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Abstract

The segmentation of the left ventricle in MRI is a required task to evalu-
ate and diagnose cardiac function. The main challenges for the develop-
ment of an automatic segmentation tool are: i) the presence of misleading
anatomical structures, ii) edge fuzziness near the apical and basal slices,
and iii) misalignment between consecutive slices. A common approach
is to use shape information to guide the segmentation, e.g., using an Ac-
tive Shape Model (ASM). However, the presence of outliers hampers the
accuracy of this approach. This paper proposes an EM framework that
takes outliers into account and is able to provide robust segmentation es-
timates. The proposed method was evaluated on a public dataset with 33
MR sequences and the results show it provides significant improvements
over the standard ASM method, and also outperforms another state of the
art approach.

1 Introduction

Cardiac MRI is the standard image modality for the assessment and di-
agnosis of some cardiomyopathies [4]. After acquiring a sequence of
MR volumes, covering a entire cardiac cycle, cardiologists have to man-
ually delineate the inner boundary of the left ventricle (LV), called endo-
cardium. Only then are they able to compute specific features of cardiac
function, such as ventricle volumes and ejection fraction.

To relieve cardiologists of this morose task, several (semi)automatic
segmentation algorithms have been proposed over the years [5]. How-
ever, automatically identifying the endocardium is a complex task, due
to: 1) wall irregularities, caused by the presence of papillary muscles and
trabeculations; 2) edge fuzziness near the apical and basal slices, due to
partial volume effects, and 3) misalignment between consecutive volume
slices that may appear due to different breath-holding levels during acqui-
sition.

A popular approach is to use shape priors to constrain the final seg-
mentation [3]. Among this type of approaches, one of the most popular is
the Active Shape Model (ASM) [2]. This method uses an explicit repre-
sentation of the contour that is able to deform according to specific modes
of variation observed in a training set of annotated data.

Although ASM based methods have achieved state of the art results,
their performance is often hampered by the presence of other misguiding
boundaries, typically denoted as outliers. This paper proposes a robust
ASM that is able to achieve accurate results even in the presence of out-
liers [6]. The proposed method is based on an Expectation-Maximization
(EM) approach that assumes each edge segment detected in the MR vol-
ume may either belong to the endocardium or to outliers. Under this as-
sumption, each edge segment is assigned a specific weight during the seg-
mentation process depending on the probability that it belongs to the LV
boundary, as will be explained in the following section.

2 Proposed Methodology

2.1 Shape Model

In this work, a 3D shape model is used to define the segmentation of each
MR volume. This shape model is learned using the approach described in
[7], which provides a framework to overcome the challenge of learning a
3D shape model from annotated volumes with a variable number of slices.
Formally, it allows a specific slice model, xxx(s) =

[
xxx1(s), . . . ,xxxN(s)

]
∈

R2N , to be obtained from the training set, where s ∈ [0,1] denotes the
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Figure 1: Extraction of candidate edge segments from a volume slice:
(left) detection of edge points (white) along lines (yellow) orthogonal to
the model (red); (middle) edge segments obtained by linking edge points.

position of that slice in the MR volume, and xxx j(s) ∈ R2 defines the posi-
tion of the j-th model point within the slice. The position of the model
points is defined by the set of parameters, θθθ = {aaa, ttt} and bbb(s), which cor-
respond to the parameters of the similarity (pose) transformation and the
deformation coefficients, respectively, through

xxx(s) = TTT θθθ (xxx(s)+DDD(s)bbb(s)) , (1)

where xxx(s) ∈ R2N is the average model in slice position s, DDD(s) ∈ R2N×L

is the matrix of deformation modes, and TTT θθθ is the linear transformation
that defines the pose of the LV.

Unlike typical ASMs, the shape model used in this work includes two
additional deformation modes, which grant each slice model the ability to
move within the slice plane, thus allowing them to fit misaligned slices.

2.2 EM Framework

The goal of the algorithm is to segment all the slices of a particular MR
test volume. Suppose this volume has S slices, and that the position of
the m-th slice is given by sm. In order to fit the shape model to the
boundary of the LV in all the slices, the model parameters, θθθ = {aaa, ttt}
and bbb(s1), . . . ,bbb(sS), have to be chosen accordingly. Candidate points
are extracted from each slice by searching along lines orthogonal to the
model, as depicted in Fig. 1 (left). Then, edge segments are obtained by
grouping these candidates, as shown in Fig. 1 (right).

Each of the detected edge segments, denoted by YYY i(sm) ∈ R2Mi
, may

belong to the endocardium or to outliers. Since this information is not
known a priori, a binary hidden variable, ki(sm), is used to allow both
possibilities: ki(sm) = 1 for valid segments and ki(sm) = 0 for outliers.
These two possibilities are assumed to occur with probabilities p1 and
p0, and, for each case, a different observation model is used, as follows

p
(

YYY i(sm)
∣∣∣ki(sm)=1,θθθ

)
=

Mi

∏
j=1

N
(

yyyi j(sm);xxxi j(sm),ΣΣΣ
i j(sm)

)
, (2)

p
(

YYY i(sm)
∣∣∣ki(sm)=0,θθθ

)
=

Mi

∏
j=1

U(Vxxxi j(sm)), (3)

where yyyi j(sm) ∈ R2 is the j-th candidate point in YYY i(sm) and xxxi j(sm) is
the corresponding model point. N (·) and U(·) define a Gaussian and a
uniform distribution, respectively. ΣΣΣ

i j(sm) is the variance associated with
the corresponding model point, xxxi j(sm), and Vxxxi j(sm) defines a validation
gate in the vicinity of xxxi j(sm).

Let ΘΘΘ = {aaa, ttt,bbb(s1), . . . ,bbb(sS), p1, p0} define the complete set of pa-
rameters, and let Y and K be the set of all the detected segments in all



the slices and their corresponding labels. The EM framework allows ΘΘΘ to
be iteratively optimized by maximizing the expectation of the complete
posterior probability,

Θ̂ΘΘ(t+1) = argmax
ΘΘΘ

Q
(

ΘΘΘ;Θ̂ΘΘ(t)

)
= EK

[
P(Y,K,ΘΘΘ)

∣∣∣Y,Θ̂ΘΘ(t)

]
, (4)

in a two step procedure. In the first step, E-step, the probability of each
edge segment being valid (or outlier) is updated based on the current
model estimate

wi
1(sm) = p

(
ki(sm)=1

∣∣∣YYY i(sm),Θ̂ΘΘ(t)

)
(5)

wi
0(sm) = p

(
ki(sm)=0

∣∣∣yyyi j(sm),Θ̂ΘΘ(t)

)
, (6)

such that wi
1(sm)+wi

0(sm) = 1. In the second step, M-step, the model
parameters are updated by maximizing (4). This leads to a weighted least
squares regression that minimizes the distance between the model points
and the corresponding edge segments, where each segment is weighted
by (5).

Since outliers typically receive lower weights, their influence in the
estimation of the model parameters is reduced, leading to more robust
results. The algorithm iterates between the two steps until the parameters
converge.

3 Results

The proposed algorithm was evaluated on a public dataset [1], which con-
tains 33 MR sequences, each with 20 volumes. The results were obtained
using a leave-one-sequence-out scheme: for each test sequence, the shape
model was learned using the remaining 32 sequences.

The segmentations were evaluated by comparison with the ground-
truth using two metrics: 1) the Dice coefficient, which measures the agree-
ment between two segmented regions, and 2) the average distance (AV)
between the model points and the ground-truth. Statistical results for an-
other state of the art approach [6] are also provided for comparison.

Fig. 2 shows some examples of the segmentations obtained using the
proposed method. It is possible to see that the proposed segmentation is
similar to the ground-truth in most cases. Fig. 3 shows other examples
with a color-coded evaluation of each slice segmentation. Two conclu-
sions can be drawn. First, volumes in the end-dyastolic frame are easier
to segment, which is expected since the LV is dilated and its borders are
more noticeable. Second, the segmentation of the apical slice is typically
poorer than the remaining slices, due to the partial volume effect men-
tioned in Section 1.

Table 1 summarizes the statistical results obtained using the proposed
approach and using the RANSAC algorithm proposed in [6]. The results
show that the proposed method outperforms the RANSAC approach, even
though the latter also brings significant improvements over the standard
ASM proposed in [2].

Table 1: Statistical performance of the proposed algorithm (mean and
standard deviation) and comparison with other approaches.

Dice (%) AV (mm)
ASM [2] 73.1 (13.1) 4.7 (3.0)

RANSAC [6] 83.0 (7.5) 2.7 (1.0)
Proposed 85.8 (6.7) 2.2 (0.6)

4 Conclusion

This paper proposes a robust Active Shape Model approach that is able to
deal with the difficulties associated with cardiac MRI analysis: the pres-
ence of other anatomical structures that misguide the model (outliers) and
the existence of misaligned slices. The proposed approach is based on an
EM framework that takes into account the presence of outliers. By as-
signing weights to candidate edge segments extracted from the image, the
algorithm is able to reduce the influence of outliers in the estimation of the
model parameters, thus leading to robust segmentations. Significant im-
provements over the standard ASM and another state of the art approach
are achieved and show that the proposed method is able to provide good
LV segmentations.

Figure 2: LV segmentation. Each row shows four slices of a different
volume depicting: the segmentation obtained using the proposed method
(red), and the ground truth (green).
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Figure 3: Examples of the estimated 3D segmentation and corresponding
evaluation.
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