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Abstract: The existence of multiple solutions to an attitude determination problem impacts the
design of estimation schemes, potentially increasing the errors by a significant value. It is therefore
essential to identify such cases in any attitude problem. In this paper, the cases where multiple
attitudes satisfy all constraints of a three-vehicle heterogeneous formation are identified. In the
formation considered herein, the vehicles measure inertial references and relative line-of-sight
vectors. Nonetheless, the line of sight between two elements of the formation is restricted, and these
elements are denoted as deputies. The attitude determination problem is characterized relative to the
number of solutions associated with each configuration of the formation. There are degenerate and
ambiguous configurations that result in infinite or exactly two solutions, respectively. Otherwise, the
problem has a unique solution. The degenerate configurations require some collinearity between
independent measurements, whereas the ambiguous configurations result from symmetries in the
formation measurements. The conditions which define all such configurations are determined in this
work. Furthermore, the ambiguous subset of configurations is geometrically interpreted resorting
to the planes defined by specific measurements. This subset is also shown to be a zero-measure
subset of all possible configurations. Finally, a maneuver is simulated to illustrate and validate the
conclusions. As a result of this analysis, it is concluded that, in general, the problem has one attitude
solution. Nonetheless, there are configurations with two or infinite solutions, which are identified in
this work.

Keywords: attitude determination; formation of vehicles; heterogeneous formation; ambiguous
solution; degenerate solution

1. Introduction

Attitude determination is the computation of the angular relation between different
frames in a given moment. Information about attitude serves a critical role in autonomous
navigation of any system. It has been well studied since the dawn of spacecraft technology,
when one of the most recognized methods, the Tri-Axial Attitude Determination (TRIAD) al-
gorithm, was developed [1]. This algorithm constructs two triads of orthonormal reference
and observation vectors from two non-collinear vector references and observations, which
are related by a unique orthogonal matrix. Shortly after, Wahba formulated an optimiza-
tion problem combining several measurements into a cost function [2]. This problem has
remained central in attitude determination, hence many methods for its solution exist. A
widely known and employed solution is the Quaternion Estimator (QUEST) algorithm [3],
which makes use of the quaternion representation of a rotation matrix. Moreover, there
are more recent approaches, such as the fast linear quaternion attitude estimator (FLAE),
which can reduce the computational time while having similar accuracy to other methods,
as described in [4]. As the variety of applications for autonomous systems expanded, the in-
terest in vehicle formations has grown, because of their potential to solve complex problems
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with simpler and cheaper individual systems [5], while being more flexible and more fault
tolerant, as a whole, than other systems. Their practical applications are numerous and
use all kinds of vehicles. For instance, [6] describes a problem for platoons of underwater
vehicles, [7] describes a range of applications with unmanned aerial vehicles, whereas [8]
presents a survey with applications, both real and potential, for cooperative systems of
vehicles, including scenarios with ground, aerial, and marine vehicles working together.

Attitude determination in the context of formations may be challenging, specially if
there are constraints that prevent individual vehicles of measuring their own attitude. The
three-vehicle formation considered in [9] is constrained to have all measurements in the
same plane. Its attitude determination problem is solved considering first both the inertial
positions and relative bearing measurements, then parallel relative bearing measurements,
and finally non-parallel relative bearing and range measurements. An application of this
problem is found in [10], which considers a formation of small satellites. A similar scenario
with a coplanar constraint is considered in [11], where the attitude determination problem
is solved for a two-vehicle formation, while taking advantage of the observation of a
common landmark. A recent attitude problem was addressed in [12], where both hand-eye
and vector measurements were used to minimize a cost function and determine the relative
attitude between two spacecraft. This work considers the framework laid out in [13], that
is, a three-vehicle formation with both line-of-sight (LOS) measurements, relative to other
vehicles, and inertial reference measurements, where the LOS observations between two of
the vehicles are restricted.

This work is motivated by the lack of a complete analysis on the number of solutions for
each measurement set in the attitude determination problem described in [13]. Such analysis
is necessary because undesired multiple solutions can substantially affect the estimation
errors. Consequently, the identification of these cases is essential for any attitude observer
design applied to this specific problem, since such design must handle the potential errors
associated with these cases. Otherwise, the existence of multiple solutions may cause the
deviation of the estimation errors into intolerable values.

This characterization should provide a way to obtain the number of solutions for the
problem without actually applying the solution. A similar analysis for two robots is shown
in [14], where a wide range of minimal problems with two vehicles is characterized relative
to the number of poses which solve such problems. Nonetheless, a third vehicle introduces
more complexity, specifically at the level of information symmetry, which is not considered
in that work.

Therefore, the main goal of this paper is to identify the number of attitude solutions of
each specific set of measurements, also called a configuration of the formation, considering
the framework described in [13]. Moreover, it is interesting to geometrically interpret the
special configurations with multiple attitude solutions, since they provide intuition for
the problem.

In this work, vision sensors are considered, although alternatives exist. Such sensors
provide an accessible and reliable method to extract observations in formations, due to
the variety of such sensors available and the independence from outside systems such as
the Global Positioning System (GPS). Nonetheless, due to the constraints considered in
this problem, the measurement of an inertial reference by each vehicle is required. This
requirement allows the use of magnetometers, instead of star trackers, which are a more
expensive option and generally already provide a complete inertial attitude estimate.

This formation is denominated as heterogeneous [5] because the sets of sensors, or
measurements, for each vehicle are different. As an example, one vehicle has two LOS
sensors measuring the relative direction to other vehicles, while the remainder only have
one. The potential applications of such a formation is, for example, in multi-spacecraft
observatories, in orbit far from Earth, which synthesize large aperture telescopes or long
baseline interferometers [15], or even sample spatially disperse phenomena such as the
Earth’s magnetotail [16]. In such context, it is desirable to have a large distance between
each element of the system, because it improves resolution. Another scenario where
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this framework can be applied is in chained leader–follower constellations, where each
spacecraft only has line of sight relative to its nearest neighbor. In all these, the advantage
of the formation in [13] is that it does not require line of sight measurements between the
furthermost vehicles to solve the attitude determination problem.

The contributions of this work include the full characterization of all the configurations
for which there is more than one set of attitudes that satisfy all the constraints imposed by
the measurements. In addition, an intuitive geometric reasoning is given for the different
cases. Hence, this paper improves the special configurations’ description in [17], which was
based on the analysis of the solution equations. The new results not only provide a full insight
to the geometry of the problem, but also include a proof for each of the conclusions. First,
the analysis focus on just two of the vehicles of the formation. Their relative and inertial
attitudes are shown to have either one, two, or infinite solutions and the specific conditions
for each outcome are specified. The cases with a unique solution are related to the problems
in [9,11], whereas the cases with infinite solutions correspond to a loss of information in
the measurement set. Then, the whole formation is shown to have either one, two, or
infinite solutions. Again, the respective configurations are specified. Moreover, the cases
with two solutions result from information symmetries and, as before, infinite solutions
relate to information loss. Finally, the ambiguous configurations’ subset is shown to be a
zero-measure subset, while the simulations show that the neighborhood of such cases is
important as well, due to possible estimation errors.

This paper is organized as follows. First, recurrent notation, definitions and properties
are described. Then, in Section 3, the problem and respective solution, from [13], are
summarized. Section 4 initially characterizes the number of solutions for the relative and
inertial attitudes with the measurements from two of the vehicles. Then, it analyzes the
number of solutions for the entire formation. The distinction between the general case
and some ambiguous configurations requires the analysis of the symmetry of the whole
formation, which provides an extra condition for the existence of two solutions. At the end
of the section, the geometric intuition for such cases is shown, followed by the proof that
these ambiguous configurations are a zero measure subset. Section 5 shows a simulation of
a simple maneuver which illustrates and validates the conclusions in this paper. Finally,
Section 6 summarizes and comments the results obtained in this work.

2. Notation, Definitions, and Properties

Throughout this document, scalars are represented in regular typeface, whereas vectors
and matrices are represented in bold, with the latter in capital case. Reference frames are
represented in calligraphic typeface and between brackets, such as {I}. Body-fixed frames
are numbered and represented by the letter B, with the respective number as a subscript. The
symbol 0 represents the null vector or matrix and I represents the identity matrix with the
appropriate dimensions. The four-quadrant inverse tangent function is denoted by atan2(b, a),
with a, b ∈ R. The set of unit vectors in R3 is denoted by S(2) :=

{
x ∈ R3 : ‖x‖ = 1

}
. The

special orthogonal group of dimension 3, which describes proper rotations, is denoted by
SO(3) := {X ∈ R3×3 : XXT = XTX = I ∧ det(X) = 1}. The skew-symmetric matrix
parameterized by x ∈ R3, which encodes the cross product between x and another vector, is
denoted by

S(x) :=

 0 −x3 x2
x3 0 −x1
−x2 x1 0

, (1)

with x = [x1 x2 x3]
T.

The rotation matrix in SO(3) that transforms a given vector, in R3, expressed in {Bi}
to {Bj}, i, j ∈ N0, is denoted by Rj

i . If a frame is not body-fixed, the respective letter is used
instead. Moreover, multiple candidates for the same quantity are identified by a subscript
capital case letter, such as

(
Rj

i

)
A

. The rotation matrix of an angle θ ∈ R about the axis
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described by the unit vector x ∈ S(2) is denoted by R(θ, x), which is written, recalling (1),
as [18]

R(θ, x) := cos(θ)I + (1− cos(θ))x xT − sin(θ)S(x). (2)

The following properties are used recurrently throughout the paper. Let θ ∈ R,
x ∈ S(2), y ∈ R3, A ∈ SO(3), and R(θ, x) ∈ SO(3). Then,

‖R(θ, x)y‖ = ‖y‖, (3)

R(θ, x)x = x, (4)

S(Ry) = RS(y)RT , (5)

R(θ, Ax) = AR(θ, x)AT , (6)

and
S(x)R(θ, x) = R(θ, x)S(x). (7)

3. Problem and Solution
3.1. Problem Definition

Consider a formation with three vehicles, where {B1}, {B2}, and {B3} are the body-
fixed frames of the respective vehicles and {I} represents the inertial frame. In the proposed
framework, there are two kinds of measurements: one is a LOS vector that points to the
position of another vehicle and the other is an inertial reference vector, for example, a
known physical field direction. All measurements are unit vectors obtained in the respective
body-fixed frame. Moreover, the inertial references are known in the inertial frame.

In the formation, the main constraint is that two of the vehicles, called the deputies,
cannot measure LOS vectors between them. Meaning, for example, that these two vehicles
are too far from each other. Furthermore, each vehicle can measure one inertial vector
independently. The vehicle that measures LOS to the other two is identified as vehicle 1
and is denominated as chief, whereas the deputies are identified as vehicles 2 and 3. The
subgroup with the chief and a deputy is called a branch of the formation, hence there
are two branches in this case. The branch 1–2 includes the chief and vehicle 2, whereas
branch 1–3 includes the chief and vehicle 3. The geometry of the framework is represented
in Figure 1.

{B1}

{B3}

{B2}
d1/2

d2/1

d2

d1

d1/3

d3/1

d3

 

Figure 1. Three-vehicle heterogeneous formation.

In the figure and throughout this document, di/j, i, j = 1, 2, 3, i 6= j, represents the
LOS vector from the i-th to the j-th vehicles, expressed in {Bi}, and di, i = 1, 2, 3, represents
the inertial vector measured by the i-th platform, expressed in {Bi}. A left superscript
specifying the frame is used whenever a vector is expressed in a different frame. For
example, Idi, i = 1, 2, 3, is the inertial vector of the i-th vehicle, expressed in {I}.
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The problem that is here considered is that of determining all the rotation matrices,
both relative (R1

2, R1
3, R2

3) and inertial (RI
1, RI

2, RI
3), using the measurement vectors that

were described, as well as the references Id1, Id2, and Id3.

3.2. Solution

The solution proposed in [13] resorts to multiple stages, as represented in Figure 2.
First, the candidates for R1

2 and R1
3 are determined. Afterwards, these are used to obtain

the candidates for RI
1. Since computing RI

1 using either R1
2 or R1

3 is equivalent, then it is
possible to disambiguate the problem. Therefore, a comparison between the candidates
for RI

1 is carried out. Finally, the remaining matrices are found from the disambiguated
solutions for R1

2, R1
3, and RI

1. A more detailed algorithm flowchart can be found in [13].

Figure 2. Disambiguation procedure.

3.2.1. Relative Attitude

In this section, the solution for the candidates of R1
2 is provided. The solution for R1

3
is omitted because it is completely analogous. The ensuing derivation also relates to the
work in [11], where it is shown that using a planar constraint leads to an ambiguity. In this
case, however, the problem is not constrained to a triangle, and therefore, such ambiguity
cannot be resolved without extra information, which will be provided when combining
the information of both branches. Hence, recall the parameterization (2) and consider the
decomposition of the relative attitude given by

R1
2 := R(θ2, n2)R(θ1, n1), (8)

with θ1, θ2 ∈ R and n1, n2 ∈ S(2), such that R1
2 verifies the constraints expressed as

− d1/2 = R1
2d2/1 (9a)

and
dT

1 R1
2d2 = IdT

1
Id2. (9b)

The resulting parameters are given by

θ1 := π, (10a)n1 := d2/1−d1/2
‖d2/1−d1/2‖

, for d2/1 6= d1/2

n1 := S(d1/2)d1
‖S(d1/2)d1‖

, for d2/1 = d1/2

, (10b)

θ2 := atan2(cs12 , cc12)± arccos

 cp12√
c2

s12
+ c2

c12

, (11a)

and
n2 := −d1/2, (11b)
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with 
cp12 := dT

1 (d1/2)(d1/2)
Td?

2 − IdT
1

Id2

cc12 := dT
1 S(d1/2)

2d?
2

cs12 := dT
1 S(−d1/2)d?

2

, (12)

where
d?

2 := R(θ1, n1)d2. (13)

As evidenced in (11a), there are, in general, two candidates for R1
2. Nonetheless, it is

possible to have a unique solution when θ2 is unique. The same reasoning applies to R1
3.

3.2.2. Inertial Attitude

The candidates for RI
1 are computed using the TRIAD algorithm [1], which considers

the relations between the inertial vectors expressed in different frames, as given by

Id1 = RI
1d1, (14a)

Id2 = RI
1R1

2d2, (14b)

and
Id3 = RI

1R1
3d3. (14c)

However, for the characterization of the problem, it is useful to describe the candidates
for RI

1 as a product between two rotations, similarly to R1
2 and R1

3. For that matter, consider
the following alternative method for the determination of RI

1. Decompose the rotation
matrix into a product between two separate rotations, as given by

RI
1 = R

(
θXi , nX

)
R∗, (15)

with θXi ∈ R, nX ∈ S(2), and R∗ ∈ SO(3). The rotation R∗ verifies (14a) and is given by

R∗ :=


R
(

π,
Id1+d1
‖Id1+d1‖

)
, Id1 6= −d1

R
(

π,
S(Id1)Id2

‖S(Id1)Id2‖

)
, Id1 = −d1

. (16)

Since (15) verifies (14b) or (14c), according to which branch is being considered, then
nX = Id1. Next, define

θX2 := atan2
(

IdT
2 S
(

Id1

)
R∗
(

R1
2

)
X2

d2, IdT
2 S
(

Id1

)2
R∗
(

R1
2

)
X2

d2

)
+ π (17a)

and

θX3 := atan2
(

IdT
3 S
(

Id1

)
R∗
(

R1
3

)
X3

d3, IdT
3 S
(

Id1

)2
R∗
(

R1
3

)
X3

d3

)
+ π, (17b)

where X2 is substituted by the candidate reference A or B, and X3 is substituted by the
candidate reference C or D. In conclusion, the inertial attitude candidate for RI

1 is given
by
(
RI

1
)

Xi
= R

(
θXi ,

Id1
)
R∗, where Xi represents the candidate reference A, B, C, or D,

accordingly, and θXi is defined by the corresponding expression of (17). For example,
consider candidate A. Then,

(
RI

1
)

A = R
(
θA, Id1

)
R∗, with θA obtained from substituting

the relative attitude candidate
(
R1

2
)

A in (17a). Since these results are analogous to the
relative attitude solution in [13], the proof is omitted.
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3.2.3. Comparison

To compare the candidates for RI
1, from different branches, consider the parameter

defined by

φXY :=
∣∣∣∣trace[I]− trace

[(
RI

1

)
X

(
RI

1

)T

Y

]∣∣∣∣, (18)

where
(
RI

1
)

X and
(
RI

1
)

Y represent two different candidates. This parameter is based on
the dependence of the rotation matrix trace and its angle of rotation. Thus, φ is zero when
both candidates are equal, which enables the disambiguation.

3.2.4. Complete Solution

The remaining attitude matrices, that is R2
3, RI

2, and RI
3, are obtained from a product

between the attitudes already determined, see [13] for further details.

3.2.5. Sensor Errors

In the presence of sensor errors, the comparison between the inertial candidates is
imperfect, hence the values of φ are, in general, different from zero. In that case, the solution
is given by the smallest φ. Optionally, the pair of candidates with the lowest value of φ are
averaged using the singular value decomposition (SVD) to obtain an improved estimate
for RI

1. Nonetheless, if there are multiple values of φ close to zero, the minimum may not
correspond to the correct solution. The characterization of the problem given in this work
identifies the configurations where such situation may happen.

3.2.6. Computational Complexity

This algorithm is based on a small number of measurements and their operations are
relatively simple. Computationally, the operation which is more costly is the SVD that is
performed to find a mean rotation, however this operation is optional. Moreover, there are
computationally efficient algorithms to perform the SVD of 3 × 3 matrices.

4. Characterization

This section analyzes the relation between each possible configuration of the forma-
tion and the respective number of attitude solutions. If there is no other information,
any attitude set that satisfies all the constraints is considered a solution for the problem.
Therefore, it is important to understand which configurations result in more than one
solution, otherwise there may be large errors, or even divergence from the correct attitude,
in the design of estimators. Thus, these configurations are properly identified in the sequel.

In general, there is only one attitude set which satisfies the constraints for a given con-
figuration. However, there are degenerate configurations, where there are infinitely many
attitudes which verify all the constraints. Furthermore, there are ambiguous configurations,
where there are exactly two possible attitude sets that satisfy all the constraints.

The degenerate configurations are generated by a set of constraints with an incomplete
amount of information, which result in, at least, an extra degree of freedom for the system.
Likewise, some ambiguous configurations result from a measurement set with poor quality.
Nonetheless, these configurations are usually the result of symmetric information in both
branches of the formation, which in turn results in identical pairs of candidates for RI

1.
The analysis is divided into three parts. First, a branch analysis investigates the

constraints used in the branch 1–2 to find the solutions of R1
2 and RI

1. Then, it identifies
the conditions which lead to degenerate, ambiguous, and unambiguous branches, respec-
tively, with infinite, two, or one solution. Analogous conclusions are taken relative to the
branch 1–3. Afterwards, a formation analysis investigates the various conditions found in
the branch analysis and connects them to the number of solutions for the entire formation.
Finally, a symmetry analysis is required to find ambiguous configurations which are not
determined by the number of solutions of the branches. This analysis explores the problem
symmetry to find conditions for the ambiguous configurations. Such configurations are
explained geometrically and the respective set is shown to be a zero measure subset of all
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possible configurations. Lastly, the results of this section are discussed and compared with
related work.

4.1. Branch Analysis

The analysis of a single branch, which includes only two vehicles, hints at the possible
number of solutions for the overall formation. The number of candidates in a branch is either
one, two, or infinite. Therefore, a branch can be classified as either unambiguous, ambiguous,
or degenerate, respectively. Consider the solutions for R1

2 and RI
1 using measurements from

branch 1–2. The ensuing results and conclusions are analogously applicable to the branch
1–3, due to the symmetry of the problem.

First, consider the solution for R1
2 given by the parameters from (10) and (11). Since

this solution relies on the constraints given in (9a) and (9b), then the degenerate and
unambiguous branch configurations are a result of how much information is encoded in
these constraints.

The basic idea behind the different number of solutions is that having collinear in-
dependent measurements translates into information loss, because one of the axes is not
constrained. Moreover, in this case, the coplanarity of the independent vectors eliminates
the inherent ambiguity of the branch. In (9a) and (9b), there are three independent vectors,
hence two collinear relations are possible: d1 = ±d1/2 or d2 = ±d2/1.

The effects of each of these conditions are explored before showing the different
number of solutions for R1

2. Assume that the former relation, i.e., d1 = ±d1/2, is true. It
follows, from (8), (10) and (11), that the constraint (9b) can be rewritten as

IdT
1

Id2 = dT
1 R1

2d2 = dT
1 R(θ2,−d1/2)R(θ1, n1)d2 = dT

1 R(θ2,∓d1)R(θ1, n1)d2,

or, equivalently, from (4),
IdT

1
Id2 = dT

1 R(θ1, n1)d2.

Therefore, R1
2, as defined in (8), satisfies both (9a) and (9b), with any θ2 ∈ R. Moreover,

recall (15), (16) and (17a). Since, by definition, Id1 = R∗d1, then (6) implies that

RI
1 = R

(
θX2 , Id1

)
R∗ = R∗R

(
θX2 , d1

)
. (19)

Then, substituting (8) and (19) in the constraint (14b) yields

Id2 = RI
1R1

2d2 = R∗R
(
θX2 , d1

)
R(θ2,−d1/2)R(θ1, n1)d2

which, recalling the assumption d1 = ±d1/2, can be written as

Id2 = R∗R
(
θX2 , d1

)
R(θ2,∓d1)R(θ1, n1)d2 = R∗R

(
θX2 ∓ θ2, d1

)
R(θ1, n1)d2. (20)

It follows that, RI
1, as expressed in (19), satisfies both (14a) and (14b) with any θX2 ∈ R,

because θ2 is arbitrary.
Assume instead that d2 = ±d2/1. Then, recalling (9a), the constraint (9b) can be

rewritten as
IdT

1
Id2 = dT

1 R1
2d2 = ±dT

1 R1
2d2/1 = ∓dT

1 d1/2. (21)

Consequently, since R(θ1, n1) satisfies (9a), which can be verified by substituting R1
2

by R(θ1, n1) in (9a), it follows that R1
2, as expressed in (8), satisfies both (9a) and (9b) with

any θ2 ∈ R. Additionally, substituting (8) in (14b) gives

Id2 = RI
1R1

2d2 = RI
1R(θ2,−d1/2)R(θ1, n1)d2.

Since R(θ1, n1) satisfies (9a), then applying the assumption d2 = ±d2/1 gives

Id2 = ±RI
1R(θ2,−d1/2)R(θ1, n1)d2/1 = ∓RI

1R(θ2,−d1/2)d1/2,
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which, from (4), results in
Id2 = ∓RI

1d1/2. (22)

Hence, if d1 6= ±d1/2 and Id1 6= ±Id2, there is a unique value for RI
1 that satisfies

both (14a) and (14b), because the second constraint becomes independent of R1
2.

The intuition given before provides some conditions which affect the information
encoded in the constraints. However, the connection between the number of solutions and
a set of conditions for the measurements relies on the expressions used for the solution.
Therefore, the next lemma addresses the relation between the collinear conditions, consid-
ered above, and particular values of the coefficients cs12 and cc12 , as defined in (12), which
are related to special cases of the solution. It establishes the logical connection used to
relate the degenerate cases to an infinite number of solutions for R1

2. Since this is a technical
result, the respective proof is given in Appendix B.

Lemma 1. Consider cs12 and cc12 as defined in (12). Then, both cs12 = 0 and cc12 = 0 if and only
if either d1 = ±d1/2 or d2 = ±d2/1.

Knowing the conditions associated with cs12 = 0 and cc12 = 0 allows to find the
degenerate configurations, because that is the only case for which the expressions that result
in
(
R1

2
)

A and
(
R1

2
)

B are not defined. Furthermore, from (8), with the respective parameters
given in (10) and (11), it follows that the ambiguity, which yields two candidates, is encoded
in the angle θ2, as is evidenced in (11a). Inspecting such expression leads to the conclusion
that there are cases with only one solution for θ2, namely, when

arccos

 cp12√
c2

s12
+ c2

c12

 = πk, (23)

with k ∈ Z.
The next theorem addresses all possible numbers of solutions for R1

2, considering the
measurements of branch 1–2.

Theorem 1. Consider the relative attitude between vehicles 1 and 2, i.e., R1
2. Recall the measure-

ments given as d1, d2, d1/2, and d2/1. Then:

(i) there are infinite solutions if and only if

d1 = ±d1/2 (24a)

or
d2 = ±d2/1; (24b)

(ii) the solution is unique if and only if

dT
1 S(d1/2)R

1
2d2 = 0, (25)

while d1 6= ±d1/2 and d2 6= ±d2/1;
(iii) otherwise, there are two solutions.

Proof. This proof is divided into three parts:

(i) Consider that (24a) or (24b) are verified. Then, [13] (Lemma 3) ensures that there are
infinite solutions for R1

2. Otherwise, consider that neither (24a) nor (24b) are verified.
Then, it follows from Lemma 1 that either cs12 6= 0 or cc12 6= 0, or both. In any case,
(8)–(13) are all well-defined and there are, at most, two solutions for R1

2, i.e., a finite
number of solutions. By contra-position, if there are infinite solutions for R1

2, either
(24a) or (24b) must be satisfied, thus completing the first part of the proof.
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(ii) Assume that neither (24a) nor (24b) are verified, then atan2(cs12 , cc12) is always de-
fined. Since (2) is periodic relative to the angle, with period 2π, it is concluded, from
(11a), that R1

2 has a unique solution if and only if

θ2 = atan2(cs12 , cc12) + πk , k ∈ Z . (26)

It follows that (26) is equivalent to cs12 cos(θ2) = cc12 sin(θ2). Then, expanding the
coefficients by applying (12) and introducing

(1− cos(θ2))dT
1 S(−d1/2)d1/2dT

1/2d?
2 = 0

gives

dT
1 S(−d1/2)

[
cos(θ2)I + (1− cos(θ2))d1/2dT

1/2 − sin(θ2)S(−d1/2)
]
d?

2 = 0. (27)

Recall (2) and (13). Then, (27) is equivalent to (25).
(iii) All other cases result in two solutions for R1

2, because they yield two distinct values
for θ2, considering their representation in the same 2π interval, as concluded from
the inspection of (11a). Hence, the proof is complete.

Remark 1. In short, the first condition, for infinite solutions, is verified when the measurements
of one vehicle are collinear. Moreover, there is a unique solution if the involved vectors, given in
the same reference frame, are coplanar, but not collinear as in the first case. Otherwise there are
two solutions.

The problems described in [9,11] consider coplanar vectors, which means that (23) is
satisfied. Thus, those problems have only one solution in general. Note that the case with
a coplanar vector configuration is a particular case of the general problem addressed in
the relative attitude solution of the branch. Thus, the information of a second branch is
required to disambiguate the solutions.

Finally, consider the solution for RI
1, with the information available within the branch 1–2.

The constraints (14a) and (14b) involve only two independent vectors, and therefore, there
is only one possible collinearity condition, which is given by Id1 = ±Id2 . Applying such
condition in (14b) yields

± Id1 = R∗R
(
θX2 , d1

)
R1

2d2

or, equivalently,
± d1 = R1

2d2. (28)

Therefore, RI
1 = R∗R

(
θX2 , d1

)
satisfies (14b) for any θX2 ∈ R. Furthermore, this

condition influences the solution of R1
2, because it implies that (25) is satisfied. Therefore, if

none of the expressions in (24) are verified, there is an unambiguous solution for R1
2.

As before, to evaluate the number of solutions for RI
1, the expressions which give such

attitude must be considered. Hence, recall that (15), with (16) and (17a) result in candidates(
RI

1
)

A and
(
RI

1
)

B, considering candidates
(
R1

2
)

A and
(
R1

2
)

B. Since the inertial candidates
are obtained from the application of the same method used to find the candidates for R1

2, then
the degenerate configurations can be found analogously. Hence, considering the analogous
of Lemma 1 and Theorem 1, leads to the conclusion that there are infinite solutions for RI

1, in
the branch 1–2, if and only if d1 = ±R1

2d2 or Id1 = ±Id2. In conclusion, since both conditions
are equivalent, then there are infinite solutions for RI

1 if and only if Id1 = ±Id2. In every
other case, each relative attitude candidate generates an inertial attitude candidate, because
the two independent vectors involved are coplanar by definition, and therefore, satisfy the
analogous of (25). The unambiguous character of this solution is expressed by (15)–(17). In
such conditions, the number of inertial candidates is the same as the number of relative
attitude candidates.
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4.2. Formation Analysis

The attitude solution for the entire formation results from the fusion of information
between both branches. Therefore, the number of attitude solutions of each branch directly
influences the number of solutions for the formation.

Recall the nomenclature used to characterize each branch relative to the number of
candidates it provides, that is, the branch is degenerate, ambiguous, or unambiguous,
respectively, if it has infinite, two, or one solution. Table 1 shows possible combinations
of branches configurations and gives the respective number of solutions for the whole
formation. Multiple degenerate conditions for each branch can be verified simultaneously,
but this analysis, and this table, considers that only one of them, for each branch, is verified
at each moment.

Table 1. Number of solutions for the entire formation.

Degenerate Unambiguous Ambiguous
d1 = ±d1/2 d2 = ±d2/1

Id1 = ±Id2 dT
1 S(d1/2)R1

2d2 = 0 Otherwise

Degenerate
d1 = ±d1/3 ∞ ∞ ∞ 1 2
d3 = ±d3/1 ∞ ∞ ∞ ∞ ∞
Id1 = ±Id3 ∞ ∞ ∞ 1 2

Unambiguous dT
1 S(d1/3)R1

3d3 = 0 1 ∞ 1 1 1

Ambiguous Otherwise 2 ∞ 2 1 1 or 2

4.2.1. Configurations with Infinite Solutions

The conditions which result in infinite solutions for the entire formation require that at
least one branch is degenerate, which is expressed in Table 1. All such cases are described
below, alongside some details that support the conclusions.

In the cases where both branches are degenerate, all conditions in (14) are satisfied
by RI

1 = R∗R(θX , d1), with any θX ∈ R. Therefore, there are infinite attitude solutions for
the problem.

In the case that d2 = ±d2/1, (21) and (22) imply that the only constraint which depends
on R1

2 is (9a), and therefore, there are infinite solutions for R1
2 even if the opposite branch

gives a unique candidate for RI
1 and R1

3. The same conclusion is analogously applicable to
the case with d3 = ±d3/1.

4.2.2. Configurations with Two Solutions

The conditions which result in two solutions for the entire formation require that at
least one branch is ambiguous, as expressed in Table 1. All such cases are described below,
alongside some details that support the conclusions.

Consider the case where one branch is ambiguous and the other is degenerate. First,
assume that d1 = ±d1/2 while the branch 1–3 is ambiguous. In this case, if RI

1 is known,
then (20) provides a second constraint to R1

2. Hence, the two different candidates for RI
1,

that emerge from branch 1–3, can be used in (20) to find two candidates for R1
2. The result

is a set of two solutions for the entire formation. Assume instead that Id1 = ±Id2 while
the branch 1–3 is ambiguous. Since (28) implies that (25) is satisfied, then there is a unique
solution for R1

2. Therefore, there are two solutions for the formation attitude, because
branch 1–3 is ambiguous, which means it gives two candidates for both RI

1 and R1
3. The

same conclusions arise when considering that branch 1–2 is ambiguous and that either
d1 = ±d1/3 or Id1 = ±Id3 is satisfied.

According to Table 1, there may be two solutions in the general case where both
branches are ambiguous. A more detailed analysis is required to determine these cases.
However, the basic idea is that, in such cases, there are two distinct pairs of identical
candidates for RI

1. This analysis follows in Section 4.3, where the conditions which result
in such ambiguous cases are found.
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4.2.3. Configurations with One Solution

Besides the general case which will be analyzed later, the only other possibility for a
unique solution requires that at least one branch is unambiguous.

Consider the case where the branch 1–3 is unambiguous. Hence, there is a unique
solution for R1

3 and RI
1. The goal of this analysis is to understand whether a single candidate

for R1
2 can be extracted as well. Assume that d1 = ±d1/2, then (28) can be used as a

constraint for R1
2, given that RI

1 is already determined. Therefore, a unique solution for R1
2

exists. Assume instead that Id1 = ±Id2. Since (25) is verified, then, from Theorem 1, there
is a unique solution for R1

2, and therefore, a unique solution for all attitudes. Otherwise,
in the case where one branch is unambiguous and the other is ambiguous and in the case
where both branches are unambiguous, there is clearly a unique solution for every attitude
of the formation.

4.3. Symmetry Analysis

The number of solutions of the branches is not enough to determine the number of
solutions of the formation when both branches give two candidates for each attitude. In
this case, the symmetry between both branches is responsible for the number of compatible
attitudes. The ensuing analysis completes the picture presented in Table 1, by showing
whether the solution is unique or ambiguous, when both branches are ambiguous.

An important detail for the ensuing analysis is that any three-dimensional unit vector
can be written as the result of two rotations whose axes are orthogonal to each other.
Consider that Id1 6= ±Id2 and Id1 6= ±Id1/2, which are verified when both branches are
ambiguous, then for some combination of angles α1, α2, β1, and β2, it follows that

Id3 = R
(

α1, Id1

)
R

(
β1,

S
(Id1

)Id2

‖S(Id1)Id2‖

)
Id2 (29a)

and
Id1/3 = R

(
α2, Id1

)
R

(
β2,

S
(Id1

)Id1/2

‖S(Id1)Id1/2‖

)
Id1/2. (29b)

The notation and definitions, which are given next, simplify the expressions used to
determine the ambiguous configurations. Hence, consider the inertial attitude candidates,
which, recalling (15), are given as(

RI
1

)
A
= R

(
θA, Id1

)
R∗, (30a)

(
RI

1

)
B
= R

(
θB, Id1

)
R∗, (30b)(

RI
1

)
C
= R

(
θC, Id1

)
R∗, (30c)

and (
RI

1

)
D
= R

(
θD, Id1

)
R∗, (30d)

with R∗ defined in (16) and θA, θB, θC, and θD defined in (17). Moreover, denote the
reference measurements in the intermediate coordinate frame as

d∗2A := R∗
(

R1
2

)
A

d2, (31a)

d∗2B := R∗
(

R1
2

)
B

d2, (31b)

d∗3C := R∗
(

R1
3

)
C

d3, (32a)
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and
d∗3D := R∗

(
R1

3

)
D

d3. (32b)

Therefore applying (30)–(32) to (14b) and (14c), gives

Id2 = R
(

θA, Id1

)
R∗
(

R1
2

)
A

d2 = R
(

θA, Id1

)
d∗2A, (33a)

Id2 = R
(

θB, Id1

)
R∗
(

R1
2

)
B

d2 = R
(

θB, Id1

)
d∗2B, (33b)

Id3 = R
(

θC, Id1

)
R∗
(

R1
3

)
C

d3 = R
(

θC, Id1

)
d∗3C, (34a)

and
Id3 = R

(
θD, Id1

)
R∗
(

R1
3

)
D

d3 = R
(

θD, Id1

)
d∗3D. (34b)

Additionally, consider a unit vector a ∈ S(2) and define the normal to a plane given
by Id1 and a as

ma :=
S
(Id1

)
a

‖S(Id1)a‖
. (35)

Finally, consider the superscript ⊥ to denote the transformation which makes a given
vector orthogonal to Id1, as follows

(a)⊥ := R(ψa, ma)a (36)

with a 6= ± Id1 and ψa ∈ R, such that

IdT
1 (a)

⊥ = 0. (37)

4.3.1. Relation between Measurements of the Same Branch

The transformation defined in (36) allows to represent the system measurements in a
plane orthogonal to Id1, which is convenient for establishing the relations between Id1/2
and Id2, and analogously between Id1/3 and Id3. Such relations are respectively derived in
Lemmas A5–A8, in Appendix C, and assume that the candidates that are identical to the
inertial attitude are known. Hence, recalling the angles and candidates defined in (30) and
assuming that both branches are ambiguous, as defined in Theorem 1, if RI

1 =
(
RI

1
)

A, then

(
Id1/2

)⊥
= R

(
θA − θB

2
+ πkA, Id1

)(
Id2

)⊥
. (38a)

Otherwise, if RI
1 =

(
RI

1
)

B, then

(
Id1/2

)⊥
= R

(
− θA − θB

2
+ πkB, Id1

)(
Id2

)⊥
. (38b)

Moreover, if RI
1 =

(
RI

1
)

C, then

(
Id1/3

)⊥
= R

(
θC − θD

2
+ πkC, Id1

)(
Id3

)⊥
. (39a)

Otherwise, if RI
1 =

(
RI

1
)

D, then

(
Id1/3

)⊥
= R

(
− θC − θD

2
+ πkD, Id1

)(
Id3

)⊥
, (39b)

with kA, kB, kC, kD ∈ Z.
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4.3.2. Relation between Same Type of Measurement

The relation between measurements across branches completes the set of relations required
to establish a connection between the identical candidates and the system measurements.

The only measurement shared by both branches is Id1, hence the transformation
defined in (36) is also convenient for establishing the relation between Id2 and Id3, and
analogously between Id1/2 and Id1/3. Such relations are derived in Lemmas A9 and A10,
in Appendix D, and are given as(

Id3

)⊥
= R

(
α1 + πk1, Id1

)(
Id2

)⊥
(40)

and (
Id1/3

)⊥
= R

(
α2 + πk2, Id1

)(
Id1/2

)⊥
, (41)

with α1 and α2 respectively defined in (29a) and (29b), and with k1, k2 ∈ Z.

4.3.3. Ambiguous Conditions

Advancing to the determination of the ambiguous conditions, recall that the ambigu-
ous configurations with ambiguous branches satisfy either{(

RI
1
)

A =
(
RI

1
)

C(
RI

1
)

B =
(
RI

1
)

D

(42a)

or {(
RI

1
)

A =
(
RI

1
)

D(
RI

1
)

B =
(
RI

1
)

C

, (42b)

while both
(
RI

1
)

A 6=
(
RI

1
)

B and
(
RI

1
)

C 6=
(
RI

1
)

D. Thus, the definitions in (30) applied
to (42) imply one of two cases:

1. θA = θC and θB = θD;
2. θA = θD and θB = θC;

with θA 6= θB and θC 6= θD.
The main result of this work relates the ambiguous definitions in (42) with the set of

formation configurations. For that purpose, it considers the relations encoded in (29) and
is given in the following theorem.

Theorem 2. Consider the definitions for the four candidates of RI
1 and the angles θA, θB, θC, and

θD defined in (30) and expressed in the same interval of length 2π. Assume that

θA − θB 6= 2πn (43a)

and that
θC − θD 6= 2πn (43b)

with n ∈ Z. Consider as well the angles α1, α2 ∈ R defined in (29). Then,

θA = θC ∧ θB = θD (44a)

or
θA = θD ∧ θB = θC (44b)

if and only if
α1 = α2 + πk, (45)

with k ∈ Z.
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Proof. This proof is divided into four parts, one for each possible pair of correct candidates
for RI

1 i.e., one for each of the cases given as follows

(i) RI
1 =

(
RI

1
)

A =
(
RI

1
)

C;
(ii) RI

1 =
(
RI

1
)

A =
(
RI

1
)

D;
(iii) RI

1 =
(
RI

1
)

B =
(
RI

1
)

C;
(iv) RI

1 =
(
RI

1
)

B =
(
RI

1
)

D.

First, consider that (i) is verified. Then, recall (43) and substitute (38a) in (40) which gives(
Id3

)⊥
= R

(
α1 −

θA − θB
2

+ πk, Id1

)(
Id1/2

)⊥
,

which from (41) is expressed as(
Id3

)⊥
= R

(
α1 − α2 −

θA − θB
2

+ πk, Id1

)(
Id1/3

)⊥
.

Finally, recalling (43) and substituting (39a) results in(
Id3

)⊥
= R

(
α1 − α2 +

−(θA − θB) + (θC − θD)

2
+ πk, Id1

)(
Id3

)⊥
. (46)

Recalling (30), then case (i) implies that θA = θC. Therefore, (46) is rewritten as(
Id3

)⊥
= R

(
α1 − α2 +

θB − θD
2

+ πk, Id1

)(
Id3

)⊥
. (47)

If (44a) is verified, then θB = θD and thus (47) implies (45). Conversely, if (45) is verified,
then (47) results in (44a). Moreover, since θA = θC, then (44b) is out of the scope of the
assumptions in (43), because it would mean that θA = θB = θC = θD in the same 2π
interval. Hence, the first part of the proof is complete. The remaining cases follow the same
train of thought. Consider case (ii), which implies that θA = θD. Taking (40), recalling (43),
and substituting (38a), (39b) and (41), and θA = θD, in that order, gives(

Id3

)⊥
= R

(
α1 − α2 +

θB − θC
2

+ πk, Id1

)(
Id3

)⊥
. (48)

If (44b) is verified, then θB = θC and thus (48) implies (45). Conversely, if (45) is verified,
then (48) results in (44b). Moreover, since θA = θD, then (44a) is out of the scope of the
assumptions in (43), because it would mean that θA = θB = θC = θD in the same 2π
interval. Hence, the second part of the proof is complete. Next, consider case (iii), which
implies that θB = θC. Taking (40), recalling (43), and substituting (38b), (39a) and (41), and
θB = θC, in that order, gives(

Id3

)⊥
= R

(
α1 − α2 +

θA − θD
2

+ πk, Id1

)(
Id3

)⊥
. (49)

If (44b) is verified, then θA = θD and thus (49) implies (45). Conversely, if (45) is verified,
then (49) results in (44b). Moreover, since θB = θC, then (44a) is out of the scope of the
assumptions in (43), because it would mean that θA = θB = θC = θD in the same 2π
interval. Hence, the third part of the proof is complete. Finally, consider case (iv), which
implies that θB = θD. Taking (40), recalling (43), and substituting (38b), (39b) and (41), and
θB = θD, in that order, gives(

Id3

)⊥
= R

(
α1 − α2 +

θA − θC
2

+ πk, Id1

)(
Id3

)⊥
. (50)
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If (44a) is verified, then θA = θC and thus (50) implies (45). Conversely, if (45) is verified,
then (50) results in (44a). Moreover, since θB = θD, then (44b) is out of the scope of the
assumptions in (43), because it would mean that θA = θB = θC = θD in the same 2π
interval, which completes this proof.

Remark 2. The configurations where θA = θB = θC = θD may satisfy (45). However, such
configurations were already defined by Theorem 1 and the conditions which define them do not depend
on the angles α1 and α2. Therefore, the cases where θA = θB = θC = θD can be distinguished from
the truly ambiguous configurations.

Importantly, left multiplying (29b) by RI
1 and recalling (5)–(7), implies that the relations

in (29) can be rewritten as

Id3 = R
(

α1, Id1

)
R

(
β1,

S
(Id1

)Id2

‖S(Id1)Id2‖

)
Id2

and

d1/3 = R(α2, d1)R
(

β2,
S(d1)d1/2

‖S(d1)d1/2‖

)
d1/2.

Therefore, the ambiguous configurations can be determined without solving the
attitude problem.

4.3.4. Geometric Interpretation

The application of the constraint given by (45) to the relations in (29) provides a simple
geometric interpretation in the inertial frame. Consider the planes defined by Id1 and each
of the other measurements, as represented in Figure 3. If the angle between the planes
with LOS measurements (i.e., Id1/2, Id1/3) is the same as the angle between the planes with
inertial references (i.e., Id2, Id3), then the configuration is ambiguous, assuming that the
branches are ambiguous as well.

Figure 3. Geometric interpretation of the ambiguous configuration condition with planes.

For another interpretation of this symmetry, take the perspective of the information
available for each branch. If the information about the inertial frame is identical in both
branches, then an ambiguous solution results from the two ambiguous branches. A
simple example is the collinear formation with parallel inertial vectors of the deputies, as
represented in Figure 4. In this case, both branches are equivalent in the inertial frame,
that is α1 = β1 = β2 = 0 and α2 = π. Thus, the two candidates for RI

1 from both branches
coincide. This situation is even more evident when R1

2 = R1
3, because both candidates for

R1
2 are identical to both candidates for R1

3.
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Figure 4. Ambiguous solution: collinear formation.

The measurements of the configuration in Figure 4 can be transformed according to
three degrees of freedom given by α1, β1, and β2 as defined in (29), with α2 constrained
by (45). Thus, there are infinite such configurations. Nonetheless, these are a zero measure
subset of all possible configurations, as it will be shown next.

4.3.5. Ambiguous Configurations Subset Measure

An interesting and very important property of the subset of ambiguous configurations
is its measure. Even though it is shown that the set of ambiguous configurations is, in fact,
a zero measure subset, this does not mean that these configurations can be ignored. As
it will be shown in the simulations, the ambiguous configurations can have an impact in
the attitude estimation when noise is introduced and the formation is near the ambiguity.
Hence the importance of this study.

Consider the parameterization of x ∈ S(2) given by

ψ(x) = (atan2(x2, x1), arccos(x3)) (51)

with x = [x1, x2, x3]
T. Furthermore, consider the parameterization of X ∈ SO(3) given by

ν(X) =
(

arccos
(

trace(X)− 1
2

)
, ψ(µX)

)
, (52)

where µX is the rotation axis of X.
The following theorem shows that the subset of ambiguous configurations is a zero

measure subset of the configuration set.

Theorem 3. Consider the octuple ∆ =
(
d1/2, d1/3, Id1, Id2, Id3, R1

I , R2
I , R3

I
)
. Denote the set of

all possible configurations of the formation by

M =
{

∆ : d1/2, d1/3, Id1, Id2, Id3 ∈ S(2), R1
I , R2

I , R3
I ∈ SO(3)

}
.

The ambiguous configurations subset is MA = {∆ ∈ M : g1(∆) = 0, g2(∆) = 0}, whose
functions g1 and g2 are defined as

g1(∆) = R
(

α, R1
I

Id1

)
R

(
β,

S
(
R1

I
Id1
)
d1/3∥∥S

(
R1

I
Id1
)
d1/3

∥∥
)

d1/3 − d1/2 (53a)

and

g2(∆)=R
(

α, Id1

)
R

(
γ,

S
(Id1

)Id3

‖S(Id1)Id3‖

)
Id3− Id2, (53b)

with α, β, γ ∈ R. Then, MA is a zero measure subset of M.
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Proof. First, note that S(2) [19] (Example 1.2) and SO(3) [20] (Appendix C.2.1) are smooth
manifolds, thus M is a smooth manifold as well, because it results from the Cartesian
product between elements in S(2) and SO(3) [19] (Example 1.13). Furthermore, M is a 19-
dimensional manifold. Next, consider a collection of subsets covering MA and denoted by
{Ui}, where each Ui is small enough to have vectors in S(2) parameterized by both angles
of the spherical coordinates, as given by (51), and transformations in SO(3) parameterized
by three angles as encoded in (52). Considering ∆ ∈ MA, if all elements but d1/2 are
known, then d1/2 is determined by the angle β, from (53a), alone, because g1(∆) = 0 and
g2(∆) = 0. Thus, there exists a homeomorphism φi : Ui → Ũi ⊂ R18 for every i in the
collection {Ui} and {(Ui, φi)} is an atlas covering MA. Furthermore, every φi(Ui ∩MA)
has zero Lebesgue measure in R19, because these are subsets of R18. Therefore, MA is a
zero measure subset of M [19] (Lemma 6.4).

4.4. Discussion of Results

The branch analysis showed that, in general, there are ambiguities in the branch
measurements and therefore two attitudes satisfy the measurement constraints. These
ambiguities were identified in [9,11], where the authors constrain their problem geometry
such that it gives a unique solution. Theorem 1 identifies the same condition used to ensure
the uniqueness of the solution in those works. However, in the formation considered in
this work, such constraint is not required, because there is more information available in
the other branch. Thus, by combining the information of both branches, a unique solution
can still be determined.

The formation analysis considers the fusion of the information in both branches and
how the number of solutions of each branch impacts the number of solutions of the entire
problem. It was shown that combining the data in both branches reduces the limitations
inherent to the isolated branch. This conclusion is expressed in Table 1, where it is visible
that the number of solutions for the entire formation can be unique even when there are
branches with two or infinite solutions.

The symmetry analysis distinguishes the configurations in which the branch ambigui-
ties extend to the entire formation, from the configurations which have a unique solution.
In general, the latter case is verified. In the former case, the ambiguities at the level of the
formation result from symmetries between both branches. The simple geometric intuition
given by Figure 3 is useful to evaluate whether the configuration is ambiguous or not, and
can be employed while designing estimators.

Finally, the fact that all the configurations with multiple solutions are a zero measure
subset of the entire configuration space is relevant for the design of estimators, because
it means that such designs have the potential to converge to small errors for almost
all configurations.

5. Simulation

In this section, a simulation illustrates and validates the characterization of the attitude
problem considered in this article. Since the degenerate and ambiguous configurations
are independent of the attitudes, then, in this simulation and for simplicity, their values
are constant and equal to the identity matrix. At the initial time, consider the formation
with a unique solution, where the LOS measurements, represented in the inertial frame,

are given as Id1/2 = − Id2/1 =
[

1√
2
− 1√

2
0
]T

and Id1/3 = − Id3/1 = [1 0 0]T .

Furthermore, the inertial references are given as Id1 = [0 0 1]T and Id2 = Id3 =

[0 1 0]T . A maneuver of vehicle 2 changes the formation configuration such that the
formation reaches an ambiguous configuration and a degenerate configuration at different
times. This maneuver consists in varying the position of vehicle 2, which implies a variation
of Id1/2 and Id2/1, because Id1/2 = − Id2/1. In total, the maneuver takes 100 s and rotates
Id1/2 by π radians through the axis [0 0 1]T . The remaining vectors and all attitudes are
constant throughout the simulation.
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Assuming position sensing diodes as sensors, the measurement noise follows the
large field of view sensor model [21]. Therefore, the measurement in the sensor frame,
sdj, is related to the focal coordinates ξ j = [χj ψj]

T , considering a unit focal length, by
sdj =

1√
1+χ2

j +ψ2
j

[
χj ψj 1

]T . The focal covariance is given as

PFj =
σ2

j

1 + χ2
j + ψ2

j


(

1 + χ2
j

)2 (
χjψj

)2(
χjψj

)2
(

1 + ψ2
j

)2

, (54)

where σj is a known standard deviation. Then, the covariance of the sensor is given as

Pj = Jj PFj JT
j , (55)

where Jj =
∂ sdj
∂ξj

is the respective Jacobian of the relation between the sensor and focal coordinates.

For simplicity, it is assumed that the sensors are aligned with the standard unit vector
of the maximum component of the measurement in the body-fixed frame. Thus, the six
possible transformations between the body-fixed frame and the sensor frame are given by[

0 0 −1
0 1 0
1 0 0

]
,

[
0 0 1
0 1 0
−1 0 0

]
,

[
1 0 0
0 0 −1
0 1 0

]
,

[
1 0 0
0 0 1
0 −1 0

]
,

[
1 0 0
0 1 0
0 0 1

]
, and

[
−1 0 0
0 1 0
0 0 −1

]
,

respectively when the maximum component of the measurement is x, −x, y, −y, z, and
−z, where the axis are standard unit vectors of the coordinate frame.

The simulation takes 100 s, the same duration of the maneuver. It is assumed that
all sensors are synchronized and have a sampling rate of 10 Hertz, which means that a
measurement is taken every 0.1 s. Moreover, all sensors are characterized by σ = 17× 10−6

radians. At each sampling instant, each measurement is sampled as follows: first, its true
value is represented in the respective sensor frame, which, in turn, gives the true focal
coordinates. Both are used to compute the sensor covariance, P, by applying (54) and (55).
The respective noise is sampled from a zero mean normal distribution with covariance P,
which is then added to the measurement. Moreover, the inertial references, in the inertial
frame, are known a priori and considered noiseless. With the complete set of measurements,
corrupted by noise, the attitude is computed using the algorithm described in Section 3.

The results of this simulation are given by the estimation errors, the relation between
the values of θA, θB, θC, and θD, and also by the relation between the values of α1 and α2.
The first are expressed by the norm of the 3-2-1 sequence of Euler angles of the error matrix
of each inertial attitude, that is, the product between the true value by the transpose of the
estimated value, and are shown in Figure 5. The second are expressed by the comparison
parameters φAC, φAD, φBC, and φBD as defined in (18). The third are expressed as the cosine
of their difference, i.e., cos(α1 − α2). Both are shown together in Figure 6.

In the ambiguous configuration, at about 25 s, φAC ≈ 0 and φBD ≈ 0. Therefore, near
that instant both

(
RI

1
)

A ≈
(
RI

1
)

C and
(
RI

1
)

B ≈
(
RI

1
)

D, which means that the estimated
attitude may jump between both solutions, due to the noise, which does happen and is
visible in Figure 5. Notice that there is no significant change in the error magnitude before
or after the ambiguous configuration, because it is a matter of information symmetry,
whereas the degenerate configurations result from a loss of information about a component
of the coordinate frame. Moreover, in this case the value of α1 − α2 satisfies (45), i.e.,
cos(α1 − α2) ≈ ±1, which can be seen in Figure 6.

In the degenerate configuration, at about 75 s, the error magnitude of the estimate for
R1

2 increases gradually as the degeneracy gets closer, until it raises sharply approximately
at the 75 s mark. This specific degenerate configuration is given by Id2/1 = −Id2, which
from (22) implies that there is a unique solution for RI

1, despite there being infinite solutions
for R1

2. This observation, justifies both the values of φAC and φBC as seen in Figure 6 and
the fact that while the error in R1

2 increases the other errors remain at the same magnitude
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as observed in Figure 5. Moreover, since (11a) may not be valid, then a rotation compatible
with the constraints is chosen in such a case, for example, selecting a value that satisfies
both (9a) and (9b).
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Figure 5. Euler error vector norm.
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Figure 6. Relation between candidates for RI
1.

6. Conclusions

In this paper, we analyzed the uniqueness of the solution for the attitude determina-
tion problem in a three-vehicle heterogeneous formation, considering both the branches
and the entire formation. With respect to the entire formation, there are three possible
configurations: degenerate, ambiguous, or regular configurations, respectively, with infi-
nite, two, or one solution. With respect to a single branch, there are also three possibilities:
degenerate, ambiguous, or unambiguous branches, respectively, with infinite, two, or one
solution. However, the general case is the ambiguous branch. Furthermore, we found the
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conditions which characterize the ambiguous and degenerate configurations, and branches,
thus enabling their detection without solving the attitude problem. We also showed that
the measure of the subset of ambiguous configurations is a zero-measure set. Finally, we
simulated a maneuver that reaches both a degenerate and an ambiguous configuration and
validates the conclusions in this paper. The identification of degenerate and ambiguous
configurations is a valuable information for the design of estimators, applicable to this for-
mation, because such configurations introduce challenges to the error stability. Therefore,
these results represent one more step towards the design of attitude estimators for three
vehicle heterogeneous formations.
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Appendix A. Bisecting Plane Properties

Lemma A1. Consider a, b, c, d ∈ S(2), k ∈ Z, and λ ∈ R such that

λ 6= 2πk, (A1)

b = R(λ, a)c, (A2)

dTb = dTc, (A3)

and
aTb = aTc = aTd = 0. (A4)

Then,

d = R
(

λ

2
+ kπ, a

)
c (A5)

with k ∈ Z.

Proof. Rewrite (A3) by substituting (A2), which gives

dTc = dTR(λ, a)c. (A6)
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Since (A4) implies that b, c, and d are all coplanar and orthogonal to a, then, for some
α ∈ R, it follows that

d = R(α, a)c. (A7)

Next, substituting (A7) in (A6) gives

cTR(−α, a)c = cTR(λ− α, a)c,

which applying (2) results in

cT
[
cos (−α)I + (1− cos (−α))a(a)T − sin (−α) S(a)

]
c =

cT
[
cos (λ− α)I + (1− cos (λ− α))a(a)T − sin (λ− α) S(a)

]
c. (A8)

Recall that c ∈ S(2) implies that cTc = 1. Further recall that cos(−α) = cos(α) and that
(A4) implies both aTc = 0 and cTS(a)c = 0. Then, (A8) is given as

cos(α) = cos(λ− α). (A9)

Applying the inverse cosine function to both sides of (A9) yields

α = ±(λ− α) + 2πk , k ∈ Z.

Analyzing each sign separately, consider first that α = λ − α + 2kπ, which after some
rearrangements results in

α =
λ

2
+ πk. (A10)

Finally, analyzing the other sign, consider that α = −λ + α + 2kπ. It follows that

λ = 2πk,

which is excluded from the solutions of (A9) by (A1). Thus, the proof is complete by
substituting (A10) in (A7) which yields (A5).

Lemma A2. Let a, b, c, d ∈ S(2). If
aTb = aTc (A11)

and
dTb = dTc (A12)

then,

dT
[

R
(

ψ,
S(a)b
‖S(a)b‖

)
b
]
= dT

[
R
(

ψ,
S(a)c
‖S(a)c‖

)
c
]

, ∀ψ ∈ R (A13)

Proof. Take the left side of (A13) and substitute (2), which gives

dT
[

R
(

ψ,
S(a)b
‖S(a)b‖

)
b
]

= dT

[
cos ψI + (1− cos ψ)

S(a)b
‖S(a)b‖

(
S(a)b
‖S(a)b‖

)T
− sin ψ S

(
S(a)b
‖S(a)b‖

)]
b .

Since bTS(a)b = 0 and, from the vector triple product, S(S(a)b)b = −bTba + bTab, it
follows that

dT
[

R
(

ψ,
S(a)b
‖S(a)b‖

)
b
]
=

[
cos(ψ)dTb− sin(ψ)dT−bTba + bTab

‖S(a)b‖

]
. (A14)
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Substituting (A11) and (A12) and bTb = 1 = cTc in (A14) gives

dT
[

R
(

ψ,
S(a)b
‖S(a)b‖

)
b
]
=

[
cos(ψ)dTc− sin(ψ)dT−cTca + cTac

‖S(a)b‖

]
. (A15)

Next, using the norm definition, write ‖S(a)b‖ as ‖S(a)b‖ =
√
(S(a)b)TS(a)b and apply

the vector triple product yields

‖S(a)b‖ =
√
−bT(aTba− aTab) =

√
−aTbbTa + aTabTb.

From (A11) and bTb = 1 = cTc, it follows that

‖S(a)b‖ =
√
−aTccTa + aTacTc =

√
−cT(aTca− aTac),

which applying the vector triple product, followed by the norm definition, gives

‖S(a)b‖ = ‖S(a)c‖. (A16)

Finally, substitute (A16) in (A15) and recall that (1− cos ψ)dT S(a)c
‖S(a)c‖

(
S(a)c
‖S(a)c‖

)T
c = 0. It

follows that (A15) is expressed as

dT
[

R
(

ψ,
S(a)b
‖S(a)b‖

)
b
]
=

dT

[
cos ψI + (1− cos ψ)

S(a)c
‖S(a)c‖

(
S(a)c
‖S(a)c‖

)T
− sin ψ S

(
S(a)c
‖S(a)c‖

)]
c,

which from (2) gives (A13), thus completing the proof.

Lemma A3. Let a, b, c, d ∈ S(2). If

aTc = aTd (A17)

and
bTc = bTd, (A18)

Then, [
R
(

β,
S(a)b
‖S(a)b‖

)
b
]T

c =

[
R
(

β,
S(a)b
‖S(a)b‖

)
b
]T

d , ∀ β ∈ R (A19)

Proof. This proof follows similarly to the one from Lemma A2. That is, take the left side of
(A19), then apply the rotation definition, the triple vector product, and recall conditions
(A17) and (A18) to show that it yields the right side of (A19). Therefore, the details of the
proof are omitted.

Appendix B. Technical Lemma

This appendix contains the proof for Lemma 1, which is reproduced below.

Lemma A4. Consider cs12 and cc12 as defined in (12). Then, both

cs12 = 0 (A20a)

and
cc12 = 0 (A20b)
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if and only if either
d1 = ±d1/2 (A21)

or
d2 = ±d2/1. (A22)

Proof. First, assume that (A21) is true. Since S(x)x = 0, for any x ∈ R3, then substituting
(A21) in (12) yields (A20a) and (A20b). Next, assume that (A22) is verified and left multiply
it by R(θ1, n1), with parameters defined in (10), which gives R(θ1, n1)d2 = ±R(θ1, n1)d2/1.
Recalling (13) and that, by definition, −d1/2 = R(θ1, n1)d2/1 [13], it follows that (A22) is
equivalent to

d?
2 = ∓d1/2. (A23)

Then, from S(x)x = 0 and substituting (A23) into (12) yields (A20a) and (A20b). Next,
consider the converse statement, i.e., that both (A20a) and (A20b) are verified. Let a, b, c ∈
R3, then aTS(b)c = 0 if and only if a, b, and c are coplanar or any of these vectors is zero.
Then, cs12 and cc12 can be expressed as aTS(b)c and aTS(b)c′, respectively with a = d1,
b = −d1/2, c = d?

2 , and c′ = S(−d1/2)d?
2 . Consider that c′ = 0, which means that (A21)

is verified, then both cs12 = 0 and cc12 = 0 because S(x)x = 0. Otherwise, consider that
c′ 6= 0, which means that c and c′ are orthogonal. Since verifying both cs12 = 0 and cc12 = 0
implies that a, b, and c are coplanar, while a, b, and c′ are coplanar, then a and b must be
collinear because c and c′ are orthogonal. Therefore, in this case, (A23) is verified which
was previously shown to be equivalent to (A22) and thus concludes the proof.

Appendix C. Relation between Measurements of the Same Branch

This appendix shows both the relation between
(Id1/2

)⊥ and
(Id2

)⊥, and the relation

between
(Id1/3

)⊥ and
(Id3

)⊥. Since the derivation of such relations is analogous in the
four ensuing lemmas, only the first lemma is accompanied by its proof.

Lemma A5. Recall the definition of
(
RI

1
)

A, θA, and θB in (30). Further recall the vector transfor-
mation in (36). Suppose that both branches of the formation are ambiguous, as defined in Theorem 1,
and assume that RI

1 =
(
RI

1
)

A. Then

(
Id1/2

)⊥
= R

(
θA − θB

2
+ πk, Id1

)(
Id2

)⊥
. (A24)

Proof. First, substitute (33) in IdT
1

Id2, which implies that

IdT
1 R
(

θA, Id1

)
d∗2A = IdT

1 R
(

θB, Id1

)
d∗2B

or, equivalently, from (4),
IdT

1 d∗2A = IdT
1 d∗2B. (A25)

Similarly, consider the inner product given by
(
RI

1d1/2
)T Id2, which from (30) and (33)

implies that(
R
(

θA, Id1

)
R∗d1/2

)T
R
(

θA, Id1

)
d∗2A =

(
R
(

θB, Id1

)
R∗d1/2

)T
R
(

θB, Id1

)
d∗2B,

or, equivalently,
(R∗d1/2)

Td∗2A = (R∗d1/2)
Td∗2B. (A26)
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Next, consider the angle ψ1 ∈ R. Then, apply Lemma A2, in Appendix A, with a = Id1,
b = d∗2A, c = d∗2B, and d = R∗d1/2, recalling that in such case (A11) and (A12) are given
respectively by (A25) and (A26). It follows that

(R∗d1/2)
TR
(

ψ1, md∗2A

)
d∗2A = (R∗d1/2)

TR
(

ψ1, md∗2B

)
d∗2B, (A27)

where md∗2A
and md∗2B

are defined in (35). Since ψ1 is arbitrary, recall (36) and choose ψ1
such that (A27) is expressed as

(R∗d1/2)
T(d∗2A)

⊥ = (R∗d1/2)
T(d∗2B)

⊥. (A28)

Similarly, consider the angle ψ2 ∈ R and recall from (37) that, by definition,

IdT
1 (d

∗
2A)
⊥ = IdT

1 (d
∗
2B)
⊥ = 0. (A29)

Then, apply Lemma A3, in Appendix A, with a = Id1, b = R∗d1/2, c =
(
d∗2A

)⊥, and
d = (d∗2B)

⊥. Recall that in such case (A17) and (A18) are given respectively by (A29) and
(A28). It follows that(

R
(

ψ2, mR∗d1/2

)
R∗d1/2

)T
(d∗2A)

⊥ =
(

R
(

ψ2, mR∗d1/2

)
R∗d1/2

)T
(d∗2B)

⊥,

where mR∗d1/2
is defined in (35). Then, recalling (36) and choosing the appropriate value

for ψ2 gives [
(R∗d1/2)

⊥
]T
(d∗2A)

⊥ =
[
(R∗d1/2)

⊥
]T
(d∗2B)

⊥. (A30)

Next, from (37), recall that

IdT
1 (d

∗
2A)
⊥ = IdT

1 (d
∗
2B)
⊥ = IdT

1 (R
∗d1/2)

⊥ = 0 (A31)

and from (33) that

R
(
−θA, Id1

)
Id2 = d∗2A = R

(
θB − θA, Id1

)
d∗2B. (A32)

Moreover, expanding
(
d∗2A

)⊥ with (36) gives

(d∗2A)
⊥ = R

(
ψ, md∗2A

)
d∗2A,

which is rewritten, by applying (A32), as

(d∗2A)
⊥ = R

(
ψ, md∗2A

)
R
(

θB − θA, Id1

)
d∗2B. (A33)

Afterwards, recall the definition (35) and consider the numerator of md∗2A
. It follows from

(7) and (A32) that

S
(

Id1

)
d∗2A = S

(
Id1

)
R
(

θB − θA, Id1

)
d∗2B = R

(
θB − θA, Id1

)
S
(

Id1

)
d∗2B. (A34)

Meanwhile, consider the denominator of md∗2A
. It follows, from (A32), that∥∥∥S

(
Id1

)
d∗2A

∥∥∥ =
∥∥∥S
(

Id1

)
R
(

θB − θA, Id1

)
d∗2B

∥∥∥ ,

and then, from (3) and (7), that∥∥∥S
(

Id1

)
d∗2A

∥∥∥ =
∥∥∥R
(

θB − θA, Id1

)
S
(

Id1

)
d∗2B

∥∥∥ =
∥∥∥S
(

Id1

)
d∗2B

∥∥∥. (A35)
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Consequently, recalling the definition of both md∗2A
and md∗2B

in (35), it is concluded that
(A34) and (A35) imply

md∗2A
= R

(
θB − θA, Id1

)
md∗2B

. (A36)

Therefore, recalling (6), it follows that (A33) is also given as

(d∗2A)
⊥ = R

(
θB − θA, Id1

)
R
(

ψ, R
(

θB − θA, Id1

)
md∗2A

)
d∗2B,

which, from (A36), yields

(d∗2A)
⊥ = R

(
θB − θA, Id1

)
R
(

ψ, md∗2B

)
d∗2B,

or, equivalently, from (36),

(d∗2A)
⊥ = R

(
θB − θA, Id1

)
(d∗2B)

⊥. (A37)

Next, consider that θA − θB 6= 2πk, with k ∈ Z. Then, the conditions for Lemma A1, in
Appendix A given by (A2), (A3) and (A4), are respectively verified by (A37), (A30) and
(A31), with λ = θB − θA, a = Id1, b =

(
d∗2A

)⊥, c = (d∗2B)
⊥, and d = (R∗d1/2)

⊥. Therefore,
it follows that

(R∗d1/2)
⊥ = R

(
θB − θA

2
+ πk, Id1

)
(d∗2B)

⊥. (A38)

Next, assume that RI
1 =

(
RI

1
)

A and, as a consequence of having two ambiguous branches,
that R1

2 =
(
R1

2
)

A. Then, apply (7) and (31a) to R
(
θA, Id1

)
S
(Id1

)
d∗2A, which gives

R
(

θA, Id1

)
S
(

Id1

)
d∗2A = S

(
Id1

)
R
(

θA, Id1

)
R∗
(

R1
2

)
A

d2

or, equivalently, from (14b) and (30a), RI
1 =

(
RI

1
)

A, and R1
2 =

(
R1

2
)

A,

R
(

θA, Id1

)
S
(

Id1

)
d∗2A = S

(
Id1

)
Id2. (A39)

Meanwhile, apply (3) and (7) to
∥∥S
(Id1

)
d∗2A

∥∥, which gives∥∥∥S
(

Id1

)
d∗2A

∥∥∥ =
∥∥∥R
(

θA, Id1

)
S
(

Id1

)
d∗2A

∥∥∥ =
∥∥∥S
(

Id1

)
R
(

θA, Id1

)
d∗2A

∥∥∥.

Recalling (31a) and (30a), RI
1 =

(
RI

1
)

A, and R1
2 =

(
R1

2
)

A, it follows that∥∥∥S
(

Id1

)
d∗2A

∥∥∥ =
∥∥∥S
(

Id1

)
RI

1R1
2d2

∥∥∥.

Finally, substituting (14b) results in∥∥∥S
(

Id1

)
d∗2A

∥∥∥ =
∥∥∥S
(

Id1

)
Id2

∥∥∥. (A40)

Therefore, (A39) and (A40) imply that

R
(

θA, Id1

)
md∗2A

= mId2
, (A41)

where md∗2A
and m Id2

are defined in (35). Following a similar train of thought, while recalling
that by definition Id1/2 = RI

1d1/2, it follows that

R
(

θA, Id1

)
mR∗d1/2

= m Id1/2
, (A42)
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with mR∗d1/2
and m Id1/2

given as defined in (35). Next, left multiplying (A38) by R
(
θA, Id1

)
,

while recalling (36) with appropriate ψ3, ψ4 ∈ R, gives

R
(

θA, Id1

)
R
(

ψ3, mR∗d1/2

)
R∗d1/2

= R
(

θA, Id1

)
R
(

θA − θB
2

+ πk, Id1

)
R
(

ψ4, md∗2A

)
d∗2A,

which from (4) and (6) becomes

R
(

θA, Id1

)
R
(

ψ3, mR∗d1/2

)
R∗d1/2

= R
(

θA − θB
2

+ πk, Id1

)
R
(

θA, Id1

)
R
(

ψ4, md∗2A

)
d∗2A.

Applying (6), it follows that

R
(

ψ3, R
(

θA, Id1

)
mR∗d1/2

)
R
(

θA, Id1

)
R∗d1/2

= R
(

θA − θB
2

+ πk, Id1

)
R
(

ψ4, R
(

θA, Id1

)
md∗2A

)
R
(

θA, Id1

)
d∗2A,

which recalling (A41) and (A42), becomes

R
(

ψ3, m Id1/2

)
R
(

θA, Id1

)
R∗d1/2

= R
(

θA − θB
2

+ πk, Id1

)
R
(

ψ4, m Id2

)
R
(

θA, Id1

)
d∗2A,

or, equivalently, from (30a) and (31a),

R
(

ψ3, m Id1/2

)(
RI

1

)
A

d1/2

= R
(

θA − θB
2

+ πk, Id1

)
R
(

ψ4, m Id2

)(
RI

1

)
A

(
R1

2

)
A

d2. (A43)

Furthermore, recall the assumption that RI
1 =

(
RI

1
)

A and R1
2 =

(
R1

2
)

A, then (14b) and
Id1/2 = RI

1d1/2 imply that (A43) can be rewritten as

R
(

ψ3, m Id1/2

)
Id1/2 = R

(
θA − θB

2
+ πk, Id1

)
R
(

ψ4, m Id2

)
Id2. (A44)

Finally, recall that both sides of (A38) satisfy (37) and that (A44) results from left multiplying
(A38) by R

(
θA, Id1

)
. Therefore, both sides of (A44) also satisfy (37), which means that

applying (36) to (A44) yields (A24) and concludes the proof.

Lemma A6. Recall the definition of
(
RI

1
)

B, θA, and θB in (30). Further recall the vector transfor-
mation in (36). Suppose that both branches of the formation are ambiguous, as defined in Theorem 1
and assume that RI

1 =
(
RI

1
)

B. Then

(
Id1/2

)⊥
= R

(
− θA − θB

2
+ πk, Id1

)(
Id2

)⊥
.
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Lemma A7. Recall the definition of
(
RI

1
)

C, θC, and θD in (30). Further recall the vector transfor-
mation in (36). Suppose that both branches of the formation are ambiguous, as defined in Theorem 1
and assume that RI

1 =
(
RI

1
)

C. Then

(
Id1/3

)⊥
= R

(
θC − θD

2
+ πk, Id1

)(
Id3

)⊥
.

Lemma A8. Recall the definition of
(
RI

1
)

D, θC, and θD in (30). Further recall the vector transfor-
mation in (36). Suppose that both branches of the formation are ambiguous, as defined in Theorem 1
and assume that RI

1 =
(
RI

1
)

D. Then

(
Id1/3

)⊥
= R

(
− θC − θD

2
+ πk, Id1

)(
Id3

)⊥
.

Appendix D. Relation between Same Type of Measurement

This appendix shows both the relation between
(Id2

)⊥ and
(Id3

)⊥, and the relation

between
(Id1/2

)⊥ and
(Id1/3

)⊥. Since the derivation of such relations is analogous in both
ensuing lemmas, only the first lemma is accompanied by its proof.

Lemma A9. Recall the relation between Id3 and Id2 defined in (29a) and the vector transformation
in (36). Then, (

Id3

)⊥
= R

(
α1 + πk1, Id1

)(
Id2

)⊥
, (A45)

with α1 defined in (29a) and k1 ∈ Z.

Proof. First, consider the definition of
(Id3

)⊥ in (36), with an appropriate ψ ∈ R, and
substitute (29a), which gives

(
Id3

)⊥
= R

ψ,
S
(Id1

)
R
(
α1, Id1

)
R
(

β, mId2

)
Id2∥∥∥S(Id1)R(α1, Id1)R

(
β, mId2

)
Id2

∥∥∥
R

(
α1, Id1

)
R
(

β, mId2

)
Id2, (A46)

where mId2
, as defined in (35), is used to simplify the notation. Then, recall (3) which

results from the preservation of the norm of a vector transformed by a rotation. Thus,∥∥∥S
(

Id1

)
R
(

α1, Id1

)
R
(

β, mId2

)
Id2

∥∥∥ =

∥∥∥∥R
(

α1, Id1

)T
S
(

Id1

)
R
(

α1, Id1

)
R
(

β, mId2

)
Id2

∥∥∥∥
which means that (A46) is equivalent to

(
Id3

)⊥
= R

ψ,
S
(Id1

)
R
(
α1, Id1

)
R
(

β, mId2

)
Id2∥∥∥R(α1, Id1)

TS(Id1)R(α1, Id1)R
(

β, mId2

)
Id2

∥∥∥


R
(

α1, Id1

)
R
(

β, mId2

)
Id2. (A47)

Next, apply (6) to (A47), which gives

(
Id3

)⊥
= R

(
α1, Id1

)
R

ψ,
R
(
α1, Id1

)TS
(Id1

)
R
(
α1, Id1

)
R
(

β, mId2

)
Id2∥∥∥R(α1, Id1)

TS(Id1)R(α1, Id1)R
(

β, mId2

)
Id2

∥∥∥
R

(
β, mId2

)
Id2.
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or, equivalently, from (7),

(
Id3

)⊥
= R

(
α1, Id1

)
R

ψ,
S
(Id1

)
R
(

β, mId2

)
Id2∥∥∥S(Id1)R

(
β, mId2

)
Id2

∥∥∥
R

(
β, mId2

)
Id2. (A48)

Since (37) implies that IdT
1
(Id3

)⊥
= 0, then

IdT
1 R
(

α1, Id1

)
R

ψ,
S
(Id1

)
R
(

β, mId2

)
Id2∥∥∥S(Id1)R

(
β, mId2

)
Id2

∥∥∥
R

(
β, mId2

)
Id2 = 0

or, equivalently, from (4),

IdT
1 R

ψ,
S
(Id1

)
R
(

β, mId2

)
Id2∥∥∥S(Id1)R

(
β, mId2

)
Id2

∥∥∥
R

(
β, mId2

)
Id2 = 0. (A49)

Therefore, R

(
ψ,

S(Id1)R
(

β,mId2

)
Id2∥∥∥S(Id1)R

(
β,mId2

)∥∥∥Id2

)
R
(

β, mId2

)
Id2 can be written as

(Id2
)⊥, because the

axis of the rotation on the left is orthogonal to the plane given by Id1 and Id2 and therefore
S(Id1)R

(
β,mId2

)
Id2∥∥∥S(Id1)R

(
β,mId2

)∥∥∥Id2
= ±mId2

. Hence, (A48) is rewritten as

(
Id3

)⊥
= R

(
α1 + πk1, Id1

)(
Id2

)⊥
,

with k1 ∈ Z, because there are two possible vectors in S(2) which are orthogonal to Id1.
Thus, the proof is complete.

Lemma A10. Recall the relation between Id3 and Id2 defined in (29a) and the vector transformation
in (36). Then, (

Id1/3

)⊥
= R

(
α2 + πk2, Id1

)(
Id1/2

)⊥
.

with α2 defined in (29b) and k2 ∈ Z.
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