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Abstract
This paper presents an event-triggered controller that solves the problem of tra-
jectory tracking for an aerial vehicle with thrust actuation in a single body-fixed
direction and full angular velocity actuation. Firstly, we design a globally stabi-
lizing hybrid controller and then, using the framework of hybrid dynamical sys-
tems, we derive an appropriate event-triggering mechanism for sampling actu-
ation signals. We prove the global asymptotic stability of a zero tracking error
set for the closed-loop system. For practical implementation of the proposed
event-triggered controller on digital platforms, we restrict the event-triggering
condition and inflate the zero tracking error set to avoid Zeno solutions while
achieving global asymptotic stability of the inflated set for the closed-loop sys-
tem. The results are illustrated by numerical simulations and further verified by
experiments.
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1 INTRODUCTION


In recent decades, motion control of small aerial vehicles, especially quadrotors, has seen emerging techniques in an
attempt to fully exploit their high maneuverability. Among different motion control tasks, the trajectory tracking problem
is a fundamental one, for which there exist a variety of control strategies including proportional-integral-derivative (PID)
feedback,1 feedback linearization,2 sliding-mode control,3 integral backstepping,4 adaptive control,5 and hybrid control,6
to name a few. Digital implementation of these controllers requires sufficiently fast periodic sampling of both measure-
ment signals and actuation signals in order to preserve the stability of the closed-loop system. However, the requirement
of a sufficiently small sampling period may not be satisfied in some circumstances, such as: limited communication band-
width for signal transmission, transmission delay, and low computational power. Besides, it can lead to redundant samples
at instants that are not actually needed to achieve the desired stability property.


The advent of event-triggered control allows less-frequent sampling while guaranteeing desired levels of performance
of the closed-loop system (see the works of Åström et al.7 and Åarzén et al.8 for early approaches). Various Lyapunov-based
event-triggering mechanisms have been proposed for the stabilization of continuous-time plants. Some rely on the exis-
tence of an input-to-state (ISS) Lyapunov function.9-11 The work of Seuret et al.12 removes the ISS requirement by just
focusing on stabilizing the plant state. Event-triggered controllers are feasible only if it can be shown that there exists a
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positive lower bound to the inter-event time. This has been achieved either by temporal regularization13-15 or by turning
off the sampling events near the set to be stabilized.16,17


In the context of the trajectory tracking problem of underactuated vehicles, several results achieve position and/or
attitude stabilization by event-triggered control. The work of Postoyan et al.18 presents an event-triggered feedback law
for the trajectory tracking control of a planar vehicle with practical stability and provide sufficient conditions for the
absence of Zeno solutions, that is, solutions with infinite jumps within finite flow time. Téllez-Guzmán et al.19 designed
an event-based LQR control strategy, derived from the results for nonlinear affine control systems,20 for linearized atti-
tude dynamics of a quadrotor that achieves local asymptotic stability. Similar ideas have also been applied in the design
of event-triggered quaternion-based feedback laws that locally asymptotically stabilize a quadrotor around a desired
fixed attitude while avoiding Zeno solutions.21,22 A distributed event-triggered hybrid controller for leader–follower
flocking for multiple quadrotors while avoiding Zeno solutions,23 which can be identified as a position stabilization
problem. Recently, it was shown that an event-triggered PID controller24 is able to drive a quadrotor to a fixed position
under the assumption that a lower bound for the sampling interval is available. However, control parameters have to
be selected carefully to guarantee stability of the system due to the discretization of measured states and the local rep-
resentation of the orientation by Euler-angles. In the context of networked control systems, event-triggered dual-rate
control of the yaw angle for a quadrotor is achieved in the work of Cuenca et al.25 The stability results in the aforemen-
tioned works are local, therefore limiting the possibility for inverted flight as one of the aggressive maneuvers. In fact,
there is a topological obstruction to global stabilization of rotational motion by continuous feedback.26 In light of this
obstruction, we follow an approach similar to Mayhew et al.27 in order to achieve global asymptotic stability by hybrid
feedback.


In this paper, we start with the design of a control law that globally asymptotically stabilizes the position and the
linear velocity dynamics, followed by backstepping, which guarantees global asymptotic stability of the zero tracking
error set for the complete dynamics through hybrid feedback. Then, we develop an event-triggering mechanism on top of
the given hybrid controller, that measures and enforces a given rate of decay of the Lyapunov function through sampling
updates, similarly to the event-triggered implementation of a continuous-time plant in the work of Seuret et al.12 These
procedures lead to the control configuration shown in Figure 1, in which an event-triggering mechanism is devised upon
the knowledge of quadrotor state xp and controller state xc and decides the sampling events. Between two consecutive
triggering events, the quadrotor is driven by a constant (zero-order hold) actuation input û whose value equals the last
sample of the controller output u.


The main contributions of this paper are: (i) proposing a control strategy for trajectory tracking of a quadrotor vehicle
by synthesizing a globally stabilizing hybrid controller and an event-triggering mechanism; (ii) presenting both simulation
and experimental results to demonstrate the performance of the proposed control law, where the globally asymptotically
stabilizing property is tested in both upright flight as well as inverted flight (see Figure 2). In fact, the first documented
experiment for stable inverted hovering appeared in the work of Michini et al.28 and was later theoretically verified in
the work of Cutler et al.29 The main difference between their inverted flight and ours is: our quadrotor generates nega-
tive thrust by reversing the direction of motor rotation while their quadrotors do so by varying the propeller pitch angle.
In addition, we exclude Zeno solutions to enable digital implementation of the proposed controller. This is achieved by
restricting the set in which the event-triggering mechanism is allowed and inflating the size of the set to be stabilized.
The remainder of the paper is organized as follows. Preliminary results and notation are presented in Section 2. A dynam-
ical model for the quadrotor and the control objective are introduced in Section 3. Section 4 focuses on the design of a


F I G U R E 1 Architecture of the controlled quadrotor in closed-loop with an
event-triggering mechanism on actuation signals
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F I G U R E 2 Experimental quadrotor in inverted flight


global trajectory tracking controller, followed by simulation results in Section 5and experimental results in Section 6. In
Section 7, we present some concluding remarks.


2 PRELIMINARIES


Let R denote the set of real numbers, R≥0 ∶= [0,∞[, R>0 ∶=]0,∞[, Z≥0 ∶= {0, 1, 2, …}, Z>0 ∶= {1, 2, …}. The Euclidean
n-dimensional space is denoted by Rn, with the inner product ⟨x, y⟩:= x⊤y for each x, y ∈ Rn and the Euclidean norm|x| ∶= √⟨x, x⟩ for each x ∈ Rn. Let x ∈ Rn and y ∈ Rm, (x, y) stands for


[
x⊤ y⊤


]⊤. In Rn, the unit vector whose ith
component is 1 and the vector whose all entries equal to 0 are denoted as ei and 0, respectively. Matrices in Rm×n are
represented by regular uppercase characters. In Rn×n, the identity matrix and the matrix whose all entries are equal to 0
are denoted as In and 0n, respectively. The distance of a vector x ∈ Rn to a set  ⊂ Rn is denoted by |x| ∶= inf{|x − y| ∶
y ∈ }. The unit open ball centered at the origin is denoted as B ∶= {x ∈ Rn ∶ |x| < 1}. The unit n-sphere centered at
the origin is denoted as Sn ∶= {x ∈ Rn+1 ∶ |x| = 1}. The translation of a set  ⊂ Rn by a vector x ∈ Rn is denoted by
x + ∶= {x + y ∶ y ∈ }. General Minkowski scalar multiples and sums of sets are defined by 𝜆 ∶= {𝜆y ∶ y ∈ } and
1 +2 ∶= {y1 + y2 ∶ y1 ∈ 1, y2 ∈ 2}, where 𝜆 ∈ R and ,1,2 ⊂ Rn.


Let f ∶  → Rn be a differentiable function such that f(x) ∶= (f1(x), f2(x), … , fn(x)) for each x ∈ , where the open
set  ⊂ Rm, the Jacobian matrix of f at x ∶= (x1, x2, … , xm) ∈  is denoted as Jf(x), whose (i, j)th entry [Jf(x)]ij ∶=


𝜕fi
𝜕xj


,
which reduces to the gradient if, in addition, the function is real-valued. A function 𝛼 ∶ R≥0 → R≥0 is of class  if it is
continuous, zero at zero, and strictly increasing; and it is of class ∞ if, in addition, it is unbounded. Given a function
V ∶  → R with  ⊂ Rn and some 𝜉 ∈ R, let V−1(𝜉) ∶= {x ∈  ∶ V(x) = 𝜉} denote its 𝜉-level set.


Given a set  ⊂ Rn, its closure is denoted as  and its interior is denoted as int . Given a set-valued mapping
 ∶ Rm ⇉ Rn, the domain and the range of  are the sets dom  ∶= {x ∈ Rm ∶ (x) ≠ ∅} and rge  ∶= {y ∈ Rn ∶
∃ x ∈ Rm, y ∈ (x)}, respectively. Given sets  ⊂ Rm, we define () ∶= {y ∈ Rn ∶ ∃ x ∈  , y ∈ (x)}.


Definition 1. (See Definition 5.12 in the work of Goebel et al.30) The tangent cone to a set  ⊂ Rn at a point x ∈ Rn,
denoted as (x), is the set of all vectors y ∈ Rn for which there exist sequences (xi)i∈Z>0


and (𝜏i)i∈Z>0
, xi ∈  and 𝜏i > 0


for each i ∈ Z>0, with xi → x, 𝜏i → 0 as i→∞ such that y = limi→∞
xi−x
𝜏i


.


We make use of hybrid systems theory that is formalized in the work of Goebel et al.30 Under this framework, a hybrid
dynamical system  ∶= ( ,,,) in Rn is defined as


 ∶


{
�̇� ∈  (𝝓) 𝝓 ∈ ,
𝝓+ ∈ (𝝓) 𝝓 ∈ ,


(1)


where 𝝓 ∈ Rn,  ⊂ Rn is the flow set,  ∶ Rn ⇉ Rn with  ⊂ dom  ,  ⊂ Rn is the jump set, and  ∶ Rn ⇉ Rn with
 ⊂ dom . In order to facilitate the definition of solutions to (1), we introduce the concepts of hybrid time domains and
hybrid arcs given next.


A subset  ⊂ R≥0 × Z≥0 is a compact hybrid time domain if  =
⋃J−1


j=0 ([tj, tj+1], j) for some finite sequence of times
0= t0 ≤ t1 ≤ t2 ≤ · · ·≤ tJ . It is a hybrid time domain if for each (T, J) ∈  ,  ∩ ([0,T] × {0, 1, … , J}) is a compact hybrid
domain. A function𝝓 ∶  → Rn is a hybrid arc if  is a hybrid time domain and if for each j ∈ Z≥0, the function t → 𝝓(t, j)
is locally absolutely continuous on the interval  j = {t ∶ (t, j) ∈ }.
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A hybrid arc 𝝓 is a solution to the hybrid system  if 𝝓(0, 0) ∈  ∪, and


(S1) for all j ∈ Z≥0 such that  j = {t ∶ (t, j) ∈ dom 𝝓} has nonempty interior,


𝝓(t, j) ∈  for all t ∈ int  j,


�̇�(t, j) ∈  (𝝓(t, j)) for almost all t ∈  j;


(S2) for all (t, j) ∈ dom 𝝓 such that (t + 1, j) ∈ dom 𝝓,


𝝓(t, j) ∈ ,


𝝓(t, j + 1) ∈ (𝝓(t, j)).


A solution 𝝓 to  is maximal if there does not exist another solution 𝝍 to  such that dom 𝝓 is a proper subset
of dom 𝝍 and 𝝓(t, j) = 𝝍(t, j) for each (t, j) ∈ dom 𝝓. A solution 𝝓 to  is complete if dom 𝝓 is unbounded, and it is
Zeno if, in addition, supt(dom 𝝓) ∶= sup{t ∈ R≥0 ∶ ∃ j ∈ Z≥0, (t, j) ∈ dom 𝝓} < ∞. A solution 𝝓 to  is precompact if it
is complete and rge 𝝓 is compact.


We make the following definition to capture consecutive jumps.


Definition 2. Given a set-valued mapping ∶ Rn ⇉ Rn and a set ⊂ Rn, we define1 ∶=  andk+1(x) ∶= ( ∩ k(x))
for each x ∈ Rn and for each k ∈ Z>0.


We make the following definitions regarding the stability properties of a hybrid system, in view of both Definition 3.6
and Definition 7.1 in the work of Goebel et al.30


Definition 3. Let  be a hybrid system in Rn. A closed set  ⊂ Rn is said to be:


• stable for  if there exists a function 𝛼 of class ∞ such that each solution 𝝓 to  satisfies |𝝓(t, j)| ≤ 𝛼(|𝝓(0, 0)|) for
each (t, j) ∈ dom 𝝓;


• globally attractive for  if each maximal solution 𝝓 to  is precompact and satisfies limt+j→∞|𝝓(t, j)| = 0;
• globally asymptotically stable for  if it is both stable and globally attractive.


The following lemma deals with joint behavior of two set-valued mappings that evolve concurrently, offering a way
to synthesize multiple hybrid dynamical systems without sacrificing the hybrid basic conditions regarding the jump sets
and jump maps. Its proof is presented in Appendix A.


Lemma 1. Given two set-valued mappings 1 ∶ Rn ⇉ Rn and 2 ∶ Rn ⇉ Rn, and two sets 1,2 ⊂ Rn


that are closed relative to Rn, if 1 is outer semicontinuous (locally bounded) relative to 1 and 2 is
outer semicontinuous (locally bounded) relative to 2, then the set-valued mapping  ∶ Rn ⇉ Rn, given
by


(x) ∶=
⎧⎪⎨⎪⎩
1(x) x ∈ 1 ⧵2,


2(x) x ∈ 2 ⧵1,


1(x) ∪2(x) x ∈ 1 ∩2,


(2)


is outer semicontinuous (locally bounded) relative to 1 ∪2.


The next lemma provides a sufficient condition for the absence of Zeno solution to a class of hybrid dynamical system,
whose proof is presented in Appendix B.


Lemma 2. Suppose that a hybrid system  ∶= ( ,,,) in Rn meets the hybrid basic conditions defined in assumption
6.5 in the work of Goebel et al.30 and there exists some K ∈ Z>0 such that


K() ∩ = ∅, (3)


where K is defined in Definition 2. Then each precompact solution 𝝓 to  is not Zeno.
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3 PROBLEM STATEMENT


Consider a fixed orthonormal inertial frame {} and an orthonormal body-fixed frame {} that is attached to the center
of mass of the vehicle. We follow the formulation in the work of Craig et al.31 for the kinematics and dynamics of the rigid
body vehicle given by


ṗ = v, (4a)


v̇ = − 1
m


RTe3 + ge3, (4b)


Ṙ = RS(𝝎), (4c)


where (p, v) ∈ R6 represents the position and the linear velocity of the vehicle in {}, respectively, R ∈ SO(3) represents
the rotation matrix that maps vectors in {} to {} with


SO(3) ∶= {R ∈ R
3×3 ∶ R⊤R = I3, det(R) = 1},


denoting the special orthogonal group of order 3, the mapping S is such that


S(a) ∶=
⎡⎢⎢⎢⎣


0 −a3 a2


a3 0 −a1


− a2 a1 0


⎤⎥⎥⎥⎦ ,
for each a ∶= (a1, a2, a3) ∈ R3,𝝎 ∈ R3 represents the angular velocity of the vehicle in {}, m ∈ R>0 represents the mass
of the vehicle, T ∈ R represents the thrust, g ∈ R>0 represents the local gravitational acceleration. In (4b), we define
r3 ∶= Re3 ∈ S2 for each R ∈ SO(3), which aligns with the thrust direction in {}. Manipulation of (4) gives rise to the
following set of differential equations.


ṗ = v, (5a)


v̇ = − 1
m


r3T + ge3, (5b)


ṙ3 = −S(r3)�̌�, (5c)


where and �̌� ∶= R𝝎 defines the angular velocity of the vehicle in {}.
A reference trajectory is a precompact solution t → r(t) ∶= (pd(t), ṗd(t), p̈d(t)) for each t ∈ R≥0 to the differential


inclusion


ṙ ∈ d(r) ∶=
{


fd


(
r,p(3)


d


)
∶ p(3)


d ∈ rB
}
,


where r ∈ R>0 and fd


(
r,p(3)


d


)
∶=


(
ṗd, p̈d,p


(3)
d


)
for each


(
r,p(3)


d


)
∈ R6 × rB, therefore rge r ⊂ d for some compact set


d ⊂ R9, and the set-valued mapping d(r) satisfies*


d(r) ∩ d(r) ≠ ∅, (6)


for each r ∈ d, where we recall d(r) is the tangent cone to the set d at r ∈ R9, see Definition (1). Such observation is
crucial in proving completeness of maximal solutions to a hybrid system. Moreover, we make the following assumption
in order to prevent reference trajectories whose acceleration equals the local gravitational acceleration:


*Equation (6) follows from lemma 5.26 in the work of Goebel et al.30 by continuity of fd, compactness and convexity of rB, implying outer
semicontinuity and local boundedness of d relative to d.
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Assumption 1. The set d satisfies supr∈d
|p̈d| < g. □


Under the aforementioned definitions, we define the problem statement as follows.


Problem Statement. To design an event-triggered controller that globally asymptotically stabilizes a reference trajectory
satisfying Assumption 1 for the dynamical system (5).


4 CONTROLLER DESIGN


4.1 Global asymptotic stabilization of both the position and the linear velocity
dynamics


In this section, we design a feedback control law for both the position and the linear velocity error system given a reference
trajectory r = (pd, ṗd, p̈d). We define the position and the linear velocity tracking errors as follows


z1 ∶= p − pd,


z2 ∶= v − ṗd,


whose time derivatives are given by


ż1 = z2, (7a)


ż2 = − 1
m


r3T + ge3 − p̈d, (7b)


which can be regarded as a system driven by the virtual input r3T. Let z ∶= (z1, z2) and


𝝁(r, z) ∶= 𝜷(𝜿(z)) + ge3 − p̈d,


for each (r, z) ∈ d × R6, where


𝜿(z) ∶= kpz1 + kvz2, (8)


for each z ∈ R6, kp, kv ∈ R>0, and the saturation function 𝜷 ∶ R3 → R3 is such that 𝜷(𝝃) ∶= (𝛽1(𝜉1), 𝛽2(𝜉2), 𝛽3(𝜉3)) for each
𝝃 ∶= (𝜉1, 𝜉2, 𝜉3) ∈ R3, with 𝛽i ∶ R → R continuously differentiable and verifying


0 < ∇𝛽i(𝜉) ≤ M𝛽i for each 𝜉 ∈ R, (9a)


𝛽i(0) = 0, (9b)


lim
𝜉→±∞


𝛽i(𝜉) = ±K𝛽i (9c)


for some M𝜷 ∶= (M𝛽1 ,M𝛽2 ,M𝛽3), K𝜷 ∶= (K𝛽1 ,K𝛽2 ,K𝛽3) ∈ R>0 × R>0 × R>0 and for each i∈ {1, 2, 3}.


Lemma 3. Suppose Assumption 1 holds, let K𝜷 ∈ R>0 × R>0 × R>0 be such that


|K𝜷 | < g − sup
r∈d


|p̈d|, (10)


then for each (r, z) ∈ d × R6, |𝝁(r, z)| > 0.


Proof. Using the reverse triangular inequality, it follows from the properties of the saturation function 𝜷 that |𝝁(r, z)| =|𝜷(𝜿(z)) + ge3 − p̈d| ≥ g − |𝜷(𝜿(z))| − |p̈d| ≥ g − |K𝜷 | − |p̈d|, which holds for each (r, z) ∈ d × R6. As the inequality (10)
holds, it is guaranteed that |𝝁(r, z)| > 0 for each (r, z) ∈ d × R6. ▪
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Remark 1. In fact, there always exist a K𝜷 ∈ R>0 × R>0 × R>0 satisfying the inequality (10) under Assumption 1.


We define the desired direction r3d as


r3d(r, z) ∶=
𝝁(r, z)|𝝁(r, z)| , (11)


for each (r, z) ∈ d × R6 and a feedback control law for the thrust T as


T(r, z, r3) ∶= mr⊤3𝝁(r, z), (12)


for each (r, z, r3) ∈ d × R6 × S2. We make a remark here that (11) is continuous as long as Assumption 1 holds, since we
can always select a K𝜷 satisfying (10) under Assumption 1.


By assigning the functions defined in (11) and (12) to the virtual input in (7b), that is, r3T = r3d(r, z)T(r, z, r3d(r, z)),
we obtain the following closed-loop system


ż1 = z2, (13a)


ż2 = −𝜷(𝜿(z)), (13b)


whose stability is studied in the work of Casau et al.32 but is reproduced in the following to make this paper self-contained.
We first examine a Lyapunov function candidate given in the lemma below, whose proof is presented in Appendix C.


Lemma 4. Consider the function V ∶ R6 → R, given by


V(z) ∶=
3∑


i=1


⎛⎜⎜⎝1
2


[
𝛽i(𝜅i(z))


e⊤
i z2


]⊤


D


[
𝛽i(𝜅i(z))


e⊤
i z2


]
+


𝜅i(z)


∫
0


𝛽i(𝜏)d𝜏
⎞⎟⎟⎠ , (14)


where 𝜅i(z) ∶= e⊤
i 𝜿(z) for each z ∈ R6 and for each i ∈ {1, 2, 3}, D ∶=


[
kv
kp
𝛾 −𝛾


− 𝛾 kp


]
with 𝛾 ∈]0, kv[. Then V is positive def-


inite relative to the origin and radially unbounded. Moreover, the time derivative of V evaluated along the solution to the
differential Equations (13), given by ⟨


∇V(z),


[
z2


− 𝜷(𝜿(z))


]⟩
∶= −W(z), (15)


for each z ∈ R6, is negative definite relative to the origin.


Taking V in (14), it follows from theorem 4.2 in the work of Khalil et al.33 that the origin is globally asymptotically
stable for the system (13).


4.2 Global asymptotic stabilization of (5) by hybrid feedback


Building on the controller in Section 4.1, we first develop a feedback control law for the angular velocity and then make
it globally asymptotically stabilize the complete dynamics by means of hybrid feedback.


From now on, we take into account the attitude kinematics. The error system consisting of (5c) and (7), driven by T
and �̌�, is written as


[
ż
ṙ3


]
=


⎡⎢⎢⎢⎣
z2


− 1
m


r3T + ge3 − p̈d


− S(r3)�̌�


⎤⎥⎥⎥⎦ =∶ f(r, z, r3,T, �̌�),
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where the function f is defined for each (r, z, r3,T, �̌�) ∈ d × R6 × S2 × R × R3.
For global asymptotic tracking of the reference trajectory, we employ synergistic hybrid feedback27 to overcome the


topological obstruction to global stabilization of rotational motion, r3 in our case, by continuous state feedback.26 In this
direction, we make use of a logic variable q ∈  ∶= {−1, 1}, define x0:= (r, z, r3, q), and choose a new Lyapunov function
candidate


Vq(r, z, r3) ∶= V(z) + 𝜖
(
1 − qr⊤3 r3d(r, z)


)
, (16)


for each x0 ∈ R19, which is continuously differentiable on some open set containing the set


x0 ∶= d × R
6 × S


2 ×,
where V is defined in (14) and 𝜖 ∈ R>0.


Following a backstepping approach, a feedback law for the angular velocity can be chosen as


�̌�
(


x0,p(3)
d


)
∶= 1


q𝜖
|𝝁(r, z)|S (r3)


[
03


I3


]⊤


∇V(z) + k𝝎
q


S (r3) r3d(r, z) + �̌�d


(
r, z, r3,p(3)


d


)
, (17)


for each
(


x0,p(3)
d


)
∈ x0 × rB, where k𝝎 ∈ R>0, the first term counteracts the position and linear velocity errors, the


second term penalizes the deviation of r from r3d, the third term represents the desired angular velocity given by


�̌�d


(
r, z, r3,p(3)


d


)
∶= S(r3d(r, z))|𝝁(r, z)| (


J𝜷(𝜿(z))
(


kpz2 − kv
(
𝜷(𝜿(z)) + S(r3)2𝝁(r, z)


))
− p(3)


d


)
, (18)


for each
(


r, z, r3,p(3)
d


)
∈ d × R6 × S2 × rB, where we recall J𝜷(𝜿(z)) is the Jacobian matrix of the saturation function 𝜷


evaluated at 𝜿(z), the deduction of (18) detailed in Appendix D.
To represent the closed-loop dynamics driven by the feedback control laws (12) and (17), we define


f0


(
x0,p(3)


d


)
∶=


⎡⎢⎢⎢⎢⎣
fd


(
r,p(3)


d


)
f
(


r, z, r3,T(r, z, r3), �̌�
(


x0,p(3)
d


))
0


⎤⎥⎥⎥⎥⎦
, (19)


for each
(


x0,p(3)
d


)
∈ x0 × rB such that the time derivative of x0 →V q(r, z, r3) evaluated along the solution to the


differential Equation (19) is obtained as


W(r, z, r3) ∶=
⟨
∇Vq(r, z, r3), f0


(
x0,p(3)


d


)⟩
= −W(z) − 𝜖k𝝎|S (r3) r3d(r, z)|2, (20)


for each (r, z, r3) ∈ d × R6 × S2, where W is defined in (15). We note that W equals zero if and only if (z, r3) =(
0,± ge3−p̈d|ge3−p̈d|


)
, or more subtly (z, r3, q) =


(
0, q ge3−p̈d|ge3−p̈d| ,±1


)
. Now consider the definition


0 ∶=
{


x0 ∈ x0 ∶ z = 0, r3 = q
ge3 − p̈d|ge3 − p̈d|


}
, (21)


with q ∈ . From a physical point of view, 0 corresponds to zero tracking error during upright/inverted flight, explained
in the sequel. From (10) we know that the third component of r3d, defined in (11), is positive throughout time, thus q= 1
implies that the vector qr3d will stay within the hemisphere of S2 in which the vector has positive projection along the
z-axis in inertial frame. Meanwhile, q=−1 implies that the vector will stay within the other hemisphere. If we choose
the z-axis of the inertial frame to point downwards to the ground, then q= 1 denotes upright flight while q=−1 denotes
inverted flight. From a mathematical point of view, the introduction of the variable q in the definition of 0 leads to a







6152 ZHU et al.


family of potential functions on S2 that is synergistic with gap exceeding 𝜂 (see the work of Mayhew et al.27). This allows
for global asymptotic stabilization of a desired orientation on S2 by hybrid feedback, a task not achievable by continuous
feedback.


For global asymptotic stabilization of 0, we define the the hybrid system 0 ∶= (0,0,0,0) given by


0 ∶
⎧⎪⎨⎪⎩


ẋ0 ∈ 0(x0) ∶=
{


f0


(
x0,p(3)


d


)
∶ p(3)


d ∈ rB
}


x0 ∈ 0 ∶=
{


x0 ∈ x0 ∶ Δ(x0) ≤ 𝜂
}
,


x+
0 ∈ 0(x0) ∶= (r, z, r3,−q) x0 ∈ 0 ∶=


{
x0 ∈ x0 ∶ Δ(x0) ≥ 𝜂


}
,


(22)


where dom 0 = dom 0 = x0 , 𝜂 ∈]0, 2𝜖[, and


Δ(x0) ∶= Vq(r, z, r3) − min
𝜌∈ V𝜌(r, z, r3),


for each x0 ∈ x0 , such that {Vq}q∈ is synergistic with synergy gap exceeding 𝜂 (see the work of Mayhew et al.27 for
detail). Based on hybrid feedback given in (22), stability of a zero tracking error set for 0 can be guaranteed, as shown
by the next result with its proof presented in Appendix E.


Lemma 5. Suppose Assumption 1 holds, then the set 0 defined in (21) is globally asymptotically stable for the hybrid system
0 defined by (22).


4.3 Event-triggered implementation of the hybrid controller in Section 4.2


Now, we consider the effect of sampling of actuation signals, namely synchronized sampling of both thrust T and the angu-
lar velocity �̌�, resulting from zero-order-hold devices. We denote the sampled thrust and the sampled angular velocity as
s1 and s2, respectively. In this way, (s1, s2) is updated to the value of (T, �̌�) at some


(
x0,p(3)


d


)
under certain event-triggering


mechanism, and remains constant otherwise. We resort to an event-triggering mechanism proposed in the work of Seuret
et al.,12 that monitors and enforces a given rate of decay of the Lyapunov function (16), in an attempt to avoid continuous
sampling of (s1, s2). Under such a mechanism, however, the occurrence of an update of (s1, s2) may coincide with that of
a jump of the variable q in (22). This concern is addressed by considering their joint behavior as formalized in (2). In this
direction, we define x:= (x0, s1, s2) and consider the following the hybrid system  ∶= ( ,,,) given by


 ∶


⎧⎪⎪⎨⎪⎪⎩
ẋ ∈  (x) ∶=


⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣
fd


(
r,p(3)


d


)
f(r, z, r3, s1, s2)
0


⎤⎥⎥⎥⎦ ∶ p(3)
d ∈ rB


⎫⎪⎬⎪⎭ x ∈  ∶= 1 ∩ 2,


x+ ∈ (x) ∶= 1(x) ∪ 2(x) x ∈  ∶= 1 ∪2,


(23)


where dom  = x ∶= x0 × R × R3, dom  = , 1 ∶= 0 × R × R3, 1 ∶= 0 × R × R3,


2 ∶=
{


x ∈ x ∶ max
u∈ (x)


⟨
∇Ṽq(x),u


⟩ ≤ 𝜎W̃ (x)
}


,


2 ∶=
{


x ∈ x ∶ max
u∈ (x)


⟨
∇Ṽq(x),u


⟩ ≥ 𝜎W̃ (x)
}


,


where the function x → Ṽq(x) is an extension of the function (16) such that Ṽq(x) = Vq(r, z, r3) for each x ∈ R23 and is
continuously differentiable on some open set containing x, the function x → W̃(x) is an extension of the function (20)
such that W̃(x) = W(r, z, r3) for each x ∈ x, and 𝜎 ∈]0, 1[, which is referred to as the sampling tuning factor that allows
some flow time for sampling. The map


1(x) ∶= (0(x0), s1, s2), (24)
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where dom 1 = 1, triggers a switching event of the logic variable, and the map


2(x) ∶=
⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣


x0


T(r, z, r3)
�̌�
(


x0,p(3)
d


)
⎤⎥⎥⎥⎦ ∶ p(3)


d ∈ rB
⎫⎪⎬⎪⎭ , (25)


where dom 2 = 2, triggers a sampling event. We now state the main result on stability of a zero tracking error set for
, whose proof is referred to Appendix F.


Theorem 1. Suppose Assumption 1 holds, then the set  ∶=
{


x ∈ x ∶ z = 0, r3 = q ge3−p̈d|ge3−p̈d|
}


is globally asymptotically
stable for the hybrid system  defined by (23).


Remark 2. The convergence of error state z to the origin corresponds to trajectory tracking, while the convergence of
r3 corresponds to the fact that the thrust direction tends to align itself with the desired one, which solves the problem
defined in Problem Statement.


4.4 Avoidance of Zeno solutions for the controller in Section 4.3


To have a positive lower bound on the inter-event time, which implies the absence of Zeno behavior of solutions, is
essential for practical implementation of the proposed controller on digital platforms, and the following corollary pro-
vides a method that ensures absence of Zeno solutions by modifying . Notice that for the controller in Section 4.2,
0(0) ⊂ 0 ⧵0, which implies that 0(0) ∩0 = ∅, which implies the existence of some positive lower bound between
consecutive jumps for each maximal solution to 0 by lemma 2.7 in the work of Sanfelice et al.34 For the controller in
Section 4.3, multiple jumps are possible at the same flow time. In fact, because the set k() ∩ ≠ ∅ is nonempty for each
k ∈ Z>0 with k given in Definition 2, there exists a complete discrete solution at , for example, x(0, j + 1) = 2(x(0, j))
such that the solution x(0, j) ∈  for each j ∈ Z≥0. A straightforward fix for this problem is to remove the possibility of
any jumps within an arbitrarily small neighborhood , inspired by the work of Postoyan et al.16 and formalized in the
following corollary, whose proof is given in Appendix G.


Corollary 1. Suppose Assumption 1 holds. Let ̂ ∶= {x ∈ x ∶ Ṽq(x) ≤ 𝛿} with some 𝛿 ∈ R>0 and consider the hybrid
system


̂ ∶= ( , ̂1 ∩ ̂2, ̂, ̂1 ∪ ̂2), (26)


where ̂1 ∶= 1 ∪ ̂, ̂2 ∶= 2 ∪ ̂, ̂1 ∶= 1 ∩ x ⧵ ̂, ̂2 ∶= 2 ∩ x ⧵ ̂, ̂(x) ∶= 1(x) ∪ 2(x) for each x ∈ ̂1 ∪ ̂2,
and  , 1, 2, 1, 2, 1, and 2 are given in Section 4.3. Then, the set ̂ is globally asymptotically stable for the hybrid
system ̂ and ̂ has no Zeno solutions.


Remark 3. We notice the trade-off between achieving global asymptotic stabilization and avoidance of Zeno solutions.
For practical consideration, we can choose 𝛿 arbitrarily small to meet our tolerance of arbitrary small errors in trajectory
tracking.


5 SIMULATION RESULTS


In order to verify the performance of the proposed control scheme, this section presents simulation results by making use
of MATLAB/Simulink software with the hybrid equation solver.35


A circle parameterized in flow time is chosen to be the position reference trajectory defined as pd(t) =(
6
5


cos(t), 6
5


sin(t),−0.5
)


m for each t ∈ R≥0, such that Assumption 1 holds. For each i∈ {1, 2, 3}, the 𝛽i function in (9)


is chosen as 𝛽i(𝜉) =
2K𝛽i
𝜋


arctan
(


𝜋M𝛽i
2K𝛽i


𝜉


)
for each 𝜉 ∈ R, where M𝛽i ,K𝛽i ∈ R>0. In each subsequent simulation, the initial


states are chosen in x and the hybrid systems are simulated for a maximum of 20 s and 3500 times. Parameters used in
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subsequent simulations are m= 0.2 kg, g= 9.8 m s−2, kp = 2, kv = 2, 𝛾 = 0.8, k𝝎 = 5, M𝜷 = (1, 1, 1), K𝜷 = (1, 1, 1), 𝜖 = 20,
and 𝜂 = 36, such that the inequality (10) holds.


5.1 Simulation results of the controller in Section 4.3


We choose the sampling tuning factor as 𝜎 = 0.9 and the initial state is chosen such that


x(0, 0) ∈  ∩1, (27)


wherein


z1(0, 0) ≈ (−4.2409,−1.9158,−1.2518) m, z2(0, 0) ≈ (0.4980, 0.3075,−0.4955) m s−1,


r3(0, 0) ≈ (0.4058, 0.1505,−0.9015), q(0, 0) = 1, s1(0, 0) = 0 N, s2(0, 0) = 0 s−1.


Two possible solutions to the hybrid system  defined in Section 4.3 with the same initial state are shown in Figure 3,
denoted by x (cross markers) and x∗ (circle markers). The solution x undergoes one switching for the value of q, that
is, q(t, j)=−1 for each (t, j) ∈ dom x ⧵ {(0, 0)}, while the solution x∗ undergoes no switching for the value of q∗, that is,
q∗(t, j) = 1 for each (t, j) ∈ dom x∗. Despite the difference in the time evolution of these two solutions, they both approach
the set . However, the solution x converges to  faster than x∗ due to a smaller initial angular distance with respect to
the set . x represents the case when the vehicle performs trajectory tracking in inverted flight, that is, s1(t, j)≤ 0 for each
(t, j)∈ dom x. On the other hand, the solution x∗ manifests a thrust direction reversal for the vehicle at t ≈ 0.32 s, witnessed
by a surge of |s∗2|, and eventually achieves trajectory tracking in upright flight. It is interesting to note that the proposed
controller reacts against increasing error norms by increasing number of jumps (which are samples of actuation signals
rather than the switching of logic variables). Nevertheless, the inter-event time between consecutive jumps becomes
shorter when both solutions approach the set , implying possible Zeno behavior, as shown in Figure 3(D). Note that we
are simulating for a maximum of 20 s and 3500 times. If we raise these limits, then the hybrid domains of both x and x∗


in Figure 3(D) will be extended.


Remark 4. If we choose the position reference trajectory to be a fixed point in space, then there may not be accumulating
events when approaching the zero tracking error set . This is due to the fact that position reference trajectories with
constant acceleration, in the form of pd(t)= at2 +bt + c for each t ∈ R≥0 with a,b, c ∈ R3, may result in continuous solu-
tion without jumps within  and therefore frequent sampling is not needed. To reflect Zeno solutions that are mentioned
in Section 4.4, we decided to choose a circle to be the position reference trajectory.


5.2 Simulation results of the controller in Section 4.4


We choose the sampling tuning factor as 𝜎 = 0.9 and choose 𝛿 = 10−3 for the set ̂ that we would like to stabilize. The
initial state and other parameters are chosen to be the same as those in Section 5.1. Two possible solutions to the hybrid
system ̂ defined in Section 4.4 with the same initial state are shown in Figure 3, denoted by x̂ (square markers) and x̂∗


(diamond markers). Similar to Section 5.1, the solution x̂ undergoes one switching for the value of q, that is, q̂(t, j) = −1
for each (t, j) ∈ dom x̂ ⧵ {(0, 0)}, while the solution x̂∗ undergoes no switching for the value of q̂∗, that is, q̂∗(t, j) = 1 for
each (t, j) ∈ dom x̂∗. In Figure 3(D), the dotted lines represent the time when the solutions x̂ and x̂∗ reach the set ̂ at
around 6.36 and 12.25 s, respectively. Before reaching ̂, the jumps of x̂ (or x̂∗) of Section 5.2agree with those of x (or
x∗) of Section 5.1. After reaching ̂, the jumps of x̂ (or x̂∗) versus time manifest an almost periodic pattern, whereas the
update frequency of x (or x∗) tends to increase. Nonetheless, the error norms of x̂ (or x̂∗) stay close to those of x (or x∗),
as witnessed in Figure 3(A),(B). In fact, how close depends on the chosen parameter 𝛿, as we will study in the sequel.


Next, we explore the impact of the sampling tuning factor on the controller performance by varying 𝜎. We choose the
initial state x𝜎(0, 0) such that


z1,𝜎(0,0) = (10, 10, 10) m, z2,𝜎(0,0) = (10, 10, 10) m s−1, r3𝜎(0, 0) = e3, q𝜎(0, 0) = 1, s1,𝜎(0, 0) = 0 N, s2,𝜎(0, 0) = 0 s−1.
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(A) (B)


(C) (D)


F I G U R E 3 Simulation results of time evolution of two possible solutions x (inverted flight) and x∗ (upright flight) to  in (23) and two
possible solutions x̂ (inverted flight) and x̂∗ (upright flight) to ̂ in (26), all starting from the initial state x(0, 0) in (27). (A) Time evolution of
the norms of position errors and velocity errors; (B) Time evolution, in split windows, of the angular distances; (C) Time evolution of the
sampled thrusts and the sampled angular velocity norms; (D) Number of jumps against time


Samples of the sampling tuning factor 𝜎 are drawn from the interval ]0, 1[⊂ R to study the impact of 𝜎 on the control
performance associated with each corresponding solution x𝜎 , summarized in Table 1. As the value of 𝜎 increases, T̂
tends to decrease while Ĵ tends to increase. Also, it is interesting to notice the trade-off between faster convergence and
smaller average inter-event time, which agrees with our expectation that the event-triggered controller behaves more like
a continuous time controller as 𝜎 approaches 1.


We also explore the impact of 𝛿 on the control performance as discussed in Remark 3. The initial state x𝛿(0, 0) is
chosen to equal x𝜎(0, 0), the sampling tuning factor 𝜎 = 0.9, and samples of 𝛿 are selected from R>0 to study its impact
on the control performance associated with each corresponding solution x𝛿 , summarized in Table 2. The analysis in
Appendices F and G suggests an upper bound for the steady state trajectory tracking error be 𝛼−1


1 (𝛿) for some function
𝛼1 of class ∞, which increases with larger 𝛿. With larger 𝛿, both the time and triggers it takes to reach ̂ decrease,
and the RMS values of the steady state errors in norm (trajectory tracking error |x𝛿|, position error |z1𝛿|, linear velocity
error |z2𝛿|, angular velocity error |z3𝛿|) tend to increase. Therefore, we can reduce the upper bound for the steady-state
trajectory tracking error by picking smaller 𝛿, but at the expense of longer time and more triggers before reaching ̂.


A separate simulation is done to compare the performance the controller with that of a controller with periodic
sampling, see Appendix H for detail.
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𝝈 (s−1) T
̂
(s)a Jb


̂


𝚫T (s)c


0.1 70.41 288 0.24


0.3 62.35 262 0.24


0.5 57.23 271 0.21


0.7 57.78 391 0.15


0.9 49.11 716 0.069


aTime it takes for x𝜎 to reach ̂.
bNumber of triggers it takes for x𝜎 to reach ̂.
cAverage inter-event time in the time interval [0,T̂].


T A B L E 1 Controller performance for different 𝜎


𝜹 × 10−4 T
̂
(s)a Jb


̂


|x𝜹|c



|z1𝜹|
c |z2𝜹|


c |z3𝜹|
c,d


5 49.82 730 0.0070 0.0024 0.0052 0.0029


10 49.11 716 0.0090 0.0023 0.0065 0.0041


50 48.41 698 0.0183 0.0027 0.0124 0.0047


100 48.30 697 0.0257 0.0041 0.0173 0.0132


500 48.14 696 0.0585 0.0168 0.0378 0.0293


aTime it takes for x𝛿 to reach ̂.
bNumber of triggers it takes for x𝛿 to reach ̂.
cRMS of steady state value.
d|z3𝛿| ∶= |r3𝛿 − q𝛿r3d(r𝛿 , z𝛿)|.


T A B L E 2 Controller performance for
different 𝛿


6 EXPERIMENTAL RESULTS


The rapid prototyping and testing setup at the SCORE laboratory,36 University of Macau, was used to experimentally
validate our algorithm. Experiments were conducted in a MATLAB/Simulink environment that integrated an optical
motion capture system,37 and radio communication with the quadrotor. The quadrotor used for the experiments is a
radio-controlled BLADE 200QX.38 The vehicle has a flying weight of 0.216 kg (batteries, radio receiver, and motion cap-
ture markers included). It has four brushless motors which drive four propellers located at the end of each arm. The
experimental quadrotor lacks on-board sensors and the state of the quadrotor must be estimated resorting to external
sensors. To this effect, we placed six motion capture markers with which the position and orientation information can
be obtained through the motion capture system. The linear velocity of the quadrotor can be estimated from the position
measurements by a simple backward Euler difference, with relatively high accuracy and low noise level. The state mea-
surements from the motion capture system are obtained every 0.01 s while the actuation signals are sent through the
radio frequency transmitter every 0.045 s.


A graphical representation of the overall architecture is shown in Figure 4. We use three computer systems: one
running the motion capture software; a second one generating the computed actuation signals to be sent to the third
computer through Ethernet; the third one receiving the computed actuation signals and sending them through serial
port to the RF module. This configuration is to avoid jitter in the transmission of the serial port signals to the RF
module when running all the systems in the same computer, which can lead to erratic communication with the
quadrotor.


6.1 Fixed-point tracking


In fixed-point tracking, the reference trajectory pd(t)= (0, 0,− 0.5) m for each t ∈ R≥0. The controller parameters are the
same as those of Section 5 except for m= 0.216 kg, g= 9.79 m s−2, K𝜷 = (1, 1, 4.3), 𝜎 = 0.9, and 𝛿 = 10−3. We tested the
tracking performance of the quadrotor in two scenarios: inverted flight and upright flight. For the former case, we held
it steady above the ground in order not to crash the quadrotor and release it at t = 0 s, a video clip available online to
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F I G U R E 4 Quadcopter integrated measurement
and command architecture
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F I G U R E 5 Experimental results of time evolution of two possible solutions x (inverted flight) and x∗ (upright flight) to ̂ in (26) for
fixed-point tracking


capture the behavior of the flying quadrotor.39 For the latter case, we placed the quadrotor on the ground and made the
event-triggered controller work from t = 0 s.


Time evolution of the sampled actuation signals, depicted in Figure 5, demonstrate sampling pattern resulting from the
event-triggered controller. Due to the hysteresis effect of actuation signals, the quadrotor underwent a thrust surge and an
angular velocity surge at t = 0 s for the inverted flight. Given the sampling frequency of 100 Hz of our experimental setup,
we obtain the following inter-event data: for upright flight, the median and maximum times between events are 0.05 and
1.16 s, respectively; for inverted flight, the median and maximum times between events are 0.04 and 0.75 s, respectively.
These results demonstrate that event-triggered control enables a significant reduction of the number of updates without
compromising the stability of the closed-loop system.


For the tracking performance of the thrust direction vector r3 shown in Figure 6, the angular errors 1− qr3r3d(r, z) stay
closely to 0 for both scenarios after the initial transients. Position tracking performance was illustrated in Figure 7. The
position vector first went through initial transients, then stayed within a neighborhood of the reference position vector.
Reasons for its deviations from the reference position vector are manifold. First, there are unmodeled dynamics of the
quadrotor model, for example, inner control loop that is assumed to response sufficiently fast. Second, we ignore possible
noise additive to the state measurement from VICON and to the quadrotor during flight. Third, state measurement of the
quadrotor is itself a sampled data from the actual state. Lastly, the mass may vary for each replacement of the internal
battery and the parameter g= 9.79 m s−2 may be different from the actual local gravity, which induce a steady-state error
that is prominent in the z-component of the position vector, witnessed by the last subfigure of Figure 7. This is due to the
fact that we are using a proportional feedback law in stabilizing the position and linear velocity dynamics, see (8).


6.2 Circular trajectory tracking


The reference trajectory is a circle in the space, that is, pd(t) =
(


6
5


cos(t), 6
5


sin(t),−0.5
)


m for each t ∈ R≥0, and we
decrease the z-component of K𝜷 such that K𝜷 = (1, 1, 1). We only show the position tracking performance of upright flight
for simplicity. It is witnessed in Figure 8 that the quadrotor follows the position reference closely within 0.1 m along the
(x, y)-component after the initial transient, while the steady-state position error of the z-component gets a little bit worse
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F I G U R E 6 Comparison of the angular errors between inverted flight and upright flight for fixed-point tracking


F I G U R E 7 Comparison of the
tracking performance of the position
components in the inertial frame {}
between inverted flight and upright
flight for circular trajectory tracking


F I G U R E 8 Absolute values of
position error components
(z11, z12, z13): = z1 in the inertial frame
{} of upright flight for circular
trajectory tracking


than that of fixed-point tracking in Section 6.1, largely due to the decrease of the gain K𝛽3 . The average inter-event time
is 0.068 s, with a minimum inter-event time of 0.01 s and a maximum of 0.61 s. The median inter-event time is 0.04 s.


7 CONCLUSION


This paper presented a solution to the problem of trajectory tracking for a class of underactuated quadrotors, taking
into consideration the sampling of the actuation signals using zero-order-hold devices. Based on the hybrid dynamical
model of the system, an event-triggered control law was devised such that the zero tracking error set is rendered globally
asymptotically stable for the closed-loop hybrid system. For practical implementation, we modified the data of the hybrid
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system in order to avoid Zeno solutions. Both simulations and experiments were conducted, validating the performance
of our controller.
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13. Abdelrahim M, Postoyan R, Daafouz J, Nešić D. Stabilization of nonlinear systems using event-triggered output feedback controllers. IEEE


Trans Automat Contr. 2016;61(9):2682-2687. https://doi.org/10.1109/TAC.2015.2502145.
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APPENDIX A


Proof of Lemma 1. We first examine outer semicontinuity of . By lemma 5.10 in the work of Goebel et al.,30 the set
1 ∶= {(x, y) ∈ Rn × Rn ∶ x ∈ 1, y ∈ 1(x)} is closed relative to 1 × Rn and the set 2 ∶= {(x, y) ∈ Rn × Rn ∶ x ∈
2, y ∈ 2(x)} is closed relative to 2 × Rn. Let  ∶= {(x, y) ∈ Rn × Rn ∶ x ∈ 1 ∪2, y ∈ (x)}, then it follows from
the construction of the set-valued mapping that = 1 ∪ 2. By the assumption that both1 and2 are closed relative
to Rn, we have that both 1 and 2 are closed relative to Rn × Rn. It follows that  is closed relative to Rn × Rn. Further-
more, (1 ∪2) × Rn is closed relative to Rn × Rn, which implies that is closed relative to (1 ∪2) × Rn. Therefore,
is outer semicontinuous relative to1 ∪2. Next, we examine local boundedness of. For each x ∈ 1 ⧵2, there exists
𝛿1 ∈ R>0 and 𝜖1 ∈ R>0 such that(x + 𝛿1B) ⊂ 𝜖1B by local boundedness of1 relative to1 and by openness of1 ⧵2
relative to 1. Similar argument holds for each x ∈ 2 ⧵1. For each x ∈ 1 ∩2, choose 𝛿 ∶= min{𝛿1, 𝛿2} ∈ R>0 and
𝜖 ∶= max{𝜖1, 𝜖2} ∈ R>0 such that 𝛿1, 𝛿2, 𝜖1, 𝜖2 comes from the local boundedness property of 1 and 2, we have that
(x + 𝛿B) ⊂ 𝜖B, which concludes the proof. ▪


Remark 5. The requirement of closedness of1,2 relative to Rn is essential. Consider the following example.1 ∶ R ⇉


R such that 1(x) ∶=
{


1
x


}
for each x ∈ 1 ∶= ]0, 1], 2 ∶ R ⇉ R such that 2(x) ∶= {0} for each x ∈ 2 ∶= [0, 1[, 
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is neither outer semicontinuous nor locally bounded relative to 1 ∪2 = [0, 1], despite the fact that for each i∈ {1, 2}
we have that i is both outer semicontinuous and locally bounded relative to i.


APPENDIX B


Proof of Lemma 2. The following proof is inspired by lemma 2.7 in the work of Sanfelice et al.34 Local boundedness
of  relative to  implies that for each compact set  ⊂ , there exists a compact set ′ ⊂ Rn, such that  () ⊂ ′.
By precompactness of 𝝓, there exists some a ∈ R>0, such that  (


rge 𝝓
)
⊂ aB, which implies that ||�̇�(t, j)|| < a for each


(t, j) ∈ dom 𝝓. Let  ∶=
{⋃J−1


j=0
(


tj+1, j
)
∶
(


tj+1, j
)
∈ dom 𝝓


}
, where J = sup {j ∈ Z≥0 ∶ ∃ t ∈ R≥0, (t, j) ∈ dom 𝝓}, be the


set of all points when a jump occurs such that  ≠ ∅ (otherwise 𝝓 would undergo no jumps at all so that it is not Zeno).
Then 𝝓() ⊂ , 𝝓() is nonempty and compact by precompactness of 𝝓, and 𝝓() ⊂  due to the fact that  is closed
relative to Rn. Outer semicontinuity of  relative to  implies that the set (


𝝓()) is compact. By similar arguments


as above, k
(
𝝓()) ⊂ () is compact for each k ∈ Z>0. By (3), K


(
𝝓()) ∩ 𝝓() = ∅. Then, the distance between the


two sets K
(
𝝓()) and 𝝓() is positive or positively infinite, that is, there exists some b ∈ R>0 ∪ {∞} such that b =


inf
{|w − v| ∶ w ∈ K


(
𝝓()) , v ∈ 𝝓()}. It follows that the distance between tj and tj+K + 1 is at least b


a
∈ R>0 ∪ {∞}


for each j∈ {0, 1, … , J − 1}. If J is finite, then 𝝓 is not Zeno. If J is infinite, then for each c ∈ R>0, there exists a finite
J′ = ⌈ ac


b
(K + 1)⌉ + 1 such that tJ′ >


b
a
⌊ J′


K+1
⌋ > c, where the functions ⌈x⌉ ∶= min{y ∈ Z ∶ y ≥ x} and ⌊x⌋ ∶= max{y ∈ Z ∶


y ≤ x} for each x ∈ R. Therefore, supt (dom 𝝓) = ∞, which implies that 𝝓 is not Zeno. ▪


APPENDIX C


Proof of Lemma 4. The unique equilibrium point for the system (13) is the origin. Positive definiteness of V is due to
the fact that V(z) > 0 for each z ∈ R6 ⧵ {0} and V(0) = 0. To check radial unboundedness of V , observe that V(z) =∑3


i=1
kv𝛾


2kp
(𝛽i(𝜅i(z)) −


kp


kv
e⊤


i z2 )2 + (kv − 𝛾) kp


2kv
|z2|2 +


∑3
i=1 ∫ 𝜅i(z)


0 𝛽i(𝜏)d𝜏 ≥ (kv − 𝛾) kp


2kv
|z2|2 +


∑3
i=1 ∫ 𝜅i(z)


0 𝛽i(𝜏)d𝜏. We proceed


by contradiction. Suppose V is not radially unbounded, then V is bounded on R6. This implies that |z2| remains bounded
as |z|→∞, therefore |z1|→∞ as |z|→∞. Now, 𝜅i(z) → ±∞ as |z|→∞ for some i∈ {1, 2, 3}. For this particular i, there
exists 𝜉 ∈ R ⧵ {0} such that lim|z|→∞V(z) ≥ lim|z|→∞ ∫ 𝜅i(z)


0 𝛽i(𝜏)d𝜏 > lim|z|→∞ ∫ 𝜅i(z)
𝜉


𝛽i(𝜏)d𝜏 > lim|z|→∞ ∫ 𝜅i(z)
𝜉


𝛽i(𝜉)d𝜏 =
lim|z|→∞ |𝛽i(𝜉) (𝜅i(z) − 𝜉)| = ∞. This contradicts with the premise that V is not radially unbounded. Moreover, we have
that ⟨


∇V(z),


[
z2


−𝜷(𝜿(z))


]⟩
= −


3∑
i=1


((kv − 𝛾)𝛽i(𝜅i(z))2 + 𝛾


kp
∇𝛽i(𝜅i(z))(kpe⊤


i z2 − kv𝛽i(𝜅i(z)) )2) ≤ 0,


for each z ∈ R6, wherein the equality holds if and only if z= 0 due to the choice of 𝛾 and by the property (9a). ▪


APPENDIX D


With the definition of r3d given in (11) satisfying the inequality (10), it is eligible to define r3d = 𝝂◦𝝁, where 𝝂(s) ∶= s|s|
for each s ∈ R3 ⧵ {0}, such that


ṙ3d = Jr3d(r, z)


[
ṙ
ż


]


= J𝝂 (𝝁(r, z)) J𝝁(r, z)


[
ṙ
ż


]
, (D1)
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where J𝝂 (𝝁(r, z)) = J𝝂(s)|s=𝝁(r,z) = − S(s)2|s|3 |||s=𝝁(r,z)
, J𝝁(r, z) =


[
03×6 −I3 J𝜷(𝜿(z))J𝜿(z)


]
, J𝜿(z) =


[
kpI3 kvI3


]
, ṙ =


fd(r,p(3)
d ) for some p(3)


d ∈ rB, and ż =
[


z2
− 1


m
r3T(r, z, r3) + ge3 − p̈d


]
. Then, (D1) can be rewritten as


ṙ3d = −S(r3d(r, z) )2|𝝁(r, z)| (J𝜷(𝜿(z))(kpz2 − kv(𝜷(𝜿(z)) + S(r3)2𝝁(r, z))) − p(3)
d ).


Therefore, the desired angular velocity can be chosen to be (18) such that �̌�d satisfies the equation ṙ3d =
−S(r3d(r, z))�̌�d(r, z, r3,p(3)


d ).


APPENDIX E


Proof of Lemma 5. Firstly, we prove that 0 meets the hybrid basic conditions.30 Continuity of the function (r, z, r3) →
min𝜌∈V𝜌(r, z, r3) follows from theorem 9.14 in the work of Sundaram et al.40 by continuity of the function (16) and
compactness of the set . Being the pre-image of closed subsets by the continuous function x0 → Δ(x0), both 0 and 0
are closed relative to R19, thanks to relative closedness of x0 to R19. By continuity of fd, f, T, and �̌� and by compactness of
rB, 0 is convex-valued, outer semicontinuous and locally bounded relative to 0. Similarly, 0 is outer semicontinuous
and locally bounded relative to 0.


Secondly, we prove that each maximal solution to 0 is precompact by proposition 6.10 in the work of Goebel et al.30


Since 0 ∪0 = x0 and that 0 ⧵0 is open relative to x0 , we have that 0(x0) = x0
(x0) = d(r) × R6 × {w ∈ R3 ∶⟨w, r3⟩ = 0} × {0} for each x0 ∈ 0 ⧵0. Together with (6), it implies that the viability condition (VC), 0(x0) ∩ 0(x0) ≠


∅, holds for each x0 ∈ 0 ⧵0. For each x0(0, 0) ∈ x0 , the set


0 ∶= {x0 ∈ x0 ∶ Vq(r, z, r3) ≤ Vq(0,0)(r(0, 0), z(0, 0), r3(0, 0))}, (E1)


is compact due to compactness of the sets d, S2, and , and due to the fact that the function x0 →V q(r, z, r3) is pos-
itive definite to the compact set 0 while tending to infinity as |z|→∞. For each x0 ∈ 0 and for each u0 ∈ 0(x0),⟨
∇Vq(r, z, r3),u0


⟩
= W (r, z, r3), given in (20). Defining


u0(x0) ∶=


{
W (r, z, r3) if x0 ∈ 0,


−∞ otherwise,


we have that
⟨
∇Vq(r, z, r3),u0


⟩ ≤ u0(x0) ≤ 0 for each x0 ∈ 0 ∩ 0 and for each u0 ∈ 0(x0). On one hand, u0(x0) = 0
for each x0 ∈ 0. On the other hand, W (r, z, r3) = 0 if and only if x0 ∈


{
x0 ∈ x0 ∶ z = 0, r3 = ±


(
ge3 − p̈d


)
∕|ge3 − p̈d|},


but the choice x0 = (r, 0,−q
(


ge3 − p̈d
)
∕|ge3 − p̈d|, q) leads to Δ(x0) = 2𝜖 so that x0 ∉ 0. Thus u−10


(0) = 0. For each
x0 ∈ 0, let x+


0 = 0(x0), then Vq+(r+, z+, r+3 ) − Vq(r, z, r3) = 2𝜖qr⊤3 r3d(r, z). Defining


u0(x0) ∶=


{
2𝜖qr⊤3 r3d(r, z) if x0 ∈ 0,


−∞ otherwise,


we have that Vq+(r+, z+, r+3 ) − Vq(r, z, r3) ≤ u0(x0) < 0 for each x0 ∈ 0 ∩0. Note that u0(x0) = 0 if and only if x0 ∈
{x0 ∈ 0 ∶ ⟨r3, qr3d⟩ = 0}, but now Δ(x0) = 0 so that x0 ∉ 0. Thus u−10


(0) = ∅. Since the function x0 →V q(r, z, r3) is
nonincreasing along each maximal solution x0 to 0, we have that x0(t, j) ∈ 0 for each (t, j)∈ dom x0, which implies
boundedness of x0. In addition, the fact that 0(0) ⊂ 0 ⧵0 ⊂ x0 = 0 ∪0 lets us conclude precompactness of each
maximal solution to 0.


We are now in the conditions of case (i) of corollary 8.9 in the work of Goebel et al.,30 where u0(x0) < 0 and u0(x0) < 0
for each x0 ∈ 0 ⧵0, and the desired conclusion follows. ▪


APPENDIX F


Proof of Theorem 1. In proving closedness of the flow set and the jump set, notice that is convex-valued, compact-valued,
outer semicontinuous and locally bounded relative to . It follows from lemma 5.15 in the work of Goebel et al.30 that
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 is upper semicontinuous at each x ∈  and from proposition 9.9 in the work of Sundaram et al.40 that  is lower
semicontinuous at each x ∈ . By theorem 9.14 in the work of Sundaram et al.,40 the function x → maxu∈ (x)


⟨
∇Ṽq(x),u


⟩
is continuous on x, which implies that both  and  are closed relative to R23. By the construction of 1 in (24) and 2
in (25), we have that  is in the form of (2) in Lemma 1. Outer semicontinuity and local boundedness of  relative to 
then follows.


In proving precompactness of each maximal solution to  by proposition 6.10 in the work of Goebel et al.,30 observe
that  ∪ = x and that  ⧵ is open relative to x, then (x) = x(x) = d(r) × R6 × {w ∈ R3 ∶ ⟨w, r3⟩ = 0} × {0} ×
R4 for each x ∈  ⧵. Together with (6), it implies that the viability condition (VC),  (x) ∩ (x) ≠ ∅, holds for each
x ∈  ⧵. Let  ∶= 0 × R × R3 with 0 defined in (E1). Defining


u(x) ∶=
⎧⎪⎨⎪⎩


max
u∈ (x)


⟨
∇Ṽq(x),u


⟩
if x ∈ ,


−∞ otherwise,


we have that
⟨
∇Ṽq(x),u


⟩ ≤ u(x) ≤ 𝜎W̃ (x) ≤ 0 for each x ∈  ∩  and for each u ∈  (x). On one hand, u(x) =
0 for each x ∈ . On the other hand, maxu∈ (x)


⟨
∇Ṽq(x),u


⟩
= 0 implies W̃ (x) = 0, which is true if and only if


x ∈
{


x ∈ x ∶ z = 0, r3 = ±
(


ge3 − p̈d
)
∕|ge3 − p̈d|}, but the choice x = (r, 0,−q


(
ge3 − p̈d


)
∕|ge3 − p̈d|, q, s1, s2) leads to


Δ(x0) = 2𝜖 so that x ∉ . Thus u−1 (0) = . Defining


u(x) ∶=
⎧⎪⎨⎪⎩


2𝜖qr⊤3 r3d(r, z) if x ∈ 1 ⧵2,


0 if x ∈ 2,


−∞ otherwise,


we have that Ṽq+(x+) − Ṽq(x) ≤ u(x) ≤ 0 for each x ∈  ∩. Note that u(x) = 0 if and only if x ∈
{x ∈ 1 ⧵2 ∶ ⟨r3, qr3d⟩ = 0} ∪2, but now Δ(x0) = 0 so that x ∉ 1. Thus u−1 (0) = 2. Since the func-
tion x → Ṽq(x) is nonincreasing along each maximal solution x to , x(t, j) ∈  for each (t, j)∈ dom x. Let
 ∶=


{⋃J−1
j=0


(
tj+1, j


)
∶
(


tj+1, j
)
∈ dom x


}
, where J = sup {j ∈ Z≥0 ∶ ∃ t ∈ R≥0, (t, j) ∈ dom x}, be the set of all points


when a jump occurs. Following (23), the value of (s1, s2) remains constant on jumping through 1 or during
flow, and is updated to the value of (T, �̌�) on jumping through 2. Hence, rge (s1, s2) ⊂  ∶= {(s1(0, 0), s2(0, 0))} ∪
({T(r(t, j), z(t, j), r3(t, j)) ∶ (t, j) ∈ } × {�̌�


(
x0(t, j),p(3)


d (t, j)
)
∶ (t, j) ∈ }). Since  ⊂ dom x, we further have that


 ⊂ {(s1(0, 0), s2(0, 0))} ∪ (T(rge (r, z, r3)) × �̌�(0 × rB)). By continuity of (T, �̌�) and compactness of 0, we conclude
boundedness of (s1, s2) and therefore boundedness of x. It can be further verified that


⎧⎪⎨⎪⎩
(1 ⧵2) ⊂ 1 ⧵1,


(2 ⧵1) ⊂  ⧵1,


(1 ∩2) ⊂ x ⧵ (1 ∩2).


As a result, () ⊂ x =  ∪ and we conclude precompactness of each maximal solution to .
In proving global attractivity of  for , recall from previous paragraph that u−1 (0) = , u−1 (0) = 2, so that


we obtain (u−1 (0)) ⊂ x ⧵ (1 ∩2). It follows from corollary 8.4 in the work of Goebel et al.30 that for some
𝜉 ∈ R≥0, each precompact solution to  approaches the nonempty set  which is the largest weakly invari-
ant subset of Ṽ−1


q (𝜉) ∩ ( ∪ (2 ⧵1)). Since (x) ⊂  ⧵ for each x ∈ (2 ⧵1) ⧵, then (2 ⧵1) ⧵ cannot
be weakly invariant and thus  ⊂ Ṽ−1


q (𝜉) ∩ ( ⧵ (2 ⧵1)). Hence,  ⊂  and global attractivity of  for 
follows.


In proving stability of for, notice that there exist 𝛼1, 𝛼2 of class∞ such that 𝛼1
(|x0|0


) ≤ Vq(r, z, r3) ≤ 𝛼2
(|x0|0


)
for each x0 ∈ x0 by lemma 3 from Postoyan et al.16 Now |x| = |x0|0 for each x ∈ x, so that the functions of ∞ used
to lower and upper bound the Lyapunov function candidate x → Ṽq(x) can be chosen to be the same as 𝛼1 and 𝛼2. The fact
that x → Ṽq(x) is nonincreasing along each maximal solution x to  yields 𝛼1 (|x(t, j)|) ≤ Ṽq(t,j)(x(t, j)) ≤ Ṽq(0,0)(x(0, 0)) ≤
𝛼2 (|x(0, 0)|), and consequently, |x(t, j)| ≤ 𝛼−1


1 (𝛼2 (|x(0, 0)|)) for each (t, j)∈ dom x. Therefore,  is stable for . ▪
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APPENDIX G


Proof of Corollary. 1 This proof follows similar lines as the proof of Theorem 1 with major differences highlighted below.
In proving that ̂ meets the hybrid basic conditions, notice that both ̂ ∶= ̂1 ∩ ̂2 and ̂ ∶= ̂1 ∪ ̂2 are closed


relative to R23 by closedness of ̂ relative to R23, while both outer semicontinuity and local boundedness of ̂ , ̂ relative
to ̂, ̂ maintain, respectively.


In proving precompactness of each maximal solution to ̂, consider the Lyapunov function candidate V̂q ∶ R23 → R


defined as x → max{0, Ṽq(x) − 𝛿}, which is locally Lipschitz on some open set containing x. Defining


û(x) ∶=
⎧⎪⎨⎪⎩


max
u∈ (x)


V̂◦
q (x;u) if x ∈ ̂,


−∞ otherwise,


where V̂◦
q (x;u) denotes the generalized directional derivative of Clarke of V̂q at x in the direction u, that is, V̂◦


q (x;u) ∶=
lim suph→0+, y→x(V̂q(y + hu) − V̂q(y))∕h, we resort to lemma 1 from Postoyan et al.16 to conclude that V̂◦


q (x;u) ≤
û(x) ≤ 0 for each x ∈  ∩ ̂ and for each u ∈  (x). On one hand, û(x) = 0 for each x ∈ ̂. On the other hand,
maxu∈ (x)⟨∇Ṽq(x),u⟩ = 0 implies W̃(x) = 0, which is true if and only if x ∈ {x ∈ x ∶ z = 0, r3 = ±(ge3 − p̈d)∕|ge3 −
p̈d|}, but the choice x = (r, 0,−q(ge3 − p̈d)∕|ge3 − p̈d|, q, s1, s2) leads to Δ(x0) = 2𝜖 so that x ∉ . Thus u−1


̂ (0) = ̂.
Defining


û(x) ∶=
⎧⎪⎨⎪⎩


2𝜖qr⊤3 r3d(r, z) if x ∈ ̂1 ⧵ ̂2,


0 if x ∈ ̂2,


−∞ otherwise,


we have that V̂q+(x+) − V̂q(x) ≤ û(x) ≤ 0 for each x ∈  ∩ ̂. Note that û(x) = 0 if and only if x ∈ {x ∈ ̂1 ⧵ ̂2 ∶⟨r3, qr3d⟩ = 0} ∪ ̂2, but now Δ(x0) = 0 so that x ∉ ̂1. Thus u−1
̂ (0) = ̂2.


In proving global attractivity of ̂ to ̂, we conclude from theorem 8.2 in the work of Goebel et al.30 that each maximal
solution x to ̂ approaches the nonempty set that is the largest weakly invariant subset of V̂−1


q (𝜉) ∩ (̂ ∪ (̂2 ⧵ ̂1)) =
̂ ∪ (̂2 ⧵ ̂1) for some 𝜉 ∈ R≥0. Since ̂(x) ⊂ ̂ ⧵ ̂ for each x ∈ (̂2 ⧵ ̂1) ⧵ ̂, we conclude global attractivity of ̂ to ̂.


In proving stability of ̂ to ̂, note that V̂q is positive definite relative to ̂ and tends to infinity as |x|̂ → ∞ since|x|̂ ≤ |x|. Since Ṽq is independent of (s1, s2), we can rewrite ̂ = {x0 ∈ x0 ∶ Vq(r, z, r3) ≤ 𝛿} × R × R3, and then there
exist 𝛼1, 𝛼2 of class ∞ such that 𝛼1(|x|̂) ≤ V̂q(x) ≤ 𝛼2(|x|̂) for each x ∈ x by lemma 3 from Postoyan et al.16


Lastly, to assert the absence of Zeno solutions to ̂, we check the image of ̂ under ̂ as follows:


⎧⎪⎪⎨⎪⎪⎩
̂(̂1 ⧵ ̂2) ⊂ 1 ⧵1,


̂(̂2 ⧵ ̂1) ⊂ (̂ ⧵ ̂) ∩ x ⧵ ̂,


̂(̂1 ∩ ̂2) ⊂ (1 ⧵1) ∪ (1 ∩ (2 ⧵2) ∩ x ⧵ ̂).


(G1)


By the equalities ⎧⎪⎪⎨⎪⎪⎩
̂ ∩ (1 ⧵1) = ̂2 ⧵ ̂1,


̂ ∩ (̂ ⧵ ̂) ∩ x ⧵ ̂ = ∅,


̂ ∩ (1 ⧵1) ∪
(
1 ∩ (2 ⧵2) ∩ x ⧵ ̂


)
= (̂1 ⧵ ̂2) ∪ (̂2 ⧵ ̂1),


(G2)


we have that ⎧⎪⎨⎪⎩
̂2(̂1 ⧵ ̂2) ⊂ ̂(̂2 ⧵ ̂1),
̂2(̂2 ⧵ ̂1) = ∅,
̂2(̂1 ∩ ̂2) ⊂ ̂(̂1 ⧵ ̂2) ∪ ̂(̂2 ⧵ ̂1).
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F I G U R E H1 Comparison between time evolution of the norms of position errors associated with two possible solutions x̃ and x̃∗ using
time-triggered control and that associated with two possible solutions x̂ and x̂∗ to ̂ in (26), starting with the same initial state x(0, 0) in (27)


In view of (G1) and (G2),


⎧⎪⎨⎪⎩
̂3(̂1 ⧵ ̂2) = ∅,
̂3(̂2 ⧵ ̂1) = ∅,
̂3(̂1 ∩ ̂2) ⊂ ̂(̂2 ⧵ ̂1).


As a result, ̂3(̂) ∩ ̂ ⊂ (̂ ⧵ ̂) ∩ x ⧵ ̂ ∩ ̂ = ∅. Therefore, ̂k(̂) ∩ ̂ = ∅ for each k∈ {3, 4, … } and the desired
conclusion follows then from Lemma 2. ▪


APPENDIX H


We compare the performance of the event-triggered controller in Section 4.4 with a time-triggered controller that issues
periodic samplings of actuation signals. Starting from the same initial condition x(0, 0) in (27), let x̃ and x̃∗ denote two
possible solutions using the time-triggered controller, where q̃(t, j) = q̂(t, j) for each (t, j) ∈ dom x̃ and q̃∗(t, j) = q̂∗(t, j) for
each (t, j) ∈ dom x̃∗. For our purpose, it is reasonable to let ΔT and Δ


∗
T to be the average inter-event times for the solutions


x̂ and x̂∗ of Section 5.2before entering the set ̂, namely,


ΔT ∶=
inf{t ∶ ∃(t, j) ∈ dom x̂, x̂(t, j) ∈ ̂}
inf{j ∶ ∃(t, j) ∈ dom x̂, x̂(t, j) ∈ ̂}


≈ 0.1091 s, Δ
∗
T ∶=


inf{t ∶ ∃(t, j) ∈ dom x̂∗
, x̂∗(t, j) ∈ ̂}


inf{j ∶ ∃(t, j) ∈ dom x̂∗
, x̂∗(t, j) ∈ ̂}


≈ 0.1416 s.


For simplicity, we only compare time evolution of the position error presented in Figure H1. Although the time evo-
lution patterns for |z̃1| and |ẑ1| bear little difference, it is obvious that |z̃∗1| converges slower than |ẑ∗1|. This comparison
shows the effectiveness of event-triggered control in stabilizing task with an average frequency of sampling that may cause
slower rate of convergence using a time-triggered controller. Furthermore, the convergence of errors using event-triggered
control is guaranteed while that using time-triggered control may not be.
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