Set-consensus for Multi-Agent Systems

Presentation · July 2015
DOI: 10.13140/RG.2.2.27838.10566

CITATIONS 0
READS 19

4 authors:

Daniel Silvestre
Instituto Superior Técnico
39 PUBLICATIONS 162 CITATIONS
SEE PROFILE

Paulo Rosa
Elecnor Deimos
66 PUBLICATIONS 566 CITATIONS
SEE PROFILE

João P. Hespanha
University of California, Santa Barbara
521 PUBLICATIONS 40,129 CITATIONS
SEE PROFILE

Carlos Silvestre
University of Macao and University of Lisbon
455 PUBLICATIONS 6,585 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Accurate Estimation and Actuation View project

Switched control systems with limited information: An entropy approach to stabilization and disturbance attenuation View project
Set-Consensus using Set-Valued Observers

D. Silvestre, P. Rosa, J. Hespanha and C. Silvestre

2015 American Control Conference
Chicago, Illinois, USA.

2nd July 2015
Outline

1. Introduction
2. Problem Statement
3. Proposed Solution
4. Main Properties
5. Simulation Results
6. Concluding Remarks
Motivation

- Distributed Sensing - Each node computes estimates and need to synchronize them before aggregating them.

- Robot Coordination - Fleet of robots wishes to agree on direction/speed or rendezvous point.

- Asynchronous Algorithms - Nodes acting independently changes the number of considered time steps as seen by each individual nodes.
Set Consensus

- A group of n nodes is trying to achieve consensus.
- Nodes have neither sensing nor self-localization capabilities.
- A tower uses a directional antenna to transmit to the nodes their position and velocity.
- Two main issues: measurements are corrupted by noise and taken at different time instants.
Motivating Example

- Consider the case of two vehicles given in the figure.
- Node 1 receives the last measurement at time instant $k - 4$.
- Due to sensor noise or disturbances, node 1 has only access to estimates.
- Then, the decision might result in a collision!
Motivating Example

- Consider the case of two vehicles given in the figure.
- Node 1 receives the last measurement at time instant $k - 4$.
- Due to sensor noise or disturbances, node 1 has only access to estimates.
- Then, the decision might result in a collision!
Motivating Example

- Consider the case of two vehicles given in the figure.
- Node 1 receives the last measurement at time instant $k - 4$.
- Due to sensor noise or disturbances, node 1 has only access to estimates.
- Then, the decision might result in a collision!
Problem Outline

- Take \(n \) nodes, where each node \(i \) has dynamics of the form

\[
x_i(k+1) = A_i(k)x_i(k) + B_i(k)u_i(k) + E_i(k)d_i(k)
\]

- \(u_i(k) \) is the actuation signal and \(d_i(k) \) possible disturbances.

Set-Consensus Problem

How to achieve position or velocity consensus when instead of knowing \(x_i(k) \) only a set \(X_i(k) \) is known such that \(x_i(k) \in X_i(k) \).
Problem Model

- Each agent i has a system of the form

$$x_i(k+1) = \left(A_0 + \sum_{\ell=1}^{n_\Delta} \Delta_\ell(k) A_\ell \right) x_i(k) + B_i(k) u_i(k) + E_i d_i(k)$$

- Each S_i is a Linear Parameter-Varying (LPV) system
- n_Δ number of uncertainties
- $\Delta_\ell(k)$ are scalar uncertainties with $|\Delta_\ell(k)| \leq 1$
- A_ℓ are constant matrices
Proposed Solution

Broadcast Solution using Position

- Use Set-Valued Observers (SVOs) [1] to update the received $X_j(k - k_j)$ for each of the neighbors j;
- Compute the weighted average [2] of the updated $X_j(k)$;
- Compute the velocity vector to drive $X_i(k)$ to $X_{avg}(k)$.

Unicast Solution using Estimation

- Node i receives sets $X_j(k - k_j)$ from a subset of its neighbors;
- Set $X_i(k)$ will include the concatenation of the updated $X_j(k)$ and disturbance terms to account for each node j actuation;
- The velocity vector will take into account the estimated position and velocity of the neighbors.
SVOs

Given the previous set $X(k)$:

- Using SVOs, the algorithm predicts $\tilde{X}(k + 1)$ using the dynamics;
- Then, the set is intersected with the measurement set $Y(k + 1)$.

\[X(k) \rightarrow \tilde{X}(k + 1) \rightarrow X(k + 1) \]
Algorithm

- Node i computes:

\[X_i(k + 1) = \alpha X_i(k) + (1 - \alpha) \frac{1}{|N_i|} \sum_{j \in N_i} X_j(k) \]

- Velocity vector v can be found through:

\[v = \arg \min_{x,y} \max_{x,y} (|| (v + x) - y ||) \]

subject to

\[x \in X_i(k) \]
\[y \in X_i(k + 1), \]
Properties

- Nodes position converge to a ball of radius equal to the maximum uncertainty in the measurement sets;

- For the case of unicast communication and using estimates, uncertainty is higher as there are added disturbances and dynamics uncertainties in the update of the estimates;

- Convergence for a single cluster depends on the allocation of transmissions by the various directions.
Simulation Results (1/2)

Setup: 200-node network randomly distributed over a $50m \times 50m$ square and round-robin service using an offset to cover 10 partitions of the terrain.

- In a typical run nodes converge to a smaller number of clusters (5 in the example).
- Nodes *aligned* themselves along the partitions.
- Figure depicts the evolution of the maximum distance between any two nodes.
- Convergence to a cluster can be identified when there is little oscillation in this metric.
Simulation Results (1/2)

Setup: 200-node network randomly distributed over a 50m × 50m square and round-robin service using an offset to cover 10 partitions of the terrain.

- In a typical run nodes converge to a smaller number of clusters (5 in the example).
- Nodes aligned themselves along the partitions.
- Figure depicts the evolution of the maximum distance between any two nodes.
- Convergence to a cluster can be identified when there is little oscillation in this metric.
Simulation Results (2/2)

Setup: 200-node network randomly distributed over a 50m × 50m square with two antennae (length and width) used in a periodic scheduling. Around-robin service is used for each antenna using an offset to cover 10 partitions of the terrain.

- A typical run achieves consensus for a single cluster.
- The maximum ball around the nodes has radius equal to the maximum uncertainty ϵ_{max}.
- The maximum difference between two nodes converges to a value smaller than ϵ_{max}.

![Graph showing simulation results](image)
Simulation Results (2/2)

Setup: 200-node network randomly distributed over a 50×50 square with two antennae (length and width) used in a periodic scheduling. Amround-robin service is used for each antenna using an offset to cover 10 partitions of the terrain.

- A typical run achieves consensus for a single cluster.
- The maximum ball around the nodes has radius equal to the maximum uncertainty ϵ_{max}.
- The maximum difference between two nodes converges to a value smaller than ϵ_{max}.
Concluding Remarks

Contributions:

- the use of SVOs to update the set representing the uncertainty about the position of the nodes;

- Two scenarios are addressed:
 - Broadcast - nodes use the positions for the other nodes;
 - Unicast - nodes obtain information in the shared medium and estimate the position for the other nodes.

- the positions of the nodes are shown to converge to the vicinity of the remaining nodes dependent on a measure of the uncertainty.

- In Simulation, it is observed that the policy for the communication influences the number of clusters.

Thank you for your time.
Set-Consensus using Set-Valued Observers

D. Silvestre, P. Rosa, J. Hespanha and C. Silvestre

2015 American Control Conference
Chicago, Illinois, USA.

2nd July 2015