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bSchool of Computer Science, Australian Institute for Machine Learning, University of

Adelaide, Australia

Abstract

The performance of deep learning (DL) models is highly dependent on the qual-

ity and size of the training data, whose annotations are often expensive and hard

to obtain. This work proposes a new strategy to train DL models by Learning

Optimal samples Weights (LOW), making better use of the available data. LOW

determines how much each sample in a batch should contribute to the train-

ing process, by automatically estimating its weight in the loss function. This

effectively forces the model to focus on more relevant samples. Consequently,

the models exhibit a faster convergence and better generalization, specially on

imbalanced data sets where class distribution is long-tailed. LOW can be easily

integrated to train any DL model and can be combined with any loss function,

while adding marginal computational burden to the training process. Addi-

tionally, the analysis of how sample weights change during training provides

insights on what the model is learning and which samples or classes are more

challenging. Results on popular computer vision benchmarks and on medical

data sets show that DL models trained with LOW perform better than with

other state-of-the-art strategies1.
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1. Introduction

The performance of machine learning methods has improved dramatically

in the last few years due to deep neural networks (DNNs) [1]. These models

learn complex tasks by looking at many training examples, a computationally

demanding task and that usually requires huge amounts of data.5

In many real world problems (e.g., in medical image analysis), obtaining

data is often a challenge, particularly because annotations are expensive. Con-

sequently, many of the available data sets lack the necessary variability and rep-

resentativeness to train DNNs that generalize well. Additionally, these data sets

are often long-tailed, meaning that the distribution of samples across different10

classes is not uniform (class imbalance) and some classes are under-represented.

This typically prevents DNNs from learning effectively and often leads to bi-

ased systems. The goal of this work is to provide a learning strategy that is

robust under the above conditions, and ensure the models make the most of the

available data.15

There has been an increasing effort to develop more efficient learning strate-

gies for DNNs, such as using quantization approaches [2] or curriculum learn-

ing [3]. This paper focuses on the latter, which is inspired by the idea that

training samples are not equally relevant during training [4]. Recent works

have relied on importance sampling [5, 6], which aims to increasing convergence20

speed by selecting samples according to their gradients. However, importance

sampling requires the normalization of the gradients across the entire training

set, which is expensive to compute. Therefore, approximations based on infor-

mation from previous epochs are usually made, preventing the combination of

these strategies with online data augmentation approaches, which are popular25

and crucial to prevent overfitting [7, 8].

Alternative strategies rely on weighting schemes to obtain improved mod-

els. For instance, some works rely on weighted combinations of different DNNs

(ensemble strategies) to achieve better performances [9, 10], while others resort

to weighting to perform spatial or depth-based feature selection [11, 12]. These30
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works incorporate attention modules in their DNNs to actively select the most

discriminative features. Other approaches adopt sample weighting strategies,

where non-uniform weights are assigned to the training samples. For instance,

the balanced cross-entropy loss [13] has been extensively used to deal with long-

tailed data sets, particularly in medical applications [14]. The idea is to assign35

each sample a weight that captures the distribution of classes in the training

set: less represented classes should receive higher weights in the loss function

to ensure they are not ignored. A direct consequence of this strategy is that

all samples from the same class are assumed to be equally relevant, which may

not hold, due to the variability of samples within classes and their distribution.40

Sample weighting has also been adopted in boosting [15], where incorrectly clas-

sified samples receive higher weights when training the following weak classifier.

However, sequentially training multiple DNNs is inefficient and often computa-

tionally infeasible. The focal loss function [16] has been proposed to address the

above issues, optimizing the parameters of a single DNN using a weighted loss45

function that reduces the importance of well-classified samples. This method

has already been applied to medical images [17], but requires a careful tuning

of hyper parameters, and has been shown to not always improve the accuracy

of the network [18]. Alternatively, the approach proposed in [19] optimizes the

weights assigned to samples so that they minimize the loss in a validation set.50

The limitation of this approach is the need to build a balanced validation set

that is sufficiently representative to allow a proper estimation of the gradient

correction.

More complex strategies that use teacher-student models [20, 21] have also

been proposed to automatically learn the weight of each sample (teacher), based55

on the performance of the DNN (student). Despite their promising results, these

methods are computationally expensive, since they require the training of an

additional DNN to act as the teacher model and the careful fine-tuning of the

additional hyper-parameters.

In this work, we propose a new sample weighting strategy that overcomes60

many of the limitations of the aforementioned methods. This new approach,
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based on Learning Optimal sample Weights (LOW), aims to provide a greater

decrease in the loss function at each gradient descent step. Unlike with the

balanced cross-entropy loss, the weights in LOW are sample specific, simultane-

ously addressing class imbalance and intra-class variability issues. Moreover, the65

computation of its weights adds marginal burden to the training process and

does not increase the number of model parameters being learned as teacher-

student approaches. Furthermore, LOW can be easily incorporated into the

training of any state-of-the-art DNN architecture, and can be combined with

different loss functions, such as cross-entropy and focal loss, to improve their70

performances.

We apply LOW to both popular computer vision benchmarks (MNIST, CI-

FAR 10, and CIFAR 100) and real world problems (ISIC 2017 and 2018 data

sets for the diagnosis of skin cancer). Our results demonstrate that LOW is par-

ticularly suited for problems with imbalanced data sets, by forcing the network75

to learn to classify under-represented examples. With LOW, we are able to

outperform conventional weighting strategies and improve the accuracy of the

model on all data sets. LOW also provides insights on which samples contribute

the most during the training process, making it easier to interpret and analyze

the model results. Therefore, LOW is a valuable contribution to the topic of80

explainable deep learning for efficient and robust pattern recognition.

2. Literature Review

In this section, we discuss the most relevant learning strategies proposed in

the literature, which are either based on sampling, weighting, or teacher-student

strategies.85

2.1. Sampling Strategies

This type of strategies differs from the ones described in the previous sec-

tion by focusing on smartly selecting the training samples used in the learning

process. Importance sampling [22] is one of the most popular approaches, which
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aims to select samples that make the learning process more efficient [5, 6, 23,90

24, 25]. The idea is to reduce the variance of (stochastic) gradient estimates

by selecting samples with an adaptive sampling distribution, instead of the tra-

ditional uniform sampling [22, 23]. However, importance sampling requires

knowing the loss gradient with respect to each of the network’s parameters and

for each training sample before every single gradient descent step. In the context95

of deep neural networks, this is computationally infeasible. To overcome this

issue, some methods have relaxed the problem by using either easy-to-compute

approximations of the true gradients [5], or outdated versions of the gradients

from previous epochs [24]. The underlying drawback is that these approaches

may not be compatible with online data augmentation strategies that randomly100

modify the training samples at each step.

Alternatively to importance sampling, other types of sample selection strate-

gies have also been devised. These are based on ranking samples according to

the corresponding loss [26], or using more complex metrics that combine classi-

fier uncertainty, class balance, and sample representativeness [27].105

Compared to the above sampling-based methods, our proposed learning

strategy has several advantages. Since it focuses only on sample weighting

(and not on sample selection), the network processes all samples every epoch,

thus guaranteeing that we always know how the network is performing on each

sample. Furthermore, the sample weights are computed directly from the out-110

put of the forward pass, making it compatible with online data augmentation

strategies.

2.2. Weighting Strategies

Curriculum learning was one of the first sample weighting strategies [3].

It relies on a predefined curriculum, typically designed based on human judg-115

ment of sample difficulty. The premise is that a network (the student) learns

faster/better when the teaching material (curriculum) is chosen wisely, an anal-

ogy to how humans are educated. However, defining a good curriculum depends

heavily on human expertise. To address this limitation, various authors intro-
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duced the concept of self-paced learning [28, 29], which does not require human120

input. Instead, sample weights are determined by how well the student model

performs on those samples. These weights are forced to be sparse, leading to a

framework that autonomously filters out samples that the student model cannot

fit at the early stages of the learning process. As the network starts to get better

at the target task, the filter gradually begins accepting harder samples, leading125

to an adaptive curriculum learning strategy, which contrasts with the previous

pre-defined curriculum. However, forcing the weights to be sparse may overfit

the network to easy samples on the early stages of training. A weighting strategy

has been proposed for data sets with noisy labels in [19]. They propose optimiz-

ing the weights based on a clean validation set, so that samples with incorrect130

labels do not interfere with the learning process. However, validation sets are

often much smaller than the training set and may lack the necessary variability

to compute the optimal sample weights for more challenging problems. Weight-

ing samples has also been frequently used in problems with imbalanced data

sets, namely using class-specific weights [30], to enforce good predictions on all135

classes. However, within each class, the relative importance of different training

samples should also be taken into account.

Our proposed approach falls under this type of strategies. However, it does

not required a pre-defined curriculum and can be combined with any model

without requiring expert knowledge or adaptation. It also avoids overfitting140

easy samples by not constraining the weights to be sparse, thus samples are

never disregarded during the learning process. Instead, our approach forces the

network to focus more on specific samples. Finally, it also takes into account

the intra-class variability, since the weights are specific for each sample.

2.3. Teacher-Student Strategies145

In the last few years, several papers have proposed new learning strategies

that rely on an additional model to act as the teacher [20, 21, 31, 32], whose task

has been referred to as learning to teach [33]. For instance, Fan et al. [34, 33]

used deep reinforcement learning to decide if a sample should be selected for
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training (policy) based on the past performance of the student network (reward).150

Another example is MentorNet [21], which uses a teacher network to assign

weights to the samples based on the student network performance. In this case,

samples that are too hard for the student network to fit will be filtered out (i.e.,

their weight is reduced to zero), as in self-paced learning [28, 29], which makes

this framework more robust to data sets with noisy or corrupted labels.155

Although these type of approaches have a similar goal to our proposed strat-

egy, they require additional DNNs and training to adapt to new student models

or new data sets.

3. Learning with Optimal Sample Weights

In classification problems, DNNs are trained using a set of N training sam-

ples, {(xi, yi)}Ni=1, with x ∈ RD and label y ∈ Y. The network takes as input

a training sample xi and tries to estimate the corresponding label yi. Let

ỹi = ψ(xi|θ) be the output of a DNN parameterized by θ. The learning proce-

dure consists of minimizing the empirical loss that relates ψ(xi|θ) with the true

label yi of the corresponding sample, such that

θ? = arg min
θ

1

N

N∑
i=1

` (ψ(xi|θ), yi) , (1)

where ` represents the loss function. This optimization is typically solved with

(some variant of) the stochastic gradient descent (SGD) method with mini-

batches of size M � N , leading to the update equation

θt+1 = θt − η
1

M

M∑
j=1

∇θt` (ψ(xj |θt), yj) , (2)

where η represents the learning rate, t denotes the step number, and the samples160

j = 1, . . . ,M in the mini-batch are chosen randomly from the training set.

3.1. Gradient Descent with Weighting Strategies

In the update equation (2), all the samples contribute equally to the opti-

mization of the network parameters, despite the fact that some samples may be

more relevant than others for the learning process [4].165
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Weighting strategies enforce the network to pay attention to more relevant

samples by assigning them higher weights. These weights, denoted by wtj ∈ R+,

are incorporated in the update equation by multiplying the sample loss by a

specific weight as follows

θt+1 = θt − η
1

M

M∑
j=1

wtj∇θt` (ψ(xj |θt), yj) . (3)

The main challenge is thus to choose the best sample weights, wtj .

3.2. Optimal Sample Weight

In this work, we assume that the optimal weights are those that lead to a

greater decrease in the loss function at each gradient descent step. Formally,

at each step t and for each sample j, we want to compute sample weight that

maximizes

` (ψ(xj |θt), yj)− ` (ψ(xj |θt+1), yj) . (4)

Using the linear approximation, we can rewrite the term ` (ψ(xj |θt+1), yj) as

` (ψ(xj |θt+1), yj) ≈ ` (ψ(xj |θt), yj) + (∇θt` (ψ(xj |θt), yj))> (θt+1 − θt) (5)

Replacing this approximation in (4) and using the update equation for θt+1

(based on (3) when M = 1) leads to

`(ψ(xj |θt), yj)− ` (ψ(xj |θt+1), yj) =

=` (ψ(xj |θt), yj)− ` (ψ(xj |θt), yj)− (∇θt` (ψ(xj |θt), yj))> (θt+1 − θt)

=− (∇θt` (ψ(xj |θt), yj))> (θt − ηwtj∇θt` (ψ(xj |θt), yj)− θt)

=ηwtj(∇θt`(ψ(xj |θt), yj))>(∇θt`(ψ(xj |θt), yj))

=ηwtj‖∇θt`(ψ(xj |θt), yj)‖2 (6)
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Therefore, the computation of the weights can be expressed by the following

optimization problem

arg max
w

w>∇θt (7)

subject to wj ≥ 0, j = 1, . . . ,M

M∑
j=1

wj = M

where

w =


w1

...

wM

 ∇θt =


‖∇θt` (ψ(x1|θt), y1)‖2

...

‖∇θt` (ψ(xM |θt), yM )‖2

 . (8)

The first constraint in (7) ensures all sample weights are non-negative and the

second constraint forces the average weights in the batch to be equal to one,

so that the effective learning rate does not change. This optimization problem

has a trivial solution, which makes all weights go to zero except for the sample

with greater gradient norm. Under this scenario, the network would effectively

use only one sample per batch to update its parameters, severely hampering

its learning process. Therefore, an additional regularization term is required,

penalizing large deviations from a standard weight (wj = 1 for all samples

j = 1, . . . ,M in the batch, as in SGD), leading to

arg max
w

w>∇θt − λ ‖w − 1‖2 (9)

subject to wj ≥ 0, j = 1, . . . ,M

M∑
j=1

wj = M

This is a quadratic program that can be efficiently solved using appropriate op-

timization algorithms, where the regularization term is controlled by parameter

λ > 0. As the value of λ decreases, the distribution of the sample weights will170

be less uniform, and will eventually make some components of w (associated to

samples with smaller gradient norm) go to zero, while others will increase. On
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Figure 1: Overview of the training process with LOW.

the other hand, as λ increases, all sample weights will become closer to one, i.e.,

all samples will contribute equally to the training process.

The computational complexity of the optimization problem in (9) is mostly175

dependent on the pre-computation of the gradient norms ∇θt . However, it

has been previously shown that these gradient norms can be approximated by

the gradient of the loss function with respect to the pre-activation outputs of

the last layer in the DL model [5]. This approximation significantly simplifies

the computation of ∇θt and allows the sample weights to be obtained without180

backpropagating through the entire DNN. The computation of sample weights

using this approach leads to a new learning strategy that we denote as Learning

Optimal sample Weights (LOW).

An overview of the training process with LOW is shown in Fig. 1. Given

a batch of samples, the DNN performs the forward pass and the sample loss185

(denoted by `j in the figure) is computed based on its output. Then, the op-

timization problem in (9) is solved based on each sample loss, from which the

sample weights are obtained with marginal computational overhead. More chal-

lenging samples, such as the ones illustrated by the right column of the batch,

will receive higher weights, increasing their importance during training. Once190

the LOW loss is computed, the model parameters are updated accordingly. No-

tice that this learning strategy can be applied to different DNNs and different

sample loss functions.

In Section 5, we show that this approach can be particularly effective to
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train DNNs when the training set is imbalanced, because the weights assigned195

to under-represented and more challenging classes will become higher as the

model begins overfitting the most common classes. In practice, this learning

strategy acts as a regularizer that prevents samples from being disregarded

during the training process.

3.3. Comparison with Other Formulations200

Other weighting strategies in the literature consider the problem of jointly

optimizing the DNN parameters, θ, and the sample weights, w [28, 29, 21]. This

alternative formulation leads to

arg min
w,θ

1

M

M∑
j=1

wj` (ψ(xj |θ), yj) +G(w;λ) +R(θ), (10)

where R(θ) encodes the regularization on the network parameters (such as

weight decay), and G(w;λ) defines the learning curriculum (i.e., the impor-

tance of each sample), based on a hyper-parameter λ.

The above optimization problem is typically solved using an alternating min-

imization strategy, where w and θ are alternatively minimized while the other205

is assumed to be fixed. When w is fixed, the optimization over the network pa-

rameters, θ, leads to the formulation described in Subsection 3.1. On the other

hand, the choice of function G(w;λ) dictates the weighting strategy used in

the optimization. Examples include self-paced learning [28], which defines this

function as G(w;λ) = −λ‖w‖1, forcing the sample weights to be either zeros210

(for more challenging samples) or one (for easier samples), or MentorNet [21],

which relies on a teacher model to provide the desired sample weights. In other

words, their function G(w;λ) is an additional neural network that is trained

to either provide a pre-determined curriculum or learned it from a data-driven

approach for each specific data set and student model.215

In the case of the proposed LOW strategy, the function G(w;λ) can be

obtained from (9), leading to

G(w;λ) = −w>∇θt + λ ‖w − 1‖2 . (11)
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Notice that the signs of both terms in (11) are now switched because G(w;λ)

is used in a minimization problem, whereas (9) was a maximization problem.

4. Experimental Setup

This section describes the data sets, architectures, and experiments used to

evaluate the proposed learning strategy.220

4.1. Data Sets

4.1.1. Benchmark Data Sets

The proposed learning strategy is evaluated on three standard benchmarks

for image classification with DNNs: MNIST, CIFAR 10, and CIFAR 100.

MNIST consist of large data sets of 60,000 training samples and 10,000 test225

samples. Each sample is a 28× 28 image with one hand-written digit, from 0 to

9 (total of 10 classes). This simple classification problem is used as a testbed in

the evaluation of LOW and its impact in the training process. The robustness

of LOW is further demonstrated using imbalanced versions of MNIST. To ac-

complish this, we randomly selected samples from each classes to a maximum230

of NC/2k samples, where NC is the maximum number of samples per class and

k ∈ {0, 1, . . . , 9}. Each k is randomly assigned to one class. To exemplify, the

total number of samples per class in one of the created MNIST data sets could

be: [47, 23, 3000, 12, 1500, 94, 750, 6000, 375, 188], which corresponds to a total

of 11,989 training samples. As the example shows, some classes have a signifi-235

cantly higher number of samples than others, representing approximately 0.1%

to 50% of the total number of training samples. The network architecture used

in these tests is Lenet-5 [35].

CIFAR 10 and 100 are also large data sets of 50,000 training samples and

10,000 test samples each. Each sample is a 32×32 image from 1 out of 10 or 100240

classes, respectively. For these data sets, we use two state-of-the-art networks:

1) Densenet with bottleneck and compression (Densenet-BC), without dropout

and with growth rate set to 12 [36]; and 2) Wide residual network [37] with depth

28 and widening factor 2 (WRN-28-2), which follows the setup used in [5].
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Table 1: Class distribution for each ISIC data set.
2017 2018

Classes
# Training

Samples
Classes

# Training

Samples

Benign 1372 Nevus 6741

Melanoma 374 Melanoma 1119

Keratosis 254 DF 116

Actinic 331

Keratosis 1101

BCC 517

Vascular 143

The standard SGD update equation (2) is used as the baseline in all the ex-245

periments (referred to as the “Normal” learning strategy in Section 5), in which

all training samples are assigned a weight equal to one. A comparison is per-

formed with various weighting strategies, including: 1) the focal loss (FL) [16];

2) self-paced learning (SPL) [28]; 3) the importance sampling strategy proposed

in [5] (IS); and 4) the teacher-student based approach MentorNet [21].250

4.1.2. Medical Application

The proposed approach is evaluated on two data sets of dermoscopy images:

ISIC 2017 and 2018, which have been released as part of conference challenges.

Dermoscopy image analysis is rapidly becoming a very active research field [38],

mainly due to the yearly release of public data sets by the International Skin255

Imaging Collaboration (ISIC). These sets are increasingly larger in size and com-

plexity, with the 2018 set comprising more than 10,000 images of seven different

classes. Most recent papers in this field use DNNs to achieve an automatic di-

agnosis [39]. Unfortunately, dermoscopy data sets are highly imbalanced, with

significantly more examples of non-malignant lesions, such as nevus or keratosis.260

This imbalance is clearly shown in Table 1, which summarizes the distribution

of samples per class in the two data sets. Since training DNNs under these

conditions is challenging, this is a good scenario to evaluate LOW.

The ISIC 2017 set is divided into two subsets: training and test with 2,000

and 600 images, respectively. Ground truth labels of the images on both subsets265
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are available. The ISIC 2018 data set is divided into three subsets (including a

validation set), but the ground truth labels are only available for the training

set. Thus, to evaluate the classification performance, the training set of 10,015

images was randomly partitioned into training (80% of the subset) and test

(remaining 20%).270

The DNN used in these data sets is Densenet-161 [36] pre-trained on Ima-

geNet [40], with the last layer modified to the corresponding number of classes

(three for ISIC 2017 and seven for ISIC 2018). The performance of the proposed

LOW strategy is evaluated using the following metrics: 1) the accuracy (Acc);

2) the balanced accuracy (BAcc); 3) the mean area under the curve (mAUC)275

across all classes; and 4) the mean F1-score across all classes (mF1). These

metrics are computed as follows:

• Acc: Given the total number of correctly classified samples, S+, and the

total number of samples, S, then the accuracy is given by

Acc =
S+

S
(12)

• BAcc: Denoting S+
c and Sc as the total number of correctly classified

samples for class c and the total number of samples in class c, respectively,

with c ∈ {1, . . . , C}, the balanced accuracy is computed as

BAcc =
1

C

C∑
c=1

S+
c

Sc
(13)

• mAUC: The mAUC metric is based on the area under the receiver oper-

ating characteristics (ROC) curve of each class. The ROC curve measures

the true positive rate (sensitivity) as a function of the false positive rate

(specificity), obtained using different thresholds on the predicted classifi-

cation confidence (see [41] for details). Let AUCc denote the area under

the receiver operating characteristics (ROC) curve for class c. Then, the

mean area under the curve is given by

mAUC =
1

C

C∑
c=1

AUCc (14)
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• mF1: The F1-score is a measure of the accuracy in binary classification

problems. Denoting TPc,TNc,FPc and FNc as the number of true posi-

tives, true negatives, false positives, and false negatives for class c, then

the mean F1-score is given by

1

C

C∑
c=1

2TPc
2TPc + FNc + FPc

(15)

For comparison purposes, the proposed LOW is combined with three popu-

lar classification loss functions: 1) the traditional cross-entropy loss (CE) [42];

2) the focal loss (FL) [16]; and 3) the class balanced cross entropy (bCE) [30],280

commonly used on the imbalanced data sets, in which sample weights are in-

versely proportional to its class distribution. This means that the computation

of ∇θt in (9) is based on each of the above loss functions, effectively combining

them with LOW.

4.2. Implementation Details285

All models mentioned in the previous subsection were trained with an SGD

optimizer, using Nesterov accelerated gradient with momentum of 0.9. The

Lenet-5 model, used on MNIST, was trained for 100 epochs, with a learning

rate of η = 0.001 and a batch size of 256. In the case of Densenet-BC on

CIFAR 10 and 100, the model was trained for 300 epochs, batch size 64, and an290

initial learning rate of η = 0.1 with decay to 0.01 and 0.001 after 150 and 225

epochs, respectively. Conventional online data augmentation strategies (random

cropping and horizontal flipping) were used when training Densenet. These

training conditions were based on [36]. The WideResnet-28-2 model used on

CIFAR 10 and 100 was trained for 100 epochs, using a batch size of 128 and295

an initial learning rate of η = 0.1 with a decay to 0.02 and 0.004 after 30 and

60 epochs, similarly to [5]. As before, random cropping and horizontal flipping

were used for data augmentation. Finally, Densenet-161 was trained for 150

epochs on the medical data sets, with batch size of 32, and an initial learning

rate of η = 10−4 and 10−5 and 10−6 after epochs 75 and 112, respectively.300
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Figure 2: Training loss and classification error on MNIST over 5 runs using a normal training

strategy and using LOW with λ ∈ {0.01, 0.1, 1}

.

The images were pre-processed with a color normalization method [43] and, for

training, both random horizontal and vertical flipping were used, as well as a

random crop from 300× 300 to 224× 224 without padding.

The results were based on a Pytorch [44] implementation2, using an NVIDIA

Titan Xp. The quadratic program in (9) is solved using CVXOPT [45], and,305

unless otherwise stated, the reported results for LOW were based on the best

results of a grid search for regularization term λ ∈ {1, 0.5, 0.1, 0.01}. For a

fair comparison, the reported results are based on 5 different runs and, in each

run, all the approaches use the same initialization and the same seed to ensure

identical sample selections.310

5. Results

This section divides the evaluation of the proposed learning strategy in two

parts: 1) benchmark data sets; and 2) real world application: the classification

of dermoscopy image for skin cancer diagnosis.

2Code is available at https://github.com/cajosantiago/LOW
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Figure 3: Classification error on MNIST test set over 5 runs and comparison with focal loss

(FL) [16], self-paced learning (SPL) [28], and importance sampling (IS) [5].

Figure 4: Influence of λ in LOW on the test error on MNIST.

5.1. Benchmark Data Sets315

5.1.1. MNIST

The first experiment is based on the training of a Lenet-5 for the classification

of the MNIST data set. In this experiment, we use the full training set (60,000

images) and evaluate the performance of the network in the test set (10,000

images), both of which are balanced (all classes have approximately the same320

number of samples). The average convergence curves can be seen in Figures

2 and 3. Both figures show the curves obtained using different values of λ ∈

{0.01, 0.1, 1}. In these figures, the standard deviation across different runs is

also represented by the shaded areas along the convergence curves, and also by
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Figure 5: Examples of samples that received lower weights (left) and higher weights (right) on

average across the epochs. The true label is represented in the top left corner of each sample.

the width of the distributions in Fig. 3 (right).325

Fig. 2 shows that the proposed learning strategy LOW converges to a lower

loss value and classification error, compared to a normal training (i.e., when all

samples have a weight equal to one). For a λ value of 1 and 0.1, the loss function

decreases faster than the normal approach, while for λ = 0.01, the loss is higher

in the first 20 epochs, but then converges to a lower value. A similar behavior330

occurs in the training error, with lower value of λ leading to lower final error

rates.

Fig. 3 also shows a comparison with other state-of-the-art approaches. It is

possible to see that LOW outperforms focal loss (FL) [16] and self-paced learning

(SPL) [28] for all the values of λ. LOW also achieves a lower generalization error335

than importance sampling (IS) [5] for λ = 0.01, as shown in Fig. 3 (right).

A more detailed study on the effect of λ is performed in Fig. 4. Recall that λ

defines the weight of the regularization term in (9), meaning that higher values

force the sample weights to be closer to the normal SGD. This is clearly visible

by the LOW curve convergence to the normal SGD baseline as λ increases. On340

the other hand, very small λ values will make the weight of some samples to

go to zero, which means the DNN will disregard them during training. This
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Figure 6: Average sample weight per class across the epochs on MNIST.

explains the increase in the error rate for λ = 10−3.

By analyzing all the 60,000 sample weights across the 100 epochs, it is pos-

sible to determine which samples contributed the least and the most to the345

learning process. To evaluate how much each sample contributes, we computed

their overall weights by averaging over the 100 epochs. Examples of samples

that contributed the least are shown on the left side of Fig. 5, with the majority

belonging to class “0”, while the samples that contributed the most belong to

several classes but clearly constitute harder-to-classify examples (the true label350

in provided at the top left corner of each sample).

It was also possible to determine the average contribution of each class

throughout the epochs, shown in Fig. 6. The following conclusions can be

drawn from this figure. In the beginning of the training, all samples have ap-

proximately the same weight. This makes sense, as the network initially finds355

all samples equally challenging, making them all important. Then, the network

starts to learn to classify some samples and their weights become more diverse.

In particular, the classes “0”, “1”, and “6” receive, on average, lower weights,

while “9”, “8”, and “5” receive higher weights. However, as the performance

of the network starts to converge (approximately after epoch 40, as shown in360

Fig. 2), all class weights tend to 1, corresponding to the phase of the training

process in which the model has already learned to classify most samples with
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Figure 7: Performance of Lenet on imbalanced MNIST over 5 runs.

high accuracy and no class is considered more important than the others.

5.1.2. Imbalanced MNIST

In the second experiment, we created imbalanced versions of MNIST by365

selecting a non-uniform number of samples per classes, as explained in the Sec-

tion 4. The convergence curves are plotted in Fig. 7, and show that all learning

strategies achieve a worse classification performance than using the full data

set. However, training the network with LOW leads to a significantly lower

classification error. Compared to Fig. 2, it is possible to see that the standard370

deviation is much higher now. This is expected since the distribution of the

number of samples per class is randomly chosen at each run and, as shown in

the previous section, not all classes are equally challenging to the network.
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Figure 8: Test classification error on CIFAR 10 and 100 over 5 runs using Densenet.

5.1.3. CIFAR 10 and CIFAR 100

To demonstrate that LOW works with more complex models and data sets,375

we evaluated its performance on CIFAR 10 and 100. For each of them, we

trained two models (Densenet and WideResnet) on 5 different runs.

Fig. 8 shows the convergence curves of the test error for the Densenet model.

The difference between these curves is not as clear as in the MNIST case, but

the final classification error, shown on the right, demonstrates that, for CIFAR380

10, LOW is able to achieve the same performance as the normal strategy but

with a smaller variance (i.e., the results are more consistent across different

runs), while for CIFAR 100 it clearly achieves a better performance than all the

remaining strategies.

Similar conclusions can be drawn for the WideResnet model shown in Table385

2. Here, we compare our results with FL [16], SPL [28], IS [5], and also Mentor-

Net [21], in which we fine-tuned a MentorNet pre-trained on a 20% noise CIFAR
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Table 2: Average classification error on CIFAR 10 and CIFAR 100 test set.

Densenet-BC WideResnet-28-2

Method CIFAR 10 CIFAR 100 CIFAR 10 CIFAR 100

Normal 4.8 23.1 7.2 28.0

FL [16] 5.0 23.1 7.6 28.6

SPL [28] 5.1 23.1 7.7 28.2

IS [5] 15.7 43.2 7.9 32.0

MentorNet [21] 13.1 38.9 8.5 29.1

LOW 4.8 22.8 6.8 27.7

10 with WideResnet as the student network, as proposed by the authors. Com-

paring the results, we can see that LOW outperforms all the other approaches

in both data sets and for both models, while both FL and SPL achieve similar390

performances to the normal training strategy. The results obtained with Men-

torNet are slightly worse than the other approaches. However, it is important

to recall that MentorNet was proposed in the context of noisy data sets (where

some samples were assigned the wrong label), which is not the scenario evaluated

in this work. Nonetheless, the table also shows that this strategy is sensitive395

to the DNN used as the student network – using a MentorNet pre-trained on a

different student model seems to be a poor strategy. Regarding the IS strategy,

the authors mention that the estimation of the sampling probabilities can be

affected by batch normalization layers, which are used in the Densenet model,

thus explaining the poor performance of this strategy for this case.400

5.2. Medical Data Sets

In this section, we evaluated the performance of LOW in a real world applica-

tion: diagnosis of skin cancer in dermoscopy images. As previously mentioned,

two data sets were used (ISIC 2017 and 2018), and both are significantly imbal-

anced (recall Table 1), as is common is most medical data sets. In this scenario,405

conventional learning strategies will focus on the most represented class, and

perform poorly on classes with fewer samples. The proposed learning strategy
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Figure 9: Classification error on the ISIC 2018 training set obtained with three loss functions:

1) the traditional cross-entropy (CE), 2) the balanced CE (bCE), and the focal loss (FL); and

comparison with the corresponding combination with LOW.

Table 3: Results of skin cancer classification on ISIC 2017 test set.

Loss Acc BAcc mAUC mF1

N
o
rm

a
l CE 75.7 65.4 86.0 65.4

BCE 75.0 70.4 87.2 67.8

FL 74.7 65.3 85.6 64.5

L
O
W

CE 78.0 68.2 87.2 68.9

BCE 75.5 67.2 86.2 66.9

FL 75.5 66.2 85.1 66.1

prevents this by forcing the network to address the most challenging samples

through the corresponding sample weights. Furthermore, we demonstrate the

advantage of combining LOW with different loss functions, namely: 1) the tra-410

ditional cross-entropy (CE) [42]; 2) the balanced cross-entropy (bCE) [30]; and

3) the focal loss (FL) [16].

Fig. 9 shows the convergence of the classification error on the ISIC 2017

and 2018 training set. In both cases, training with LOW leads to a faster

convergence and to a better training error on all the losses. The generalization415

of the network evaluated on ISIC 2017 and 2018 test sets is shown in Tables 3

and 4. Results show that the combination of LOW with CE loss outperforms
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Table 4: Results of skin cancer classification on ISIC 2018 test set.

Loss Acc BAcc mAUC mF1
N
o
rm

a
l CE 86.6 73.1 96.8 76.4

BCE 88.8 78.9 97.2 79.7

FL 85.5 74.5 96.3 74.9

L
O
W

CE 89.5 77.7 97.8 80.4

BCE 89.4 77.4 97.8 81.1

FL 87.7 75.5 96.8 77.5

Figure 10: Examples from ISIC 2017 of samples that received lower weights (left) and higher

weights (right). The true label is shown in the top left corner of each sample.

all other strategies on most metrics and that, for all losses, LOW outperforms

its “normal” counterpart on most of the metrics. This means that it is always

beneficial to use LOW even when using the other losses.420

As in the MNIST case, we also analyzed the weights assigned to each sample

in the ISIC 2017 data set during training, in order to determine which samples

received higher weights throughout the learning process. Fig. 10 shows a few

samples from each case, and it is possible to see that all of the samples with lower

weights belong to the “Benign” class. These samples share similar appearance425

to the ones on the right side of the figure, which makes the model unable to

correctly classify both groups. Melanoma often mimics other kinds of lesions,

in particular benign nevi as the ones shown on the left side of Fig. 10, which
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Figure 11: Examples from ISIC 2017 of samples from each class (one specific class in each row)

that received lower weights (left) and higher weights (right). The true label is represented in

the top left corner of each sample.

makes the medical diagnosis challenging and subjective [39]. For comparison,

Fig. 11 shows, for each class, samples that received lower (left) and higher (right)430

weights. On the left side are examples of melanoma that are clearly distinct from

the other classes. These lesions exhibit multiple colors and irregular textures,

features that are usually associated with the “Melanoma” class, making them

less challenging for the model. This helps explain why LOW assigns them lower

weights. Overall, Fig. 11 suggests that samples that are easier to classify, due435

to their distinctive features, are assigned lower weights in the learning process,

while samples whose appearance is misleading are assigned higher weights, which

means the model is struggling to find discriminative features.

The average sample weight for each class, shown in Fig. 12, also suggests that

the “Benign” class contributes the least to train the network, while “Keratosis”440

contributes more in the the first epochs and is then surpassed by “Melanoma”

as the most contributing class. This is an interesting observation because “Ker-

atosis” is the less common class, but the model rapidly learns to classify it.

The “Melanoma” class is clearly more challenging, as the average weights re-

main above one for a longer period. This supports the results from Fig. 10,445

where almost all of challenging examples were “Melanoma”. Nonetheless, as

in the MNIST case, in the later stages of the learning process, all classes are
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Figure 12: Average sample weight per class on ISIC 2017.

considered equally important and their average sample weights tend to one.

A similar analysis can be performed for ISIC 2018 data set, whose average

weights per class are shown in Fig. 13. In this case, the classes that receive450

higher weights in the early stages of the training process are the least represented

ones. However, it is interesting to note that the average weight is not directly

related to the class proportions in the dataset. For instance, “Melanoma” has

the highest average weight between epochs 25 and 50, but it is actually the class

with second higher number of samples. On the other hand, “Vascular” is one455

of the classes with fewer samples, but it is assigned a low average weight early

on. This justifies why applying a fixed class weight as in bCE may not be the

best approach.

6. Conclusions

This paper proposed a new learning strategy denoted as learning with opti-460

mal sample weights (LOW). This weighting-based approach automatically de-

termines the contribution of each training samples in each step of the gradi-

ent descent. The sample weights are computed through the optimization of

a quadratic program that aims to maximize the decrease in the loss function.
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Figure 13: Average sample weight per class on ISIC 2018.

This approach ensures that the DNNs focus on different samples throughout465

the learning process, and prevents the models from overfitting predominant

classes. The proposed strategy is evaluated on both computer vision bench-

mark data sets (MNIST, CIFAR 10, and CIFAR 100) as well as medical data

sets for skin cancer diagnosis (ISIC 2017 and 2018). The results show that LOW

leads to better generalization than the normal learning strategy on all data sets,470

particularly when the data sets are imbalanced. Furthermore, it outperforms

other popular weighting schemes, including sampling based and teacher-student

based approaches. LOW also provides insights on which samples contribute

the most throughout the learning process, improving its explainability and the

interpretability of the learning process.475

LOW assumes that all samples are beneficial to the training process, al-

though some more than others. This assumption is common in most learning

scenarios, but does not hold when the data set labels are noisy. In fact, since

LOW forces the model to focus on less represented or more challenging samples,

it may lead to an exaggerated attention to outliers when used to train models480

with noisy labels, eventually causing the model to overfit to this data. However,

such limitation can be exploited in future work. Specifically, persistently high
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weights during training can be indicative of potential outliers, in which case

LOW could be used preemptively to identify these errors.
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