limitations, particularly with regard to the detection range, which vastly reduced its usefulness.

The ground-truth system developed for this work greatly improves on the limitations of previous

system. It allows for the use of the test field in its full extension, while previously only a small area

could be used due to problems in the detection. The adopted hardware markers along with the

user friendly interface, makes the system less cumbersome to use, reducing the setup time

especially when multiple robots are tracked. In the previous work each robot had a uniquely

colored marker and had to be individually segmented. The devised method used for fast

estimation the error covariance of the estimates worked well, proving to be a viable alternative,

especially under time constrains, and as long as the loss of accuracy is acceptable.

Chapter 4 was dedicated to the detection and classification of obstacles. The previous

solution was based on blob detection and an area classifier, which could only crudely classify a

detected obstacle as being a robot or not, not being able to identify which team it belongs to.

Furthermore it showed problems dealing with blobs corresponding to overlapped robots or very

close obstacles. The solution developed in this work differs greatly from the previous solution

because it is not based on blob detection instead it relies on ray casting. This method allows for

better heuristic filtering strategies and has shown to provide a more robust detection even in high

noise environment. The detection system is now also capable of distinguishing an adversary from

a team mate using the team identification colors and it is capable of dealing with situations where

the gap between detected obstacles is too narrow for the robot to pass in-between. In which case

it creates compound obstacles improving the obstacle avoidance algorithms and avoiding

unnecessary collisions.

 The obstacle tracking task was dealt with in Chapter 5. Its purpose is to provide reliable

estimates of the obstacles state by combining the state measurements obtained as described in

Chapter 4 with the previously obtained state estimates. At first glance, the adopted solution is

similar to the previous implemented solution, however on closer inspection, profound changes

become apparent. Both solutions rely on the use of a Kalman filter per target obstacle, however

the previous solution used one Kalman filter bank for all the tracked obstacles whereas in this

solution three Kalman filter banks are used, one per each class off obstacles, simplifying the data

63

association task. The approach to data association has also been modified. Whereas before data

association was performed in a greedy fashion, it is now performed resorting to the Hungarian

method, resulting in more a reliable data association that combined with an effective false positive

filtering doesn’t have a negative effect on the computational efficiency of the system. This solution

has shown experimentally to be able to deal effectively with challenging situations such as

temporary occlusion or clustering of obstacles in the image.

Finally, on a global level the above elements integrate into a successful system that

performs according to the desired specifications, performing real-time robust detection

classification and tracking of obstacles in the MSL environment. The system has perform well

under the available testing conditions which aimed to reproduce, to the extent that was possible,

real MSL match conditions, not shunning from challenging light conditions and cluttered

environment situations.

Overall these conclusions can be summarized in the following observations:

 The initial proposed objectives were achieved, i.e. the solution does solve the problem as it

was originally specified.

 The solution improves on previously existing system. Both on the individual component level

and as an integrated system the current system works significantly better than before.

Considering that this is a relatively low level system on which other important higher level

systems are dependent (such as obstacle avoidance and some components of decision

making) it is expectable that this improvement is to some degree reflected on the overall

playing performance of the robots.

 The development of the software, was mindful from the conception all through the

implementation, on respecting the principles of usability, scalability and adaptability of the

solution. Through the use of object oriented code architecture and profuse configuration

options, the software is easy to use as well to maintain and develop, allowing for further

expansion of its feature set.

64

6.2 FUTURE WORK

From the previous section it is clearly established that the system which was implemented

works appropriately and the meets all the specified criteria. Nevertheless there is ample room for

improvement and this section provides a brief exploration of some of different avenues for further

development. When considering the ways the system can evolve, it can be argued that one can

distinguish between work meant to improve the effectiveness and or the efficiency of the current

solutions or work that is meant to expand the current system by expanding or altering the current

functionality. This distinction is not strict, and it has more to do with the strategic objectives. Whilst

the first approach may me more pragmatic in the sense of competition results, the former may be

more aligned with the production of academic and research work. Ideally the development effort

should as much as possible aim to serve both of this purposes. In the following suggestions I tried

to accommodate both of this approaches.

Regarding the color segmentation topic, there is work that can be done to improve some

of the computational performance parameters, such as time performance and CPU load. Most of

the image processing steps in the segmentation algorithm are per pixel operations. These

operations, namely the color conversion and the topological filtering stage, could take advantage

of parallel programming processing. Using parallel computing platforms such as CUDA or

OpenCL one could harness the power of the computer’s GPU. This might result in a significant

improvement in speed performance and perhaps more importantly decrease in CPU load,

effectively eliminating the potential bottleneck caused by the image processing tasks. In the

current implementation some of the OpenCV GPU module functions have been used, namely for

the color conversion with very good results. However to take full advantage of the GPU a custom

implementation would be necessary. Considering the good performance that is currently achieved

it is debatable whether this would be worth the effort.

Regarding new functionality that can be implemented concerning the subject of the color

segmentation, the immediate option would be to explore on the topic automatic color

segmentation. Even though there is nothing wrong from a practical standpoint with the manually

selected segmentation that is used, automatic color segmentation is an interesting problem and

an active research topic. The automatic color segmentation methods could also be combined with

the manual method. For example, one could use the automatic methods for the tracking of the

manually selected color intervals in case of severe illumination changes. This means that besides

being interesting from a research perspective, this could have a real-world impact on the

robustness of the color segmentation. Common approaches to automatic color segmentation

usually rely on the detection and tracking of modes in some chromaticity representation of the

image. These could be used to adjust the HSV segmentation intervals in response to a dynamic

illumination.

65

The detection system’s purpose is to detect obstacles inside the playing field. In ideal

conditions the playing field is completely surrounded by a small white wall that helps to isolate the

playing field from the outside environment. Often times however, this wall is inexistent or

incomplete or there are objects and clutter in the margins of the field (for example replacement or

broken robots). This means that the environment outside the field lines may constitute a source

of image noise which can result in false positive detections. One way to alleviate this problem

could be to make the obstacle detection system aware of the robot’s pose in the field by integrating

information from the location system. The current localization system deployed by the robots uses

a Monte Carlo Location algorithm, which has shown to work very well in practice. If the robot

possesses a good estimate of its location in the playing field, and considering that the detection

algorithm detects the contour of the robot in the ground plane, the search range can be narrowed

in order to exclude anything outside the field. This would reduce the number of false positive

detections, resulting in a more accurate and faster detection and tracking system.

One desirable addition to the detection system, would be the ability to detect the

orientation of a detected obstacle, and by doing so obtain its full pose characterization. Generic

pose recognition methods usually rely on the detection of some type of robust features intrinsic

to the object. However MSL soccer robots usually have a very symmetrical chassis and don’t

possess very distinct orientation features. Consequently the typical feature detection methods

perform poorly in this application. One solution would be to add identifiable features to the robot

chassis that would be easily detected. However the robot with these added features must still

comply with the MSL competition rules, which seriously limits our options. It is also important to

bear in mind that due to the nature of the omnidirectional camera, image resolution diminishes

very strongly with the distance from the camera, and distortion effects are very pronounced. The

work to be developed would consist of devising some type of hardware features to be added to

the robots and the respective detection software. These features should be compliant with MSL

soccer rules and be easy to detect across a good distance range. A suggestion to approach this

problem is to experiment with very simple shapes such as colored bars of varying length and

variable separation so that even if only a few of this bars were detected one could still infer the

orientation of the robot. Given that pose measurements would be most likely very noisy and

somewhat unreliable, one could use a Kalman filter for the orientation angle alone or possibly

extend the model of the dynamics of the target robot to include its full pose.

Quite often, during MSL matches many previously undetected problems arise. The

manifestation of this problems may seriously undermine the team’s performance and have a

deleterious effect on the overall competitiveness. MSL robot teams are complex systems and it’s

easy for software bugs or flawed algorithms to go undetected during testing. Many times a flaw

in one subsystem is only reveled when that subsystem interacts with another and the effects of

the flaw are propagated. It is in this context that a comprehensive simulation platform becomes

an invaluable tool, provided that it is able to reproduce the robotic systems and game

environments with enough degree of realism. Such a platform would bring a new depth of insight

66

into the development status of the project, aiding in the early detection of potential problems,

prioritization of work and the promotion of good development practices. One of the biggest

challenges in the development of a simulation platform for MSL is the simulation of the robot’s

omnidirectional camera. The robot’s omnidirectional camera is the main, if not the only, sensor

the robot possesses. Not simulating it narrows the scope of the simulation mostly to high level

decision making, reducing the worth of the simulation environment. Omnidirectional cameras like

the ones the robots possess are non-standard, and most of the established robotics simulation

frameworks typically don’t offer simulation models for this type of camera, as they mostly only

provide models for the common projective type cameras. The camera model that was adopted

for this work and introduced in Chapter 4 is particularly suitable to be simulated. One could use

the geometric model to generate a revolution surface whose profile would be given by the

calibration and then use an orthographic camera to generate the image. Tests conducted in

Blender 3D software showed promising results, the only problem being the render time required

by the ray-traced reflections. The Blender 3D software has a lot of potential for the development

of a robotics simulation platform as this software is open source, it is well document and has an

active community. It is also highly configurable and scriptable via the integrated python interpreter.

Additionally there is some functionally for dome projection already implemented in Blender

[13][14], which could be used as a starting point for adaptation or inspiration.

The suggestions presented in this section are just that, mere suggestions not a

comprehensive list off all the possibilities, but merely a few relatively small projects, that are

realistically achievable, and that I believe would make useful contributions. One thing is certain,

there is ample room for improvement and expansion, for this is a project of an open and flexible

nature. The challenge most often lies in finding the optimal compromise between a cornucopia of

exiting ideas and the inevitable constraints, both technical and logistical. Anyway, all of that

contributes to the charm and enthusiasm of working in robotics. The kind of enthusiasm that I had

the privilege to experience in the making of this modest work.

67

BLIBLIOGRAPHY

[1] Mark Ebner, “Color Constancy”, John Wiley & Sons, 2007.

[2] Theo Gevers, Arjan Gijsenij, Joost van de Weijer, Jan-Mark Geusebroek, “Color in
Computer Vision: Fundamentals and Applications”, Wiley-Blackwell, 2012.

[3] D. Scaramuzza, A. Martinelli, R. Siegwart, “A Flexible Technique for Accurate
Omnidirectional Camera Calibration and Structure from Motion”, Proceedings of IEEE
International Conference of Vision Systems (ICVS'06), 2006.

[4] D. Scaramuzza, A. Martinelli, R. Siegwart, “A Toolbox for Easy Calibrating
Omnidirectional Cameras”, Proceedings to IEEE International Conference on Intelligent
Robots and Systems (IROS 2006), 2006.

[5] D. Scaramuzza, “Omnidirectional Vision: from Calibration to Robot Motion Estimation”,
ETH Zurich, PhD Thesis no. 17635, 2008.

[6] Sebastian Thrun, Wolfram Burgard, Dieter Fox, “Probabilistic Robotics”, MIT Press, 2005.

[7] Roland Siegwart, Illah Reza Nourbakhsh, Davide Scaramuzza, “Introduction to
Autonomous Mobile Robots”, 2nd ed. MIT Press, 2011.

[8] Richard Szeliski, “Computer Vision: Algorithms and Applications”, Springer-Verlag, 2011.

[9] Suzuki, S., Abe, K., “Topological Structural Analysis of Digitized Binary Images by Border
Following”, CVGIP 30 1, pp 32-46, 1985.

[10] John J. Craig, “Introduction to Robotics: Mechanics and Control”, 3th ed. Prentice Hall,
2004.

[11] Subhash Challa, Mark R. Morelande, Darko Mušicki, Robin J. Evans, “Fundamental of
Object Tracking”, Cambridge University Press, 2011.

[12] Gene F. Franklin, J. David Powell, Abbas Emami-Naeini, “Feedback Control of Dynamic
Systems”, 5th ed. Pearson Prentice Hall, 2006.

[13] Paul Bourke,Spherical mirror (Mirrordome) – “A new approach to hemispherical dome
projection”. Planetarian, Vol. 34 (4), pp 5-9, 2005.

[14] Paul Bourke, “Using a spherical mirror for projection into immersive environments
(Mirrordome)”, Graphite (ACM Siggraph), Proceedings of the 3rd international conference on
Computer graphics and interactive techniques in Australasia and South East Asia. pp 281-
284, 2005.

[15] Rainer Burkard, Mauro Dell’Amico, Silvano Martello, “Assignment Problems”, 2nd ed.,
Society for Industrial and Applied Mathematics, 2012.

[16] David G. Lowe. “Distinctive image features from scale-invariant keypoints”, International
Journal of Computer Vision, 60(2):91–110, 2004.

[17] Z. Zhang, “A flexible new technique for camera calibration”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Theo+Gevers
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Arjan+Gijsenij
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Joost+van+de+Weijer
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Jan-Mark+Geusebroek
http://paulbourke.net/papers/planetarian1/
http://paulbourke.net/papers/planetarian1/
http://paulbourke.net/papers/graphite2005/
http://paulbourke.net/papers/graphite2005/

68

[18] João Silva, Nuno Lau, António, J. R. Neves, João Rodrigues, José Luís Azevedo,
“Obstacle detection, identification and sharing on a robotics soccer team”, IEETA /
Department of Electronics, Telecomunications and Informatics University of Aveiro, 2009.

[19] Naomi Henderson, Robert King, Richard H. Middleton, “An Application of Gaussian
Mixtures: Colour Segmentation for the Four Legged League Using HSI Colour Space”,
RoboCup 2007: Robot Soccer World Cup XI, Lecture Notes in Computer Science Volume
5001, pp 254-261, 2008.

[20] Xun Li, Huimin Lu, Dan Xiong, Hui Zhang, Zhiqiang Zheng, “A Survey on Visual
Perception for Robocup MSL Soccer Robots”, International Journal of Advanced Robotic
Systems, 2013.

[21] Raziel Alvarez, Erik Millán, Alejandro Aceves-López, Ricardo Swain-Oropeza, “Accurate
Color Classification and Segmentation for Mobile Robots”, Mobile Robots: Perception &
Navigation, Pro Literatur Verlag, pp 149-164, 2007.

[22] Richard Hartley, Andrew Zisserman, “Multiple View Geometry in Computer Vision”, 2nd
ed., Cambridge University Press, 2004.

[23] Mark Nixon, Alberto Aguado, “Feature Extraction & Image Processing for Computer
Vision”, 3rd ed., Academic Press, 2012.

[24] Tijn Schmits, Arnould Visser, “An Omnidirectional Camera Simulation for the USARSim
World”, RoboCup 2008, LNAI 5399, pp 296-307, 2009.

[25] Greg Welch, Gary Bishop, “An Introduction to the Kalman Filter”, TR 95-041 Department
of Computer Science University of North Carolina at Chapel Hill, 2006.

[26] Kabsch, Wolfgang, "A solution for the best rotation to relate two sets of vectors", Acta
Crystallographica 32:922, 1976.

[27] Naomi Henderson, Robert King, Stephan K. Chalup, “An Automated Colour Calibration
System using Multivariate Gaussian Mixtures to Segment HSI Colour Space”, In Proc. of the
2008 Australasian Conference on Robotics and Automation, 2008.

[28] João Messias, Aamir Ahmad, João Reis, Miguel Serafim, Pedro Lima, “SocRob 2013,
Team Description Paper”, 2013.

[29] Fei Liu, Huimin Lu, Zhiqiang Zheng, “A Modified Color Look-Up Table Segmentation
Method for Robot Soccer”, In Proceedings of the 4th IEEE LARS/COMRob, 2007.

[30] Xin Li, Kejun Wang, Wei Wang, Yang li, “A Multiple Object Tracking Method Using
Kalman Filter”, In Proceedings of the 2010 IEEE International Conference on Information and
Automation, 2010.

[31] Rob Farber, “CUDA Application Design and Development”, Morgan Kaufmann, 2011.

[32] Jason M. O’Kane, “A Gentle Introduction to ROS”, CreateSpace independent Publishing
Platform, 2013.

[33] Zita Marinho, João Messias, “Multi-object Tracking Based Histogram Classifier and
Kalman Filtering”, 2008.

[34] Robocup Wiki, [Online], Available: http://wiki.robocup.org/wiki/Middle_Size_League/

[35] Ros Wiki, , [Online], Available: http://www.ros.org/wiki/

