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a b s t r a c t


This paper presents a method for planning optimal trajectories with a team of Unmanned Aerial
Vehicles (UAVs) performing autonomous cinematography. The method is able to plan trajectories
online and in a distributed manner, providing coordination between the UAVs. We propose a novel
non-linear formulation for this challenging problem of computing multi-UAV optimal trajectories
for cinematography; integrating UAVs dynamics and collision avoidance constraints, together with
cinematographic aspects like smoothness, gimbal mechanical limits and mutual camera visibility. We
integrate our method within a hardware and software architecture for UAV cinematography that was
previously developed within the framework of the MultiDrone project; and demonstrate its use with
different types of shots filming a moving target outdoors. We provide extensive experimental results
both in simulation and field experiments. We analyze the performance of the method and prove
that it is able to compute online smooth trajectories, reducing jerky movements and complying with
cinematography constraints.


© 2021 Elsevier B.V. All rights reserved.

1. Introduction


Drones or Unmanned Aerial Vehicles (UAVs) are spreading fast
or aerial photography and cinematography, mainly due to their
aneuverability and their capacity to access complex filming


ocations in outdoor settings. From the application point of view,
AVs present a remarkable potential to produce unique aerial
hots at reduced costs, in contrast with other alternatives like
ollies or static cameras. Additionally, the use of teams with mul-
iple UAVs opens even more the possibilities for cinematography.
n the one hand, large-scale events can be addressed by filming
ultiple action points concurrently or sequentially. On the other
and, the combination of shots with multiple views or different
amera motions broadens the artistic alternatives for the director.
Currently, most UAVs in cinematography are operated in man-


al mode by an expert pilot. Besides, an additional qualified
perator is required to control the camera during the flight, as
aking aerial shots can be a complex and overloading task. Even
o, the manual operation of UAVs for aerial cinematography is
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tiDrone), and by the MULTICOP project (Junta de Andalucia, FEDER Programme,
US-1265072).


∗ Corresponding author.
E-mail addresses: aamarin@us.es (A. Alcántara), jcapitan@us.es (J. Capitán),


ita@isr.utl.pt (R. Cunha), aollero@us.es (A. Ollero).

https://doi.org/10.1016/j.robot.2021.103778
0921-8890/© 2021 Elsevier B.V. All rights reserved.

still challenging, as multiple aspects need to be considered: per-
forming smooth trajectories to achieve aesthetic videos, tracking
actors to be filmed, avoiding collisions with potential obstacles,
keeping other cameras out of the field of view, etc.


There exist commercial products (e.g., DJI Mavic [1] or Sky-
dio [2]) that cope with some of the aforementioned complex-
ities implementing semi-autonomous functionalities, like auto-
follow features to track an actor or simplistic collision avoidance.
However, they do not address cinematographic principles for
multi-UAV teams, as e.g., planning trajectories considering gim-
bal physical limitations or inter-UAV visibility. Therefore, solu-
tions for autonomous filming with multiple UAVs are of interest.
Some authors [3] have shown that planning trajectories ahead
several seconds is required in order to fulfill with cinemato-
graphic constraints smoothly. Others [4,5] have even explored the
multi-UAV problem, but online trajectory planning for multi-UAV
cinematography outdoors is still an open issue.


In this paper, we propose a method for online planning and
execution of trajectories with a team of UAVs taking cinematogra-
phy shots. We develop an optimization-based technique that runs
on the UAVs in a distributed fashion, taking care of the control of
the UAV and the gimbal motion simultaneously. Our method aims
at providing smooth trajectories for visually pleasant video out-
put; integrating cinematographic constraints imposed by the shot
types, the gimbal physical limits, the mutual visibility between
cameras and the avoidance of collisions.
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Fig. 1. Cinematography application with two UAVs filming a cycling event.
Bottom, aerial view of the experiment with two moving cyclists. Top, images
taken from the cameras on board each UAV.


This work has been developed within the framework of the
U-funded project MultiDrone,1 whose objective was to create a
omplete system for autonomous cinematography with multiples
AVs in outdoor sport events (see Fig. 1). MultiDrone addressed
ifferent aspects to build a complete architecture: a set of high-
evel tools so that the cinematography director can define shots
or the mission [6]; planning methods to assign and schedule
he shots among the UAVs efficiently and considering battery
onstraints [7]; vision-based algorithms for target tracking on the
amera image [8], etc. In this paper, we focus on the autonomous
xecution of shots with a multi-UAV team. We assume that the
irector has designed a mission with several shots; and that there
s a planning module that has assigned a specific shot to each
AV. Then, our objective is to plan trajectories in order to execute
ll shots online in a coordinated manner.


.1. Related work


Optimal trajectory planning for UAVs is a commonplace prob-
em in the robotics community. A typical approach is to use
ptimization-based techniques to generate trajectories from
olynomial curves minimizing their derivative terms for smooth-
ess, e.g., the fourth derivative or snap [9,10]. This polynomial
rajectories have also been applied to optimization problems with
ultiple UAVs [11]. Model Predictive Control (MPC) is another


widespread technique for optimal trajectory planning [12], a
dynamic model of the UAV is used for predicting and opti-
mizing trajectories ahead within a receding horizon. Some au-
thors [13] have also used MPC-based approaches for multi-UAV
trajectory planning with collision avoidance and non-linear mod-
els. In the context of multi-UAV target tracking, others [14,15]
have combined MPC with potential fields to address the non-
convexity induced by collision avoidance constraints. In [16], a
constrained optimization problem is formulated to maintain a
formation where a leader UAV takes pictures for inspection in
dark spaces, while others illuminate the target spot supporting
the task. The system is used for aerial documentation within
historical buildings.


Additionally, there are works in the literature just for target
tracking with UAVs, proposing alternative control techniques like


1 https://multidrone.eu.
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classic PID [17] or LQR [18] controllers. The main issues with all
these methods for trajectory planning and target tracking are that
they either do not consider cinematographic aspects explicitly or
do not plan ahead in time for horizons long enough.


In the computer animation community, there are several
works related with trajectory planning for the motion of virtual
cameras [19]. They typically use offline optimization to generate
smooth trajectories that are visually pleasant and comply with
certain cinematographic aspects, like the rule of thirds. However,
any of them do not ensure physical feasibility to comply with
AV dynamic constraints and they assume full knowledge of the
nvironment map. In terms of optimization functions, several
orks consider similar terms to achieve smoothness. For instance,
uthors in [20] model trajectories as polynomial curves whose
oefficients are computed to minimize snap (fourth derivative).
hey also check dynamic feasibility along the planned trajec-
ories, and the user is allowed to adjust the UAV velocity at
xecution time. A similar application to design UAV trajectories
or outdoor filming is proposed in [21]. Timed reference trajec-
ories are generated from 3D positions specified by the user, and
he final timing of the shots is addressed designing easing curves
hat drive the UAV along the planned trajectory (i.e., curves that
odify the UAV velocity profile). In [22], aesthetically pleasant


ootage is achieved by penalizing the snap of the UAV trajectory
nd the jerk (third derivative) of the camera motion. An iterative
uadratic optimization problem is formulated to compute trajec-
ories for the camera and the look-at point (i.e., the place where
he camera is pointing at). They also include collision avoidance
onstraints, but the method is only tested indoors.
Although these articles on computer graphics approach the


roblem mainly through offline optimization, some of them have
roposed options to achieve real-time performance, like planning
n a toric space [23] or interpolating polynomial curves [21,24].
n general, these works present interesting theoretical properties,
ut they are restricted to offline optimization with a fully known
ap of the scenario and static or close-to-static guided tour
cenes, i.e., without moving actors.
In the robotics literature, there are works focusing more on


ilming dynamic scenes and complying with physical UAV con-
traints. For example, authors in [26] propose to detect limbs
ovement of a human for outdoor filming. Trajectory planning


s performed online with polynomial curves that minimize snap.
n [3,27], they present an integrated system for outdoor cin-
matography, combining vision-based target localization with
rajectory planning and collision avoidance. For optimal trajectory
lanning, they apply gradient descent with differentiable cost
unctions. Smoothness is achieved minimizing trajectory jerk;
nd shot quality by defining objective curves fulfilling cinemato-
raphic constraints associated with relative angles w.r.t. the actor
nd shot scale. Cinematography optimal trajectories have also
een computed in real time through receding horizon with non-
inear constraints [25]. The user inputs framing objectives for one
r several targets on the image, and errors of the image target
rojections, sizes and relative viewing angles are minimized;
atisfying collision avoidance constraints and target visibility. The
ethod behaves well for online numerical optimization, but it is
nly tested in indoor settings.
Some of the aforementioned authors from robotics have also


pproached UAV cinematography applying machine learning
echniques. In particular, learning from demonstration to imitate
rofessional cameraman’s behaviors [28] or reinforcement learn-
ng to achieve visually pleasant shots [29]. In general, most of
hese cited works on robotics present results quite interesting
n terms of operation outdoors or online trajectory planning, but
hey always restrict to a single UAV.


Regarding methods for multiple UAVs, there is some related
ork which is worth mentioning. In [4], a non-linear optimization



https://multidrone.eu
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Table 1
Related works on trajectory planning for UAV cinematography. We indicate whether computation is online or not, the type of scene
and constraints they consider, and their capacity to handle outdoor applications and multiple UAVs.
References Online Scene UAVs Dynamics Collision avoidance Mutual visibility Outdoors Multiples UAVs


[23] No Static No No No No No
[20] No Static Yes No No Yes No
2 [22] No Static Yes Yes No No No
[21] No Static Yes Actor No Yes No
[24] No Dynamic No No No No No
[25] Yes Dynamic Yes Yes No No No
[4] Yes Dynamic Yes Actor Yes No Yes
[26] Yes Dynamic Yes Actor No Yes No
[5] Yes Dynamic Yes Yes Yes No Yes
[27] Yes Dynamic Yes Yes No Yes No
[3] Yes Dynamic Yes Yes No Yes No
Ours Yes Dynamic Yes Yes Yes Yes Yes

problem is solved in a receding horizon fashion, taking into
account collision avoidance constraints with the filmed actors and
between the UAVs. Aesthetic objectives are introduced by the
user as virtual reference trails. Then, UAVs receive current plans
from all others at each planning iteration and compute collision-
free trajectories sequentially. A UAV toric space is proposed in [5]
to ensure that cinematographic properties and dynamic con-
straints are ensured along the trajectories. Non-linear optimiza-
tion is applied to generate polynomial curves with minimum
curvature variation, accounting for target visibility and collision
avoidance. The motion of multiple UAVs around dynamic targets
is coordinated by means of a centralized master–slave approach
to solve conflicts. Even though these works present promising re-
sults for multi-UAV teams, they are only demonstrated at indoor
scenarios where a Vicon motion capture system provides accurate
positioning for all targets and UAVs. These works present quite
valuable contributions for cinematography with multiple UAVs,
but they are evaluated in indoor settings. The specifics of the
outdoor scenarios considered in our work are different in sev-
eral aspects, as the environment is less controlled: UAVs require
more payload to carry onboard cameras with better lenses and
equipment for larger range communication; achieving smooth
trajectories is more complex due to external factors such as wind
gusts or communication delays; UAV positioning is less accurate
in general; and so on.


To sum up, Table 1 shows the main related works on trajec-
tory planning for UAV cinematography and their corresponding
properties. We indicate whether computation is online or offline,
whether the scene contains dynamic targets to be filmed and
whether UAV dynamics are included as constraints. We also
analyze the type of collision avoidance: none (No), with the actor
being filmed (Actor) or with external obstacles and other UAVs
(Yes). Works which address mutual visibility constraints between
multiple cameras are mentioned specifically. Finally, we indicate
whether each method includes evaluation in outdoor settings and
whether it can handle multiple UAVs.


1.2. Contributions


We propose a novel method to plan online optimal trajec-
tories for a set of UAVs executing cinematography shots. The
optimization is performed in a distributed manner, and it aims
for smooth trajectories complying with dynamic and cinemato-
graphic constraints. We extend our previous work [30] in optimal
trajectory planning for UAV cinematography as follows: (i) we
cope with multiple UAVs integrating new constraints for inter-
UAV collisions and mutual visibility; (ii) we present additional
simulation results to evaluate the method with different types of
shots; and (iii) we demonstrate the system in field experiments


with multiple UAVs filming dynamic scenes. Therefore, the main


3


novelty of our method is the multi-UAV coordination to com-
bine the execution of several types of shots simultaneously in
outdoor scenarios, with the specific challenges that those envi-
ronments involve. More particularly, our main contributions are
the following:


• We propose a novel formulation of the trajectory plan-
ning problem for UAV cinematography. We model both UAV
and gimbal motion (Section 2), but decouple their control
actions.


• We propose a non-linear, optimization-based method for
trajectory planning (Section 3). Using a receding horizon
scheme, trajectories are planned and executed in a dis-
tributed manner by a team of UAVs providing multiple
views of the same scene. The method considers UAV dy-
namic constraints, and imposes them to avoid predefined
no-fly zones or collisions with others. Cinematographic as-
pects imposed by shot definition, camera mutual visibility
and gimbal physical bounds are also addressed. Trajectories
smoothing UAV and gimbal motion are generated to achieve
aesthetic video footage.


• We describe the complete system architecture on board
each UAV and the different types of shot considered (Sec-
tion 4). The architecture integrates target tracking with tra-
jectory planning and it is such that different UAVs can be
executing different types of shot simultaneously.


• We present extensive experimental results (Section 5) to
evaluate the performance of our method for different types
of shot. We prove that our method is able to compute
smooth trajectories reducing jerky movements in real time,
and complying with the cinematographic restrictions. Then,
we demonstrate our system in field experiments with three
UAVs planning trajectories online to film a moving actor
(Section 6).


2. Dynamic models


This section presents our dynamic models for UAV cinematog-
raphers. We model the UAV as a quadrotor with a camera
mounted on a gimbal of two degrees of freedom.


2.1. UAV model


Let {W } denote the world reference frame with origin fixed in
the environment and East-North-Up (ENU) orientation. Consider
also three additional reference frames (see Fig. 2): the quadrotor
reference frame {Q } attached to the UAV with origin at the center
of mass, the camera reference frame {C} with z-axis aligned with
the optical axis but with opposite sign, and the target reference
frame {T } attached to the moving target that is being filmed. For


simplicity, we assumed that the origins of {Q } and {C} coincide.
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Fig. 2. Definition of reference frames used. The origins of the camera and
uadrotor frames coincide. The camera points to the target.


The configuration of {Q } with respect to {W } is denoted by
pQ , RQ ) ∈ SE(3), where pQ ∈ R3 is the position of the origin
of {Q } expressed in {W } and RQ ∈ SO(3) is the rotation matrix
from {Q } to {W }. Similarly, the configurations of {T } and {C} with
respect to {W } are denoted by (pT , RT ) ∈ SE(3) and (pC , RC ) ∈


SE(3), respectively.
We model the quadrotor dynamics as a linear double integra-


tor model:


ṗQ = vQ
v̇Q = aQ , (1)


where vQ = [vx vy vz]
T


∈ R3 is the linear velocity and aQ =


[ax ay az]T ∈ R3 is the linear acceleration. We assume that the
linear acceleration aQ takes the form:


aQ = −ge3 + RQ
T
m


e3, (2)


where m is the quadrotor mass, g the gravitational acceleration,
T ∈ R the scalar thrust, and e3 = [0 0 1]T .


For the sake of simplicity, we use the 3D acceleration aQ as
control input; although the thrust T and rotation matrix RQ could
also be recovered from 3D velocities and accelerations. If we
restrict the yaw angle ψQ to keep the quadrotor’s front pointing
forward in the direction of motion such that:


ψQ = atan2(vy, vx), (3)


then the thrust T and the Z-Y -X Euler angles λQ = [φQ , θQ , ψQ ]
T


can be obtained from vQ and aQ according to:⎧⎪⎪⎨⎪⎪⎩
T = m∥aQ + ge3∥
ψQ = atan2(vy, vx)
φQ = − arcsin((ay cos(ψQ ) − ax sin(ψQ ))/∥aQ + ge3∥)
θQ = atan2(ax cos(ψQ ) + ay sin(ψQ ), az + g)


(4)


2.2. Gimbal angles


Let λC = [φC , θC , ψC ]
T denote the Z-Y -X Euler angles that


arametrize the rotation matrix RC , such that:


C = Rz(ψC )Ry(θC )Rx(φC ). (5)


In our system, we decouple gimbal motion with an indepen-
ent gimbal attitude controller that ensures that the camera is
lways pointing towards the target during the shot, as in [3].
his reduces the complexity of the planning problem and allows
s to control the camera based on local perception feedback if
vailable, accumulating less errors. We also consider that the

4


ime-scale separation between the ‘‘faster’’ gimbal dynamics and
‘slower’’ quadrotor dynamics is sufficiently large to neglect the
imbal dynamics and assume an exact match between the desired
nd actual orientations of the gimbal. In order to define RC , let us
ntroduce the relative position:


=
[
qx qy qz


]T
= pC − pT , (6)


nd assume that the UAV is always above the target, i.e., qz > 0,
nd not directly above the target, i.e., [qx qy] ̸= 0. Then, the
imbal orientation RC that guarantees that the camera is aligned
ith the horizontal plane and pointing towards the target is given
y:


C =


[
−


q × q × e3
∥q × q × e3∥


q × e3
∥q × e3∥


q
∥q∥


]


=


⎡⎢⎢⎢⎢⎢⎣
∗


qy√
q2x+q2y


∗


∗
−qx√
q2x+q2y


∗√
q2x+q2y√


q2x+q2y+q2z
0 qz√


q2x+q2y+q2z


⎤⎥⎥⎥⎥⎥⎦ . (7)


To recover the Euler angles from the above expression of RC ,
note that if the camera is aligned with the horizontal plane, then
there is no roll angle, i.e. φC = 0, and RC takes the form:


RC =


[cos(ψC ) cos(θC ) − sin(ψC ) cos(ψC ) sin(θC )
cos(θC ) sin(ψC ) cos(ψC ) sin(ψC ) sin(θC )


− sin(θC ) 0 cos(θC )


]
, (8)


nd we obtain:⎧⎪⎨⎪⎩
φC = 0


θC = atan2(−
√
q2x + q2y, qz)


ψC = atan2(−qy,−qx)


(9)


Our cinematography system is designed to perform smooth
rajectories as the UAVs are taking their shots, and then using
ore aggressive maneuvers only to fly between shots without


ilming. If UAVs fly smoothly, we can assume that their accel-
rations ax and ay are small, and hence, by direct application of
q. (4), that their roll and pitch angles are small and Rx(φQ ) ≈


y(θQ ) ≈ I3. This assumption is relevant to alleviate the non-
inearity of the model and achieve real-time numerical optimiza-
ion. Moreover, it is reasonable during shot execution, as our
rajectory planner will minimize explicitly UAV accelerations, and
ill limit both UAV velocities and accelerations.
Under this assumption, the orientation matrix of the gimbal


ith respect to the quadrotor Q
C R can be approximated by:


R = (RQ )TRC


≈ Rz(ψC − ψQ )Ry(θC )Rx(φC ), (10)


nd the relative Euler angles QλC (roll, pitch and yaw) of the
imbal with respect to the quadrotor are obtained as:⎧⎪⎨⎪⎩
QφC = φC = 0
Q θC = θC = atan2(−


√
q2x + q2y, qz)


QψC = ψC − ψQ = atan2(−qy,−qx) − atan2(vy, vx)


(11)


According to Eqs. (4), (9) and (11), λQ , λC and QλC are com-
pletely defined by the trajectories of the quadrotor and the target,
as explicit functions of q, vQ , and aQ .


3. Optimal trajectory planning


In this section, we describe our method for optimal trajectory


planning. We explain how trajectories are computed online in
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receding horizon scheme, considering dynamic and cinemato-
raphic constraints; and then, how the coordination between
ultiple UAVs is addressed. Afterward, we detail how to exe-
ute the trajectories and control the gimbal. Last, we include a
horough discussion about some critical aspects of the method.


.1. Trajectory planning


We plan optimal trajectories for a team of n UAVs as they
ilm a moving actor or target whose position can be measured
nd predicted. The main objective is to come up with trajectories
hat satisfy physical UAV and gimbal restrictions, avoid collisions
nd respect cinematographic concepts. This means that each UAV
eeds to perform the kind of motion imposed by its shot type
e.g., stay beside/behind the target in a lateral/chase shot) and
generate smooth trajectories to minimize jerky movements of the
camera and yield a pleasant video footage. Each UAV will have
a shot type and a desired 3D position (pD) and velocity (vD) to
be reached. This desired state is determined by the type of shot
and may move along with the receding horizon. For instance, in
a lateral shot, the desired position (pD) moves with the target,
to place the UAV beside it; whereas in a flyby shot, this position
is such that the UAV gets over the target by the end of the
shot. More details about the different types of shot and how to
compute the desired position will be given in Section 4.


We plan trajectories for each UAV in a distributed manner,
assuming that the plans from other neighboring UAVs are com-
municated (we denote this set of neighboring UAVs as Neigh). For
hat, we solve a constrained optimization problem for each UAV
here the optimization variables are its discrete state with 3D
osition and velocity (xk = [pQ ,k vQ ,k]T ), and its 3D accelera-
ion as control input (uk = aQ ,k). A non-linear cost function is
inimized for a horizon of N timesteps, using as input at each
olving iteration the current observation of the system state x′.
n particular, the following non-convex optimization problem is
ormulated for each UAV:


minimize
x0,...,xN
u0,...,uN


N∑
k=0


(w1∥uk∥
2
+ w2Jθ + w3Jψ ) + w4JN (12)


subject to x0 = x′ (12.a)


xk+1 = f (xk,uk) k = 0, . . . ,N − 1 (12.b)


vmin ≤ vQ ,k ≤ vmax (12.c)


umin ≤ uk ≤ umax (12.d)


pQ ,k ∈ F (12.e)


∥pQ ,k − pO,k∥
2


≥ r2col, ∀O (12.f)


θmin ≤
Q θC,k ≤ θmax (12.g)


ψmin ≤
Q ψC,k ≤ ψmax (12.h)


cos(β j
k) ≤ cos(α), ∀j ∈ Neigh (12.i)


As constraints, we impose the initial UAV state (12.a) and the
AV dynamics (12.b), which are obtained by integrating numer-
cally the continuous model in Section 2 with the Runge–Kutta
ethod. We also include bounds on the UAV velocity (12.c)
nd acceleration (12.d), to ensure trajectory feasibility. The UAV
osition is restricted in two manners. On the one hand, it must
tay within the volume F ∈ R3 (12.e), which is a space not
ecessarily convex excluding predefined no-fly zones. These are
tatic zones provided by the director before the mission to keep
he UAVs away from known hazards like buildings, high trees,
rowds, etc. On the other hand, the UAV must stay at a minimum
istance rcol from any additional obstacle O detected during flight


12.f), in order to avoid collisions. pO,k represents the obstacle
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osition at timestep k. One of these constraints is added for each
ther UAV in the team to model them as dynamic obstacles, using
heir communicated trajectories to extract their positions along
he planning horizon. However, other dynamic obstacles, e.g. the
ctor to be filmed, can also be considered. For that, a model to
redict the future position of the obstacle within the time horizon
s required. Besides, mechanical limitations of the gimbal to rotate
round each axis are enforced by means of bounds on the pitch
12.g) and yaw angles (12.h) of the camera with respect to the
AV. Last, there are mutual visibility constraints (12.i) for each
ther UAV in the team, to ensure that they do not get into the
ield of view of the camera at hand. More details about how to
ompute this constraint are given in Section 3.2.
Regarding the cost function, it consists of four weighted terms


o be minimized. The terminal cost JN = ∥xN − [pD vD]T∥2 is
dded to guide the UAV to the desired state imposed by the
hot type. The other three terms are related with the smooth-
ess of the trajectory, penalizing UAV accelerations and jerky
ovements of the camera. Specifically, the terms Jθ = |


Q θ̇C,k|
2


nd Jψ = |
Q ψ̇C,k|


2 minimize the angular velocities to penalize
uick changes in gimbal angles. Deriving analytically (11), Jθ and
ψ can be expressed in terms of the optimization variables and
he target trajectory. We assume that the target position at the
nitial timestep is measurable and we apply a kinematic model
o predict its trajectory for the time horizon N . An appropriate
uning of the different weights of the terms in the cost function
s key to enforce shot definition but generating a smooth camera
otion.


.2. Multi-UAV coordination


Our method plans trajectories for multiple UAVs as they per-
orm cinematography shots. The cooperation of several UAVs can
e used to execute different types of shot simultaneously or to
rovide alternative views of the same subject. This is particularly
ppealing for outdoor filming, e.g. in sport events, where the di-
ector may want to orchestrate the views from multiple cameras
n order to show surroundings during the line of action. In this
ection, we provide further insight into how we coordinate the
otion of the several UAVs while filming.
The first point to highlight is that we solve our optimization


roblem (12) on board each UAV in a distributed manner, but
eing aware of constraints imposed by neighboring teammates.
his is reflected in (12.f) and (12.i), where we force UAV trajecto-
ies to establish a safety distance with others and to stay out of
thers’ field of view for aesthetic purposes. For that, we assume
hat UAVs are operating close to film the same scene, what
llows them to communicate their computed trajectories after
ach planning iteration. However, there are different alternatives
o synchronize the distributed optimization process so that UAVs
ct in a coordinate fashion. Let us discuss other approaches from
ey related works and then our proposal.
In the literature there are multiple works for multi-UAV opti-


al trajectory planning, but as we showed in Section 1.1, only few
orks addressed cinematography aspects specifically. A master–
lave approach is applied in [5] to solve conflicts between mul-
iple UAVs. Only one of the UAVs (the master) is supposed to
e shooting the scene at a time, whereas the others act as relay
laves that provide complementary viewpoints when selected.
he slave UAVs fly in formation with the master avoiding visi-
ility issues by staying out of its field of view. Conversely, fully
istributed planning is performed in [4] by means of a sequen-
ial consensus approach. Each UAV receives the current planned
rajectories from all others, and computes a new collision-free
rajectory taking into account the whole set of future positions
rom teammates and the rest of restrictions. Besides, it is en-
ured that trajectories for each UAV are planned sequentially and
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Fig. 3. Mutual visibility constraint for two UAVs. The UAV on the right (blue)
s filming an action point at the same time that it keeps the UAV on top (red)
ut of its angle of view α. (For interpretation of the references to color in this


figure legend, the reader is referred to the web version of this article.)


communicated after each planning iteration. In the first iteration,
this is equivalent to priority planning, but not in subsequent
iterations, yielding more cooperative trajectories.


We follow a hierarchical approach in between. Contrary to [5],
all UAVs can film the scene simultaneously with no preferences;
but there is a scheme of priorities to solve multi-UAV conflicts, as
in [4]. Thus, the UAV with top priority plans its trajectory ignoring
others; the second UAV generates an optimal trajectory applying
collision avoidance and mutual visibility constraints given the
planned trajectory from the first UAV; the third UAV avoids the
two previous ones; and so on. This scheme helps coordinating
UAVs without deadlocks and reduces computational cost as UAV
priority increases. Moreover, we do not recompute and communi-
cate trajectories after each control timestep as in [4]; but instead,
replanning is performed at a lower frequency and, meanwhile,
UAVs execute their previous trajectories as we will describe in
next section.


In terms of multi-UAV coordination, constraint (12.f) copes
with collisions between teammates and (12.i) with mutual vis-
ibility. We consider all neighboring UAVs as dynamic obstacles
whose trajectories are known (plans are communicated), and we
enforce a safety inter-UAV distance rcol along the entire plan-
ing horizon N . The procedure to formulate the mutual visibility
onstraint is illustrated in Fig. 3. The objective is to ensure that
ach UAV’s camera has not other UAVs within its field of view
the angle of view is denoted as α). We approximate the actual
ield of view of the camera with a circular shape, and α is the
emi-cone angle of the cone surrounding the real field of view.
e think this is a good approximation for long-range shots and


t simplifies the formulation of the mutual visibility constraints,
hich alleviates the problem non-linearity and helps computing
solution. Geometrically, we model UAVs as points that need to
tay out of the field of view, but select α large enough to account
or UAV dimensions. If we consider the UAV that is planning
ts trajectory at position pQ ,k and another neighboring UAV j at
osition pj , then β j refers to the angle between vectors q =

Q ,k k k


6


Q ,k − pT ,k and dj
k = pQ ,k − pj


Q ,k:


os(β j
k) =


qk · dj
k


∥qk∥ · ∥dj
k∥
, (13)


eing cos(β j
k) ≤ cos(α) the condition to keep UAV j out of the


ield of view.
Finally, it is important to notice that there may be certain


ituations where our priority scheme to apply mutual visibility
onstraints could fail. If we plan a trajectory for the UAV with pri-
rity 1, and then, another one for the UAV with lower priority 2;
nsuring that UAV 1 is not within the field of view of UAV 2 does
ot imply the way around, i.e., UAV 2 could still appear on UAV 1’s
ideo. However, these situations are rare in our cinematography
pplication, as there are not many cameras pointing in random
irections, but only a few and all of them filming a target typically
n the ground. Moreover, since we favor smooth trajectories, we
xperienced in our tests that our solver tends to avoid crossings
etween different UAVs’ trajectories, as that would result in more
urves. Therefore, establishing UAV priorities in a smart way,
ased on their height or distance to the target, was enough to
revent issues related with mutual visibility.


.3. Trajectory execution


Our trajectory planners produce optimal trajectories contain-
ng UAV positions and velocities sampled at the control timestep,
hich we can denote as ∆t . As we do not recompute trajectories
t each control timestep for computational reasons, we use an-
ther independent module for trajectory following, whose task is
lying the UAV along its current planned trajectory. This module
s executed at a rate of 1/∆t Hz and keeps a track of the last com-
uted trajectory, which is replaced after each planning iteration.
ach trajectory follower computes 3D velocity references for the
elocity controller on board the UAV. For this purpose, we take
he closest point in the trajectory to the current UAV position, and
hen, we select another point in the trajectory at least L meters
head. The 3D velocity reference is a vector pointing to that look-
head waypoint and with the required speed to reach the point
ithin the specified time in the planned trajectory.
At the same time that UAVs are following their trajectories,
gimbal controller is executed at a rate of 1/∆tG Hz to point


he camera towards the target being filmed. We assume that the
imbal has an IMU and a low-level controller receiving angular
ate commands, defined with respect to the world reference
rame {W }. Using feedback about the target position, we gen-
rate references for the gimbal angles to track the target and
ompensate the UAV motion and possible errors in trajectory
lanning. These references are sent to an attitude controller that
omputes angular velocity commands based on the error between
urrent and desired orientation in the form of a rotation matrix
e = (RC )TR∗


C , where the desired rotation matrix R∗


C is given by (8).
ecall that we assumed that RC instantaneously takes the value of
∗


C . To design the angular velocity controller, we use a standard
irst-order controller for stabilization on the Special Orthogonal
roup SO(3), which is given by ω = kω(Re − RT


e )
∨, where the


ee operator ∨ transforms 3 × 3 skew-symmetric matrices into
ectors in R3 [31]. More specific details about the mathematical
ormulation of the gimbal controller can be seen in [32].


.4. Discussion


In this section, we discuss some critical aspects of our method
or trajectory planning. In particular, its optimality and conver-
ence time, as well as how it deals with issues such as delays
omputing solutions, external disturbances due to bad weather
r obstacle representation.
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ptimality. We apply numerical methods to solve the optimiza-
ion problem described in Section 3.1, thus converging to an
ptimal solution for a single UAV. Even though there are no
heoretical guarantees of achieving the global optimum when
olving a non-linear and non-convex optimization problem, we
xperienced good results with the numerical solver that we used
oth in terms of local optimality and computation time. A proper
olver initialization is essential for fast convergence, so we use
he last computed trajectory to initialize the solution search.
onetheless, as we are considering a formulation with multiple
AVs acting simultaneously, our method does not achieve the op-
imal solution for the complete team. This is because we impose
priority scheme and solve each UAV trajectory assuming others’
rajectories fixed for the given time horizon. Even though it would
e more optimal to recompute and exchange solutions after each
xecution time step for all UAVs [4], the quality of our solutions
as enough for the purpose of the application. Moreover, in our
xperiments, UAV priorities were fixed, but the method could be
dapted easily to consider priorities that vary during the mission
epending on certain circumstances to be more efficient. We
eave as future work a further analysis to establish bounds on the
uality degradation of our solution compared with the complete
ulti-UAV optimum.


onvergence time. Our trajectory planning problem is a non-
inear and non-convex optimization that is complex to solve;
ven if the team of UAVs does not encounter external obstacles,
hey need to consider inter-UAV collision avoidance and mutual
isibility. Therefore, the time to converge to a solution is not neg-
igible. We tackle this by limiting the time horizon for trajectory
lanning (which reduces computation time) and using different
ates for trajectory planning and execution. Trajectory planning is
erformed at lower rates to reduce computation (between 0.5 and
Hz in our experiments). Besides, we limit the computation time


or the solver and keep following the last computed trajectory
ntil it converges to a new solution. In case that the maximum
omputation time is reached without convergence, there are no
uarantees regarding the quality of the solution computed, so we
ecalculate changing the problem initialization with the current
AV state, which is usually enough to converge to a new solution.
n the unlikely case of reaching the end of the previous computed
rajectory without new solution, the UAV would stay hovering
nd recomputing trajectories with different initial solutions until
onvergence.
In addition, we do not assume that solutions are generated


nstantly and we deal with delays when planning trajectories.
he generated trajectories have time stamps associated with each
aypoint. The trajectory follower component described in Sec-
ion 3.3 receives these trajectories with certain delay (due to the
olution computation time) and synchronizes them by discarding
he initial waypoints corresponding to time instants already gone
y.


erformance under external perturbations. Keeping flight stability
nd smooth trajectories even under external disturbances such as
ad weather conditions is critical in our method. In the presence
f bad weather, the trajectory planning components (Section 3.1)
ould still generate smooth trajectories; however, windy con-
itions could result in an inaccurate trajectory following due to
xternal perturbations. Therefore, the key to improve stability
nder bad weather conditions would be implementing more ro-
ust UAV controllers. In our case, we implemented a trajectory
ollower based on a pure pursuit algorithm with a look-ahead
arameter and a velocity controller. Nonetheless, alternative con-
rol techniques [13,33] taking into account external perturbations
nd uncertainties or integrating non-linear models for the UAV
ould be applied to increase flight stability in case of wind gusts.

7


Besides, in terms of trajectory planning, we could also adapt the
weights of the cost function in case of bad weather, penalizing
more those costs based on UAV accelerations and gimbal angular
velocities, and relaxing the cost associated with the desired final
state. Thus, the generated trajectories would be more conser-
vative from the smoothness point of view, which would help
following trajectories in these adverse conditions.


Obstacle representation. In our problem formulation, we include
predefined no-fly zones and additional dynamic obstacles. The
former are used to indicate static hazards with known positions,
like buildings, areas with trees, etc. The latter consists of other
UAVs in the team or external obstacles, e.g., the target being
filmed, other actors in the scene, etc. As explained in Section 3.1,
we represent these dynamic obstacles by means of spherical
objects of radius rcol, since the constraint included is to keep
that safety distance between the 3D obstacle position and the
corresponding UAV. We also explained that we need a prediction
model to estimate object trajectories within the planning hori-
zon time. We use a constant velocity model to compute those
future predictions, although more complex models could be used
too. Moreover, alternative geometrical representations could be
used for the obstacles if more information about their shape
were known. For instance, 3D ellipsoids with three different
axis lengths are used in [4]. In our context, we do not foresee
UAVs getting so close to targets so that its geometrical shape
really matters, and hence, we preferred spherical shapes that ease
mathematical formulation.


Obstacle detection is out of the scope of this paper, so we
assume that there is a perception module providing an estimation
of the obstacle 3D positions and velocities (for motion prediction).
In practice, we used in our experiments dynamic obstacles whose
positions could be measured with a GPS and communicated,
i.e., other UAV teammates and the filmed target. Nonetheless,
this information could be obtained by algorithms processing mea-
surements from pointcloud-based sensors on board the UAVs,
such as 3D LIDARs or RGB-D cameras. In that case, alternative
obstacle representations based on distance to the points (e.g., to
the centroid or to the closest point) within the corresponding
pointclouds could be used, as it is done by the authors in [16].


4. System architecture


In this section, we present our system architecture, describing
the different software components required for trajectory plan-
ning and their interconnection. Besides, we introduce briefly the
overall architecture of our complete system for cinematography
with multiple UAVs, which was presented in [34].


Our system counts on a Ground Station where the components
related with mission design and planning are executed. We as-
sume that there is a cinematography director who is in charge
of describing the desired shots from a high-level perspective. We
created a graphical tool and a novel cinematography language [6]
to support the director through this task. Once the mission is
specified, the system has planning components [7] that compute
feasible plans for the mission, assigning shots to the available
UAVs according to shot duration and remaining UAV flight time.
The mission execution is also monitored in the Ground Station,
in order to calculate new plans in case of unexpected events like
UAV failures.


The components dedicated to shot execution run on board
each UAV. Those components are depicted in Fig. 4. Each UAV
has a Scheduler module that receives shot assignments from the
Ground Station and indicates when a new shot should be started.
Then, the Shot Executor is in charge of planning and executing op-
timal trajectories to perform each shot, implementing the method


described in Section 3. As input, the Shot Executor receives the
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Fig. 4. System architecture on board each UAV. A Scheduler initiates the shot and updates continuously the desired state for trajectory planning, whereas the Shot
xecutor plans optimal trajectories to perform the shot. UAVs exchange their plans for coordination.

uture desired 3D position pD and velocity vD for the UAV, which
s updated continuously by the Scheduler depending on the shot
arameters and the target position. For instance, in a lateral shot,
he dynamic model of the target is used to predict its position
y the end of the horizon time and then place the UAV desired
osition at the lateral distance indicated by the shot parameters.
Additionally, the target positioning provided by the Target


racker is required by the Shot Executor to point the gimbal and
lace the UAV adequately. In order to alleviate the effect of noisy
easurements when controlling the gimbal and to provide target
stimations at high frequency, the Target Tracker implements a
alman Filter integrating all received observations. This filter is
ble to accept two kinds of measurements: 3D global positions
oming from a GPS receiver on board the target, and 2D posi-
ions on the image obtained by a vision-based detector [8]. In
articular, in the experimental setup for this paper, we used a GPS
eceiver on board a human target communicating measurements
o the Target Tracker. Communication latency and lower GPS
ates are addressed by the Kalman Filter to provide a reliable
arget estimation at high rate.


The Shot Executor, as it was explained in Section 3, consists
f three submodules: the Trajectory Planner, the Trajectory Fol-
ower and the Gimbal Controller. The Trajectory Planner computes
ptimal trajectories for the UAV solving the problem in (12)
n a receding fashion, trying to reach the desired state indi-
ated by the Scheduler. The Trajectory Follower calculates 3D
elocity commands at higher rate so that the UAV follows the
ptimal reference trajectory, which is updated any time the Plan-
er generates a new solution. The Gimbal Controller generates
ommands for the gimbal motors in the form of angular rates in
rder to keep the camera pointing towards the target. The UAV


Abstraction Layer (UAL) is a software component developed by our
lab [35] to interface with the position and velocity controllers of
the UAV autopilot. It provides a common interface abstracting the
user from the protocol of each specific hardware. Finally, recall
that each UAV has a communication link with other teammates
in order to share their current computed trajectories, which are
used for multi-UAV coordination by the Trajectory Planner.


4.1. Cinematography shots


In our previous work [34], following recommendations from
cinematography experts, we selected a series of canonical shot
types for our autonomous multi-UAV system. Each shot has a
type, a time duration and a set of geometric parameters that are
used by the system to compute the desired camera position with
respect to the target. The representative shots used in this work
for evaluation are the following:


• Chase/lead: The UAV chases a target from behind or leads
it in the front at a certain distance and with a constant
altitude.


• Lateral: The UAV flies beside a target with constant distance


and altitude as the camera tracks it.


8


• Flyby: The UAV flies overtaking a target with a constant
altitude as the camera tracks it. The initial distance behind
the target and final distance in front of it are also shot
parameters.


• Orbit: The UAV flies with a constant altitude orbiting around
the target from a certain distance, as the camera tracks it.


Even though our complete system [34] implements additional
shots, such as static, elevator, etc., they follow similar behaviors
or are not relevant for trajectory planning evaluation. Particularly,
we distinguish between two groups of shots for assessing the
performance of the trajectory planner: (i) shots where the relative
distance between UAV and target is constant (e.g., chase, lead or
lateral), denoted as Type I shots; and (ii) shots where this relative
distance varies throughout the shot (e.g., flyby or orbit), denoted
as Type II shots. Note that an orbit shot can be built with two
consecutive flyby shots. In Type I shots, the relative motion of the
gimbal with respect to the UAV is quite limited, and the desired
camera position does not vary with the shot phase, i.e., it is
always at the same distance of the target. In Type II shots though,
there is a significant relative motion of the gimbal with respect
to the UAV, and the desired camera position depends on the shot
phase, e.g., it transitions from behind to the front throughout a
flyby shot. These two kinds of patterns will result in different
behaviors of our trajectory planner, so for a proper evaluation,
we test it with shots from both groups.


5. Performance evaluation


In this section, we present experimental results to assess the
performance of our method for trajectory planning in cinematog-
raphy. We evaluate the behavior of the resulting trajectories
for the two categories of shots defined, demonstrating that our
method achieves smooth and less jerky movements for the cam-
eras. We also show the effect of considering physical limits for
gimbal motion, as well as multi-UAV constraints due to collision
avoidance and mutual visibility.


We implemented our trajectory planner described in Section 3
by means of Forces Pro [36], which is a software that creates
domain-specific solvers in C language for non-linear optimization
problems. Forces Pro uses direct multiple shooting [37] for prob-
lem discretization, approximating the state trajectories to achieve
a finite-dimensional optimization problem. Then, an algorithm
based on the interior-point method is used to solve this non-
linear optimization. Table 2 depicts common values for some
parameters of our method used in all the experiments, where
physical constraints correspond to our actual UAV prototypes.
Moreover, all the experiments in this section were performed
with a MATLAB-based simulation environment integrating the C
libraries from Forces Pro, in a computer with an Intel Core i7 CPU
@ 3.20 GHz, 8 Gb RAM.
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Fig. 5. Left, top view of the resulting trajectories for different solver configurations for the cost weights. High-yaw is not shown as it was too similar to low-yaw.
he target follows a straight path and the UAV has to execute a flyby shot (10 s) starting 20 m behind and ending up 15 m ahead. The predefined no-fly zone
imulates the existence of a tree. Right, temporal evolution of the jerk of the camera angles and the norm of the 3D acceleration. We compare the full-cinematography
onfiguration against no-cinematography.

able 2
ommon values of method parameters in experiments.
Parameter Value


umin,umax ±5 m/s2


vmin, vmax ±10 m/s
θmin, θmax −π/2,−π/4 rad
ψmin, ψmax −3π/4, 3π/4 rad
α π/6 rad
∆t , ∆tG 0.1 s
L 1 m


5.1. Cinematographic aspects


First, we evaluate the effect of imposing cinematography con-
traints in UAV trajectories. For that, we selected a shot of Type
I, since their relative motion between the target and the camera
akes them richer to analyze cinematographic effects. Partic-
larly, we performed a flyby shot with a single UAV, filming
target that moves on the ground with a constant velocity


1.5 m/s) along a straight line (this constant motion model is
sed to predict target movement). The UAV had to take a shot
f 10 seconds at a constant altitude of 3 m, starting 20 m behind
he target and overtaking it to end up 15 m ahead. Moreover, we
laced a circular no-fly zone at the starting position of the target,
imulating the existence of a tree.
We evaluated the quality of the trajectories computed by our


ethod setting the horizon to N = 100, in order to calculate
he whole trajectory for the shot duration (10 s) in a single
tep, instead of using a receding horizon.2 We tested different
onfigurations for comparison: no-cinematography uses w2 =


3 = 0; low-pitch, medium-pitch and high-pitch use w3 = 0 and
2 = 100, w2 = 1 000 and w2 = 10 000, respectively; low-
aw and high-yaw use w2 = 0 and w3 = 0.5 and w3 = 1,


respectively; and full-cinematography uses w2 = 10 000 and w3 =


0.5. For all configurations, we set w1 = w4 = 1. These values
were selected empirically to analyze the planner behavior under
a wide spectrum of weighting options in the cost function. Fig. 5
(left) shows the trajectory followed by the target and the UAV
trajectories generated with the different options. Even though
trajectory planning is done in 3D, the altitude did not vary much,
as the objective was to perform a shot with a constant altitude.


2 The average time to compute each trajectory was ∼ 100 ms, which allows
for online computation.

9


Therefore, a top view is depicted to evaluate better the effect of
the weights.


Table 3 shows a quantitative comparison of the different con-
figurations. For this comparison, we define the following metrics.
First, we measure the minimum distance to any obstacle or no-
fly zone in order to check collision avoidance constraints. Then,
we measure the average norm of the 3D acceleration along the
trajectory, and of the jerk (third derivative) of the camera angles
θC and ψC . These three metrics provide an idea on whether the
trajectory is smooth and whether it implies jerky movement for
the camera. Note that jerky motion has been identified in the
literature on aerial cinematography [3,22] as a relevant cause for
low video quality. Fig. 5 (right) depicts the temporal evolution of
jerk of the camera angles and the norm of the 3D acceleration.


Our experiment allows us to derive several conclusions. The
no-cinematography configuration produces a trajectory that gets
as close as possible to the no-fly zone and minimizes 3D accelera-
tions (curved). However, when increasing the weight on the pitch
rate, trajectories get further from the target and accelerations
increase slightly (as longer distances need to be covered in the
same shot duration), but jerk in camera angles is reduced. On
the contrary, activating the weight on the yaw rate, trajecto-
ries get closer to the target again. With the full-cinematography
configuration, we achieve the lowest values in angle jerks and
a medium value in 3D acceleration, which seems to be a pretty
reasonable trade-off. It can also be seen in Fig. 5 (right) how this
configuration reduces camera acceleration and angle jerks with
respect to no-cinematography, obtaining smoother trajectories.


Finally, we also tested the full-cinematography configuration in
a receding horizon manner. In that case, the solver was run at
1 Hz with a time horizon of 5 s (N = 50). The resulting metrics
are included in Table 3. Using a receding horizon with a horizon
shorter than the shot’s duration is suboptimal, and average accel-
eration increases slightly. However, we achieve similar values of
angle jerk, plus a reduction in the computation time.3 Moreover,
this option of recomputing trajectories online would allow us to
correct possible deviations on predictions for the target motion, in
case of more random movements (in these simulations, the target
moved with a constant velocity).


3 The average time to compute each trajectory was ∼ 7 ms.
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Table 3
Resulting metrics for flyby shot. Dist is the minimum distance to the no-fly zone. Acc, Yaw jerk and Pitch jerk are the
average norms along the trajectory of the 3D acceleration and the jerk of the camera yaw and pitch, respectively.


Dist (m) Acc (m/s2) Yaw jerk (rad/s3) Pitch jerk (rad/s3)


No-cinematography 0.00 0.86 0.61 0.31
Low-pitch 1.81 1.13 0.35 0.15
Medium-pitch 6.38 1.25 0.19 0.07
High-pitch 6.13 1.42 0.10 0.03
Low-yaw 0.00 0.81 0.52 0.25
High-yaw 0.00 1.00 0.50 0.23
Full-cinematography 4.44 1.27 0.10 0.03
Full-cinematography (receding) 4.19 1.45 0.08 0.03

Fig. 6. Receding horizon comparative for lateral shot. Top view of the resulting
trajectories for different time horizons. The target follows a straight path and
the UAV has to execute a lateral shot (10 s) at a 8 m distance.


5.2. Time horizon


We also performed another experiment to evaluate the per-
ormance of shots of Type I. In particular, we selected a lateral
hot to show results, but the behavior of other shots like chase
r lead was similar, as they all do the same but with a different
elative position w.r.t. the target. We executed a lateral shot with
duration of 20 s to film a target from a lateral distance of 8 m
nd a constant altitude of 3 m. As in the previous experiment, the
arget moves on the ground with a constant velocity (1.5 m/s)
along a straight line, and we used that motion model to predict
its movement. In normal circumstances, the type of trajectories
followed to film the target are not so interesting, as the planner
only needs to track it laterally at a constant distance. Therefore,
we used this experiment to analyze the effects of modifying the
time horizon, which is a critical parameters in terms of both
computational load and capacity of anticipation. We used our
solver in receding horizon recomputing trajectories at 2 Hz, and
we placed a static no-fly zone in the middle of the UAV trajectory
to check its avoidance during the lateral shot under several values
of the time horizon N . The top view of the resulting trajectories
(the altitude did not vary significantly) can be seen in Fig. 6.
Table 4 shows also the performance metrics for the different
trajectories.


We can conclude that trajectories with a longer time horizon
were able to predict the collision more in advance and react in a
smoother manner; while shorter horizons resulted in more reac-
tive behaviors. In general, for the kind of outdoor shots that we
performed in all our experiments, we realized that time horizons
in the order of several seconds (in consonance with [3]) were
enough, as the dynamics of the scenes are not extremely high.
We also tested that the computation time for our solver was short
enough to calculate these trajectories online.


5.3. Multi-UAV coordination


In order to test multi-UAV coordination, we performed an-


other experiment with three UAVs filming a target that followed i


10

an 8-shaped path at a speed of 1 m/s. We combine heterogeneous
shots from Type I and II, with a duration of 40 s each: UAV 1 per-
forms a chase shot at a 3.5 m altitude and 2 m behind the target;
UAV 2 a lateral shot at a 3 m altitude and 2 m as lateral distance
from the target; and UAV 3 is commanded an orbit of radius 4 m
at an altitude of 6 m. Each UAV ran our method with a receding
horizon of N = 40 (4 s), recomputing trajectories at 0.5 Hz. We
set rcol = 2 m for collision avoidance and the low-pitch configura-
tion for cost function weights, as we saw this was working better
for this experiment. The purpose of this experiment is twofold.
First, we show how the method works with a non-rectilinear
target motion. We assume known the course of the road followed
by the target, and hence, we use a model that constrains the
target motion to that path. Second, we show the main features
related to multi-UAV coordination. A no-fly zone is used to test
obstacle avoidance in a coordinated manner, including inter-UAV
collision avoidance and mutual visibility avoidance.


Fig. 7 depicts several snapshots of the experiment.4 We set
UAV 1 as the one with top priority in the trajectory planner,
then UAV 2, and least priority for UAV 3. Between t = 15 s and
t = 19 s, UAV 1 comes across the no-fly zone in its trajectory
and deviates to avoid it. Consequently, UAV 2 also deviates in a
coordinated manner not to collide with UAV 1. Although UAV 1
and 2 are close throughout the whole experiment, they keep a
safety distance above 2 m. UAV 3 is commanded an orbit from
4 m, but between t = 19 s and t = 27 s, it moves incrementally
further from the target as it takes the orbit. This makes sense to
minimize the variation in camera angles, as that UAV increases
its altitude slightly during that period. Fig. 8 shows the temporal
evolution of the UAV altitudes during the experiment. UAV 3
starts the experiment 1.5 m high and its commanded altitude
for the orbit is 6 m. We provided that desired altitude for the
shot to enforce coordination, as we detected that at that altitude
the other two UAVs where appearing within the field of view of
UAV 3. UAV 1 and 2 start at their commanded altitudes and keep
them throughout the entire experiment, as they have no issues
with mutual visibility. However, UAV 3 starts ascending to reach
its commanded altitude, which is never reached to comply with
the mutual visibility constraint. As UAV 3 has less priority, it is
the one changing its altitude during the experiment to avoid UAV
1 and 2 within its field of view. We also included in Fig. 8 the
trajectory of UAV 3 altitude when the mutual visibility constraint
is disabled in the planner. In that case, it can be seen that the UAV
ascends above 6 m, which causes the other two UAVs to appear
within its field of view.


6. Field experiments


In this section, we report on field experiments to test our
method with 3 UAVs filming a human actor outdoors. This allows
us to verify the method feasibility with actual equipment for UAV


4 For the sake of clarity, a video with the temporal evolution of the simulation
s available at https://youtu.be/u5Vi4leni7U.



https://youtu.be/u5Vi4leni7U





A. Alcántara, J. Capitán, R. Cunha et al. Robotics and Autonomous Systems 140 (2021) 103778


t
o
t
f
g
a
a
T
a
p


Table 4
Resulting metrics for the lateral shot. Solution time is the average time to compute each trajectory.
Time horizon (s) Acc (m/s2) Yaw jerk (rad/s3) Pitch jerk (rad/s3) Solution time (s)


0.5 0.15 10.68 1.35 0.004
2 0.08 5.12 0.32 0.016
4 0.05 5.06 0.32 0.029
8 0.04 4.8 0.29 0.101

Fig. 7. Top view of different time instants of an experiment with three UAVs filming a target in a coordinated manner. The target (black) follows an 8-shaped path.
UAV 1 (blue) performs a chase shot 2 m behind the target, UAV 2 (green) a lateral shot 2 m aside the target and UAV 3 (magenta) an orbit shot with a 4 m radius.
A no-fly zone (red) is placed in the middle of the target trajectory for multi-UAV avoidance. Each UAV is represented with a 2 m circle around to show the collision
avoidance constraint. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

cinematography and assess its performance in a scenario with
uncertainties in target motion and detection.


The cinematography UAVs used in our experiments were like
he one in Fig. 9. They were custom-designed hexacopters made
f carbon fiber with a size of 1.80 × 1.80 × 0.70 m and had
he following equipment: a PixHawk 2 autopilot running PX4
or flight control; an RTK-GPS for precise localization; a 3-axis
imbal controlled by a BaseCam (AlexMos) controller receiving
ngle rate commands; a Blackmagic Micro Cinema camera; and
n Intel NUC i7 computer to run our software for shot execution.
he UAVs used Wi-Fi technology to share among them their plans
nd communicate with our Ground Station. Moreover, as ex-
lained in Section 4, our target carried a GPS-based device during

11

the experiments, to provide positioning measures to the Target
Tracker component on board the UAVs. The device weighted
around 400 grams and consisted of an RTK-GPS receiver with a
Pixhawk, a radio link and a small battery. This target provided 3D
measurements with a delay below 100 ms, that were filtered by
the Kalman Filter on the Target Tracker to achieve centimeter ac-
curacy. These errors were compensated by our gimbal controller
to track the target on the image.


We integrated the architecture described in Section 4 into our
UAVs, using the ROS framework. We developed our method for
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Fig. 8. Temporal evolution of the UAV altitudes during the multi-UAV coordi-
nation experiment. The vertical lines mark the time instants of the snapshots
depicted in Fig. 7.


Fig. 9. One of the UAVs used during the field experiments.


rajectory planning (Section 3) in C++,5 using Forces Pro [36] to
generate a compiled library for the non-linear optimization of our
specific problem. The parameters used in the experiments were
also those in Table 2. For collision avoidance, we used rcol = 5 m, a
value slightly increased for safety w.r.t. our simulations. We also
limited the maximum velocity of the UAVs to 1 m/s for safety
reasons. All trajectories were computed on board the UAVs online
at 0.5 Hz, with a receding horizon of N = 100 (10 s). Then, the
Trajectory Follower modules generated 3D velocity commands
at 10 Hz to be sent to the UAL component, which is an open-
source software layer6 developed by our lab to communicate with
autopilot controllers. Moreover, we assumed a constant speed
model for the target motion. This model was inaccurate, as the
actual target speed was unknown, but those uncertainties were
addressed by recomputing trajectories with the receding horizon.


We designed a field experiment with 3 UAVs taking simulta-
neously different shots of a human target walking on the ground.
UAV 1 performs a lateral shot following the target sideways
with a lateral distance of 20 m; UAV 2 performs a flyby shot
starting 15 m behind the target and finishing 15 m ahead in


5 https://github.com/alfalcmar/optimal_navigation.
6 https://github.com/grvcTeam/grvc-ual.

12

Fig. 10. Trajectories followed by the UAVs and the human target during the
field experiment. UAV 1 (blue) does a lateral, UAV 2 (green) a flyby and UAV 3
(red) a lateral. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)


Fig. 11. Example images from the cameras on board the UAVs during the
experiment: top left, UAV 1 (blue); top right, UAV 2 (green); and bottom left,
UAV 3 (red). Bottom right, a general view of the experiment with the three
UAVs and the target. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)


the target motion line; and UAV 3 performs another lateral shot,
but from the other side and with a lateral distance of 15 m. For
safety reasons, we established different altitudes for the UAVs,
3 m, 10 m and 7 m, respectively. In our decentralized trajectory
planning scheme, UAV 1 had the top priority, followed by UAV
2 and then UAV 3. Moreover, in order to design the shots of
the mission safely and with good aesthetic outputs, we created a
realistic simulation in Gazebo with all our components integrated
and a Software-In-The-Loop approach for the UAVs (i.e., the actual
PX4 software of the autopilots was run in the simulator).


The full video of the field experiment can be found at https:
//youtu.be/M71gYva-Z6M, and the actual trajectories followed by
the UAVs are depicted in Fig. 10. Fig. 11 shows some example
images captured by the onboard cameras during the experiment.
The experiment demonstrates that our method is able to generate



https://github.com/alfalcmar/optimal_navigation

https://github.com/grvcTeam/grvc-ual

https://youtu.be/M71gYva-Z6M

https://youtu.be/M71gYva-Z6M

https://youtu.be/M71gYva-Z6M
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etrics of the trajectories followed by the UAVs during the field experiment.
e measure the total traveled distance for each UAV, the average norm of the
D accelerations and the minimum distance (horizontally) to other UAVs.
UAV Traveled distance (m) Acc (m/s2) Dist (m)


1 95 0.125 9.543
2 141.4 0.108 9.543
3 98.6 0.100 14.711


online trajectories for the UAVs coping with cinematographic
(i.e., no jerky motion, gimbal mechanical limitations and mutual
visibility) and safety (i.e., inter-UAV collision avoidance) con-
straints; and keeping the target on the cameras’ field of view,
even under noisy target detections and uncertainties in its mo-
tion. Furthermore, we measured some metrics of the resulting
trajectories (see Table 5) in order to evaluate the performance of
our method. It can be seen that UAV accelerations were smooth
in line with those produced in our simulations and the mini-
mum distances between UAVs were always higher than the one
imposed by the collision avoidance constraint (5 m).


7. Conclusions


In this paper, we presented a method for planning optimal
rajectories with a team of UAVs in a cinematography applica-
ion. We proposed a novel formulation for non-linear trajectory
ptimization, executed in a decentralized and online fashion. Our
ethod integrates UAV dynamics and collision avoidance, as well
s cinematographic aspects such as gimbal limits and mutual
amera visibility. Our experimental results demonstrate that our
ethod can produce coordinated multi-UAV trajectories that are
mooth and reduce jerky movements. We also show that our
ethod can be applied to different types of shots and compute


rajectories online for time horizons of length up to 10 s, which
eems enough for the considered cinematographic scenes out-
oors. Moreover, our field experiments proved the applicability of
he method with an actual team of UAV cinematographers filming
utdoors.
As future work, we plan to study alternative schemes for de-


entralized multi-UAV coordination instead of our priority-based
omputation. Our objective is to compute in a distributed manner
ulti-UAV approximate solutions that are closer to the optimum,
ut without increasing significantly the computation time, and
est other team approaches like a leader–followers strategy. We
elieve that a comparison with methods based on reinforcement
earning can also be of high interest.
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