See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342661395

Presentation on the application of set-based fault detection to Cyber-physical Systems

Presentation · July 2018

DOI: 10.13140/RG.2.2.30774.11841

	c	PEADS		
0	J	10		
3 autho	rs:			
	Daniel Silvestre Instituto Superior Técnico 39 PUBLICATIONS 162 CITATIONS SEE PROFILE	6	Joao P. Hespanha University of California, Santa Barbara 521 PUBLICATIONS 40,129 CITATIONS SEE PROFILE	
	Carlos Silvestre University of Macao and University of Lisbon 455 PUBLICATIONS 6,585 CITATIONS SEE PROFILE			

Some of the authors of this publication are also working on these related projects:

 Project
 TRIDENT View project

 Project
 SHAMAN (Sustaining Heritage Access through Multivalent Archiving), View project

Fault Detection for Cyber-Physical Systems: Smart Grid case

D. Silvestre, J. Hespanha and C. Silvestre

23rd Mathematical Theory of Networks and Systems Hong Kong

July 16-20 2015

Outline

- Problem Statement
- 3 Proposed Solution

4 Results

5 Simulation Results

Motivation

Introduction Problem Statemen Proposed Solution Results Simulation Results Concluding Remar

- Sensor Smart Grids Attacks or errors at the communication network can severely impact on the physical component.
- Robot Coordination Formations of robots can also be seen as another example of a system with a communication network on top.

Fault Detection for Cyber-Physical Systems

Introduction	
Problem Statemen	
Proposed Solution	
Results	
Simulation Results	
Concluding Remar	

Cyber-physical System

- There are various physical components with their own dynamics.
- A communication network to manage the devices.
- We study the particular example of smart grids.
- Main issue: it is required a fast and distributed strategy to detect faults or attacks.

Introduction
Problem Statemen
Proposed Solution
Results
Simulation Results
Concluding Remar

Smart grid model

- A smart grid is composed of:
 - n generator buses;
 - m load buses;
- network can be incorporated using its Laplacian matrix
- Using the dynamic linearized swing equation and the algebraic DC power flow equation, the model becomes:

$$N_c \dot{x}(t) = A_c x(t) + p(t) \tag{1}$$

- state $x = [\delta^{\mathsf{T}} \omega^{\mathsf{T}} \theta^{\mathsf{T}}]^{\mathsf{T}} \in \mathbb{R}^{2n+m}$ with:
 - $\delta \in \mathbb{R}^n$ generator rotor angles;
 - $\omega \in \mathbb{R}^n$ frequencies;
 - $\theta \in \mathbb{R}^m$ bus voltage angles.

Introduction
Problem Statemen
Proposed Solution
Results
Simulation Results
Concluding Remar

Problem Statement

- Given that the network is connected, $\theta(t)$ can be written using the other variables;
- The system is rewritten from an algebraic differential model to a kron-reduced version;
- After discretization, it becomes a Linear Time-Invariant (LTI) model:

$$x(k+1) = Ax(k) + Bu(k) + Ff(k) + Ed(k),$$

$$y(k) = Cx(k) + Du(k) + Lf(k) + Nd(k),$$
(2)

Fault detection problem in Cyber-physical systems

How to perform fault detection without knowledge of the fault inputs? Is it a fast and distributed algorithm?

Introduction	
Problem Statemen	
Proposed Solution	
Results	
Simulation Results	
Concluding Remar	

Centralized solution 1/2

- A node estimates the subnetwork of interest;
- No uncertainty in the model;
- New estimate for the state can be obtained by the inequality:

$$\underbrace{\begin{bmatrix} M(k)A^{-1} & -M(k)A^{-1}E\\ \bar{C} & 0\\ 0 & \bar{I} \end{bmatrix}}_{M(k+1)} \begin{bmatrix} \mathbf{x}\\ \mathbf{d} \end{bmatrix} \leq \underbrace{\begin{bmatrix} m(k) + \tilde{u}(k)\\ \bar{y}(k+1) + \nu^*\mathbf{1}\\ 1 \end{bmatrix}}_{m(k+1)} \quad (3)$$

• Propagation equation

Introduction	
Problem Statemen	
Proposed Solution	
Results	
Simulation Results	
Concluding Remar	

Centralized solution 1/2

- A node estimates the subnetwork of interest;
- No uncertainty in the model;
- New estimate for the state can be obtained by the inequality:

$$\underbrace{\begin{bmatrix} M(k)A^{-1} & -M(k)A^{-1}E\\ \overline{C} & \mathbf{0}\\ 0 & \overline{I} \end{bmatrix}}_{M(k+1)} \begin{bmatrix} \mathbf{x}\\ \mathbf{d} \end{bmatrix} \leq \underbrace{\begin{bmatrix} m(k) + \tilde{u}(k)\\ \overline{y}(k+1) + \nu^{\star}\mathbf{1}\\ 1 \end{bmatrix}}_{m(k+1)} \quad (3)$$

• Intersection with measurements

Introduction	
Problem Statemen	
Proposed Solution	
Results	
Simulation Results	
Concluding Remar	

Centralized solution 1/2

- A node estimates the subnetwork of interest;
- No uncertainty in the model;
- New estimate for the state can be obtained by the inequality:

$$\underbrace{\begin{bmatrix} M(k)A^{-1} & -M(k)A^{-1}E\\ \bar{C} & 0\\ 0 & \bar{I} \end{bmatrix}}_{M(k+1)} \begin{bmatrix} \mathbf{x}\\ \mathbf{d} \end{bmatrix} \leq \underbrace{\begin{bmatrix} m(k) + \tilde{u}(k)\\ \bar{y}(k+1) + \nu^{\star}\mathbf{1}\\ 1 \end{bmatrix}}_{m(k+1)} \quad (3)$$

• Bounds on disturbances

Introduction	
Problem Statemen	
Proposed Solution	
Results	
Simulation Results	
Concluding Remar	

Centralized solution 2/2

- $\bullet\,$ The generalized solution exists for singular matrices A
- We can include previous time instants
- If we use a coprime factorization providing $P(z)=G^{-1}(z)Q(z) \mbox{ represented in }$

Figure: Schematic representation of the two coprime systems.

Introduction
Problem Statemen
Proposed Solution
Results
Simulation Results
Concluding Remar

Decentralized solution

• Replace the known matrix A in the centralized version by:

$$A = A_0 + \sum_{\ell=1}^{n_\Delta} \Delta_\ell A_\ell \tag{4}$$

- \bullet Uncertainties parameters Δ_ℓ are used to represent the unknown dynamics
- The set can be obtained by computing the convex hull for each of the uncertainty vertex:

$$\tilde{X}(k+1) = \operatorname{co}\left(\bigcup_{\theta \in \mathcal{H}} \operatorname{Set}(M_{\theta}(k+1), m_{\theta}(k+1))\right)$$
(5)

Introduction
Problem Statemen
Proposed Solution
Results
Simulation Results
Concluding Remar

Results

- Centralized solution
 - If the system with n states is observable, convergence of the estimates is achieved in n time instants.
- Distributed solution
 - Convergence is governed by the slowest mode.
- In both cases, maximum magnitude for the attacker can be found by solving:

$$\gamma_{\min} \ge \max_{A_H x \le b_H} x^{\mathsf{T}} P_A x. \tag{6}$$

- P_A defining all the quadratic weights for the fault signals;
- A_H and b_H define the polytope containing all possible states.

Simulation Results (1/2)

Setup: Testbed network of 14 buses from IEEE.

- The average of the fault magnitude decreases with the number of past measurements.
- Attackers have a limited possibility to compromise the state without being detected.

Simulation Results (1/2)

Setup: Testbed network of 14 buses from IEEE.

- The average of the fault magnitude decreases with the number of past measurements.
- Attackers have a limited possibility to compromise the state without being detected.

Simulation Results (2/2)

- The centralized solution detects faults of smaller magnitude.
- Detection was performed at most in *n* time instants.
- Detection for one of the observers in the network.
- Decentralized solution required a higher magnitude fault to ensure detection.

Introduction
Problem Statemen
Proposed Solution
Results
Simulation Results
Concluding Remar

Simulation Results (2/2)

- The centralized solution detects faults of smaller magnitude.
- Detection was performed at most in *n* time instants.
- Detection for one of the observers in the network.
- Decentralized solution required a higher magnitude fault to ensure detection.

Introduction
Problem Statemen
Proposed Solution
Results
Simulation Results
Concluding Remar

Concluding Remarks

Contributions:

- We have shown how to perform worst-case fault detection
 - centralized one node with full knowledge of the network;
 - distributed various node with a partial view.
- It is possible to give theoretical results about the convergence time;
- Finally, under the framework of distinguishability of models, it was possible to give worst-case bounds on the attacker signal.

References

D. Silvestre, P. Rosa, J. P. Hespanha, et al., "Self-triggered and event-triggered set-valued observers," Information Sciences, vol. 426, pp. 61-86, 2018, ISSN: 0020-0255. DOI: https://doi.org/10.1016/j.ins.2017.10.029 D. Silvestre, P. Rosa, J. P. Hespanha, et al., "Fault detection for LPV systems using set-valued observers: A coprime factorization approach." Systems & Control Letters, vol. 106, pp. 32–39. 2017, ISSN: 0167-6911. DOI: https://doi.org/10.1016/j.sysconle.2017.05.007 D. Silvestre, P. Rosa, J. P. Hespanha, et al., "Set-based fault detection and isolation for detectable linear parameter-varying systems." International Journal of Robust and Nonlinear Control, vol. 27, no. 18, pp. 4381-4397, 2017, rnc.3814, ISSN: 1099-1239. DOI: D. Silvestre, P. Rosa, J. P. Hespanha, et al., "Stochastic and deterministic fault detection for randomized gossip algorithms," Automatica, vol. 78, pp. 46-60, 2017, ISSN: 0005-1098. DOI: http://doi.org/10.1016/j.automatica.2016.12.011 D. Silvestre, P. Rosa, J. P. Hespanha, et al., "Self-triggered set-valued observers," in European Control Conference (ECC), 2015, pp. 3647–3652, DOI: 10.1109/ECC.2015.7331097 D. Silvestre, P. Rosa, J. P. Hespanha, et al., "Finite-time average consensus in a byzantine environment using set-valued observers," in American Control Conference (ACC), 2014, 2014, pp. 3023-3028. DOI: 10.1109/ACC.2014.6859426 D. Silvestre, P. Rosa, J. P. Hespanha, et al., "Distributed fault detection using relative information in linear multi-agent networks," IFAC-PapersOnLine, vol. 48, no. 21, pp. 446–451, 2015, 9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 20, Paris, 2-4 September 2015, ISSN: 2405-8963, DOI:

• Thank you for your time.

Fault Detection for Cyber-Physical Systems: Smart Grid case

D. Silvestre, J. Hespanha and C. Silvestre

23rd Mathematical Theory of Networks and Systems Hong Kong

July 16-20 2015