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Traditional methods for robotic biped locomotion employing stiff actuation

display low energy efficiency and high sensitivity to disturbances. Legged lo-
comotion can be modelled as an hybrid system, where continuous dynamic

flows, such as the single or double support stages, are interrupted by discrete

jumps, such as heelstrike or lift-off. Traditional control systems are not suited
to deal with hybrid systems or with the compliance added by passive elements.

A Model Predictive Control (MPC) approach is proposed to deal with the

hybrid system dynamics. The controller generates energy efficient gaits for a
simulated Simplest Walker (SW) mechanism, tracks the gait trajectories in the

presence of sensor noise and small disturbances and is able to adapt to strong

and impulsive pushes.
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1. Introduction

Our workplaces and households feature new maintenance and leisure sys-

tems everyday. One of the most anticipated are humanoid robots that au-

tonomously navigate and interact in human oriented or disaster environ-

ments, such as Boston Dynamic’s ATLAS1 or PAL Robotics TALOS.2

However, numerous challenges need to be dealt with before humanoid

robots become commonplace. Two of the most pressing issues are energy

efficiency and gait stability. Following the work of McGeer3 an array of

platforms emerged in order to study passive locomotion4,5 and develop

hardware and control strategies that allowed for increased energy efficiency

and stability.6,7

Several semi-passive actuators have been proposed8–10 but typical con-

trol algorithms are not suited to deal with complacency or the hybrid nature

of biped locomotion.
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A Model Predictive Control (MPC) approach that generates and tracks

feasible energy-efficient joint and torque trajectories is proposed, based on

the work presented by C. Neves and R. Ventura.11 MPC methods were

seldom used for real time biped control due to the heavy computational

requirements of the optimization, but some class of problems can be solved

efficiently, not only due to the problem structure but also by using warm

starts or sub-optimal, yet feasible, solutions. MPC approaches have been

used to plan foot placement12 or ZMP trajectories,13 leaving the joint tra-

jectories and torques to be solved by inverse kinematics. The controller and

Simplest Walker model are presented in the next section and in Section 3

the results are laid out.

2. Model Predictive Control

Model Predictive Control (MPC) 14,15 is a method where constrained opti-

mization of a cost function is used to generate inputs for a dynamical sys-

tem. The cost function is evaluated at every time step and over a discrete

sliding time horizon of N time slots, considering a model of the system. The

implementation of a Gait Generator and a Trajectory Follower for a SW

model using an MPC approach is detailed in this Section. For this work,

YALMIP16 was used to model the optimization problems and choose the

appropriate solver.

The system to be controlled is a Simplest Walker, shown in Fig. 1, a

typical case study of passive locomotion in the literature.4,17 This model

represents a compass like mechanism featuring two massless legs of length l

connected at the hip by a frictionless joint. Both feet are points with mass

m and the upper body weight is condensed into a mass M at the hip. The

state of the system is defined as Q =
[
q q̇
]T

, with q =
[
θ φ

]T
and where θ

is the joint angle between the perpendicular of the ground and the stance

leg and φ is the joint angle between the stance leg and the swing leg. The

following definition also applies:

Definition 2.1. Step Failure - For the simplest walker, a step is considered

to fail if:

◦ The body falls forward or backward - |θ| ≤ π
3

◦ The robot walks backward - θ̇ < 0

◦ Swing foot touches ground behind stance foot - φ− 2θ = 0 ∧ θ < 0

◦ The robot starts running - Fv = − cos(θ)(θ̇2 − cos(θ − γ)) < 0
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Figure 1. Simplest Walker Model - θ is the angle between the perpendicular to the

slope and the stance leg; φ is the angle between the stance and swing legs

2.1. Gait Generator

The Gait Generator function is to output joint state and torque trajectories

Q =
[
Q(0) ... Q(N)

]T
and T =

[
T(0) ... T(N)

]T
during one leg swing,

considered the flow stage of the hybrid system. While the number of slots

is fixed, the corresponding time-step ∆t is optimized in order to reach an

optimal step period Ts. The slack variable ∆s =
[
s(1) s(2)

]T
is added to

ensure more robust results.

The constraints can be divided into groups: simulation, dynamical and

objective constraints. The simulation constraints are

◦ Assign initial values Q(0) = Q0;

◦ Assign maximum and minimum values for state Q(k) and torque

T(k), where k is a time slot index, and for ∆t and ∆s.

The dynamical constraints derive from the equations of motion for the

passive system, which are well known,4 and can be adapted for an actuated

model to take the form

H(q)q̈ + C(q̇, q) +G(q) = T (1)

where H(q) is the 2x2 inertia matrix, C(q̇, q) is 2x2 the centripetal and

Coriolis forces matrix, G(q) is the 2x1 gravity forces vector and T is a 2x1

vector of the torques applied to the joints. Therefore, the constraints are

defined as

q̈(k) = H−1(k)(T(k) −Gm(k) − C(k)) (2)

Q(k+1) = Q(k) +

[
∆t 1

2∆t2

0 ∆t

]
Q̇(k) (3)

Fv = − cos(θ)(θ̇2 − cos(θ − γ)) ≥ 0 (4)
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where constraints in Eqs. 2 and 3 arise directly from the equations of motion

and the constraint in Eq. 4 refrains the system from running - Fv is the

vertical force of the stance foot in the ground.

The objective constraints are related to the desired final state. A heel-

strike is assured by the constraints in Eq. 5, a desired step length L gener-

ates the constraint in Eq. 6 and a desired step period Ts adds the constraint

in Eq. 7. Notice that the slack variables will allow for some adjustments to

the final objective, but will be penalized in the cost function.

{
θN > 0∥∥φ(N) − 2θ(N)

∥∥2 = 0
(5)

∥∥θ(N) − asin(−L/2)
∥∥2 ≤ ∆s(1) (6)

N∆t− Ts ≤ ∆s(2) (7)

The cost function is a quadratic function of the mechanical energy spent

in the actuators and the slack variables added in the constraints, in the form

J(q̇, t) = Gtorque ‖T ′.q̇∆t‖
2

+Gslack ‖∆s‖2 (8)

where Gtorque and Gslack are gains. The non-linear and non-convex form

of the problem requires the use of a non-linear solver, using a Sequential

Quadratic Programming (SQP) algorithm.

2.2. Trajectory Tracker

The Trajectory Tracker approach consists on solving a Mixed-Integer MPC

optimization problem at each time-step over a fixed window of M time-

steps. The state and torque trajectories provided by the Gait Generator,

QP and TP are used as initial guesses for the Trajectory Tracker, that

will optimize state and torque predictions in order to account for external

disturbances. As before, the constraints can be divided into simulation,

dynamics and objective constraints.

The simulation constraints are:

◦ Assign initial values Q(0) = Q0;

◦ Assign maximum and minimum values for state Q(k) and torque

T(k), where k is a time slot index, and for ∆s.
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The dynamic constraints are defined as
q̈(k) = H−1(0) (T(k) + Text(k) −Gm(0) − C(0))

Q(k+1) = Q(k) + Q̇(k)∆t
if hs(k) = 0

Q+
(k+1) =

[
A(q−) 0

0 B(q−)

]
Q−(k) if hs(k) = 1

(9)

where Text(k) accounts for external disturbances and hs(k) is a binary vari-

able that signals a heelstrike. When a heelstrike is detected, hs(k) = 1 and

the system performs a state jump, also using known mechanics.4 Otherwise,

the system uses the a linearized model dynamics of the flow stage.

The objective constraints dictate that the predicted trajectory and the

optimized trajectory must have a small difference, which is penalized in the

cost function:

‖q − qP ‖2 ≤ ∆s(1) (10)

‖q̇ − q̇P ‖2 ≤ ∆s(2) (11)

The cost function of this problem is the same as for the Gait Generator,

shown in Eq. 8. The optimization problem is a Mixed Integer Conic problem

and the chosen solver was MOSEK.18

3. Simulation Results

3.1. Gait Generator

Fig. 2 plots the predicted necessary mechanical energy for an actuated

simplest walker on a slope γ = 0.004 to perform a step with length L =

0.3182 when initiated on different initial conditions of θ and θ̇, where a

darker color represents a higher whole step mechanical energy. The average

time of optimization for each set of initial conditions was 5.65 seconds,

when using a window of N = 100. It should be noted that, similarly to

what happens in a passive structure, there is a set of initial conditions that

require little actuation to achieve a successful step, which implies that the

Gait Generator takes advantage of the natural dynamics of the system.

In order to test how the execution time varies with the window size,

several trials were conducted using the same initial conditions and objec-

tives, but for a wide range of window sizes. The evolution of execution time

as a function of N is quadratic, as is shown in Fig. 3
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Figure 2. Mechanical Energy needed
to perform a step of length L = 0.3182

on a γ = 0.004 slope.

Figure 3. Mean execution time of Gait
Generator for different values of N

3.2. Trajectory Tracker

The Trajectory Tracker is able to track the trajectories provided by the Gait

Generator and adapt to disturbances (modelling sensor noise, complacency

and other interferences), performing most iterations in under 0.1s for a N =

5 window. However, critical situations such as foot scuffing and heelstrike

take up to 3s iterations for the same window and require a reduced N = 3

window in order to achieve real time iterations of ∆t = 0.15s.

The sensitivity of the controller to disturbances can be adjusted by

tuning the Gslack term of the cost function. Simulations show that the

system will reduce jittering of the actuators when the cost of the slack is

reduced, but it will still react to larger disturbances.

In order to test the reaction to the occurrence of a push forward, a strong

impulsive external torque was applied close to the heelstrike, presented in

Fig. 5 for t = 3.88s, in addition to white noise. The controller responded by

advancing the heelstrike and compensating the disturbance over the next

step, as is shown in Fig. 4. A second adjustment is required around t = 5.6s

in order to avoid a heelstrike during scuffing.

4. Conclusions

This paper describes an MPC approach that is able to generate stable

and energy efficient gait and torque trajectories for an actuated simplest

walker, with the possibility of tuning the horizon N in order to achieve

suitable execution times. While the results focus on walking on a slope

for energy comparison, this controller also works for horizontal or upward
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Figure 4. Desired (crosses) and simulated (line) state trajectories

Figure 5. Predicted torque (crosses), external disturbances (bar) and applied torque

(line)

slopes. The controller is also able to track the generated trajectories under

small constant disturbances, with iterations close to real time, and displays

robustness as is able to adapt to a strong push even when applied at a

critical time such as before heelstrike.

For future work, the scalability and adaptability of this approach in

regards to degrees of freedom and complexity of actuators must be studied.
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