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Abstract— This paper considers the problem of attitude
estimation in three-vehicle heterogeneous formations with no
line of sight between two of the vehicles. Each vehicle measures
different inertial reference vectors and directions to other
vehicles. The relative direction between the two vehicles with no
line of sight cannot be measured. Moreover, rate gyros measure
the angular velocity of each vehicle. An attitude observer
is designed based on the Lagrange-d’Alembert principle of
variational mechanics, considering only kinematic models. This
design is driven by the angular velocity measurement and
a reconstructed attitude computed from the direction mea-
surements. The attitude reconstruction follows a deterministic
algorithm, which has a unique solution under appropriate
assumptions. The attitude observer is locally exponentially
stable and the estimation error is shown to converge to zero
for almost all initial conditions. The discrete-time form of
the observer is obtained for practical implementation. Lastly,
numerical simulations validate the stability and convergence
characteristics of the observer.

I. INTRODUCTION

Attitude gives the relation between different coordinate
frames, often between a body-fixed frame and an inertial
frame. It usually provides critical information for guidance,
navigation, control, and other systems.

Attitude estimation methods try to find the best value for
the attitude that fits a series of measurements taken over
time. Early methods include deterministic approaches such
as the Tri-Axial Attitude Determination (TRIAD) algorithm
[1] and solutions of the Wahba’s problem [2], of which [3]
and [4] are just examples. Estimation schemes accounting
for prior estimates have also been developed early in the
field, many based on the extended Kalman filter (EKF) [5].
Methods seeking stability and convergence properties include
nonlinear observers [6], cascade observers [7], and others
[8]. Attitude observers in the special orthogonal group can
be driven by reconstructed attitudes [9], which is the case
of this paper. Filtering schemes based on the minimization
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of an “energy” function have also been developed more
recently. These can be implemented using the Hamilton-
Jacobi-Bellman theory [10], [11], but also by applying the
variational mechanics formulation laid out in [12], such as
the work in [13]. This work follows the latter approach.

Formations are groups of independent systems collabo-
rating towards a given goal and operating within a limited
space. In this paper, a heterogeneous formation is considered.
Some of its applications are in the context of space missions,
more specifically if the distance between the elements of
the formation is large. Examples can be found, for instance,
when synthesizing large aperture telescopes or long baseline
interferometers far from Earth, or even when sampling spa-
tially disperse phenomena such as the Earth’s magnetotail
[14]. Moreover, formations can potentially accomplish the
same mission with relatively simpler systems, with increased
reliability and redundancy. Space applications have high
costs and risks, in general, and hence guidance systems of
space formations have been studied since very early in the
history of spaceflight [15]. Within formations, heterogeneous
groups, which are defined by having non-identical individual
elements [16], are of interest for their differentiation, even
though their design and analysis may be more complex.

In the framework considered in this paper, attitude al-
gebraic estimates are obtained from relative and inertial
reference observations. These directions can be provided by
vision sensors, such as large field of view position sensing
diodes [17]. To measure inertial reference directions, differ-
ent sensors can be used, such as magnetometers, sun sensors,
or others, depending on the reference that is considered. The
angular velocity is measured by rate gyros. All these sensors
are used in spacecraft attitude estimation [18].

The main contribution of this work is the design of a
locally exponentially stable attitude observer, which can
be applied to the three-vehicle heterogeneous formation by
using a deterministic reconstruction of the attitude and the
angular velocity of each vehicle, based on the Lagrange-
d’Alembert principle.

This paper is organized as follows. Section II describes
the problem at hand and the attitude reconstruction algo-
rithm. In Section III, the observer is derived based on
variational mechanics. This method includes the construction
of a Lagrangian that represents an energy-like function of
the estimation errors and the application of the Lagrange-
d’Alembert principle. The stability analysis follows and it is
shown that the observer error converges to zero for almost all
initial conditions and also that the origin is locally exponen-
tially stable. Next, a first order discrete-time implementation
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of the filter is summarized in Section IV, which is derived
from the discrete-time Lagrange-d’Alembert principle [19].
Finally, in Section V, the convergence characteristics and
performance of the observer are assessed with numerical
simulations.

II. PROBLEM STATEMENT

A. Notation

Throughout this document, scalars are expressed in regular
typeface and regular case, vectors are expressed in bold and
regular case, and matrices are expressed in bold and upper
case.

The symbol 0 represents the null vector or matrix and
I represents the identity matrix. The dimensions of these
parameters are given in subscript whenever they are nec-
essary. The set of unit vectors in R3 is denoted by S2 :={
x ∈ R3 : ‖x‖ = 1

}
. The special orthogonal group of di-

mension 3, which describes proper rotations, is denoted by
SO(3) :=

{
X ∈ R3×3 : XXT =XTX=I ∧ det (X)=1

}
.

The skew-symmetric matrix parameterized by x ∈ R3, which
encodes the cross product operator in R3, is denoted by

S (x) :=

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 ,

with x = [x1 x2 x3]
T. Therefore, S (x)y = x×y and S

−1

(.)
denotes the unskew operator, i.e. S

−1

(S (x)) = x.
The rotation matrix in SO(3) that transforms a given

vector, in R3, expressed in the body-fixed frame of vehicle
j into the inertial frame, j = 1, 2, 3, is denoted by RI

j . If
the rotation transforms a vector from the body-fixed frame
of the j-th vehicle to the body-fixed frame of the i-th vehicle
it is represented as Ri

j , instead. The rotation matrix of an
angle θ ∈ R about the axis described by the unit vector x
∈ S2 is denoted by R (θ,x), which is written as [18]

R (θ,x) := cos (θ) I+(1−cos(θ))xxT−sin (θ)S (x) . (1)

Finally, the four-quadrant inverse tangent function is denoted
by atan2 (b, a), with a, b ∈ R.

B. Problem statement

Consider a three-vehicle formation, where each vehicle
has a body-fixed coordinate frame. Each vehicle in the for-
mation is equipped with vision-based sensors, which measure
directions with respect to other vehicles in their lines of
sight. Moreover, there are sensors that measure directions to
inertial references, such as the direction to a cluster of stars,
a magnetic field, or other references whose directions, in an
inertial frame, are known a priori. Finally, it is assumed that
three orthogonally-mounted rate gyros are available in each
vehicle, which give a measurement of the angular velocity
vector. These sensors give measurements in their respective
body-fixed coordinate frames.

Each element of the formation measures its own angular
velocity, one reference direction, and directions to at least

one other vehicle. Vehicles 2 and 3, also called deputies, can-
not measure the relative direction with respect to one another,
because the line of sight between them is limited. Vehicle
1, also called chief, can measure the relative directions to
the deputies. The formation and respective measurements are
depicted in Fig. 1.

d2 d3

d1

d1/2 d1/3

d2/1 d3/1

ω1

ω2 ω3

Vehicle 2
(deputy)

Vehicle 3
(deputy)

Vehicle 1
(chief)

Fig. 1. Three-vehicle heterogeneous formation

The direction measurements are denoted by the letter d.
In the case of inertial reference measurements, the subscript
indicates the vehicle taking the measurement, whereas in
the case of relative direction measurements the subscript
indicates both the vehicle taking the measurement and the
respective target, i.e., the subscript j/k indicates that the
measurement was taken by vehicle j and it is a relative
direction pointing to vehicle k. When representing the di-
rection vectors in a coordinate frame, a left superscript
indicates the frame where the measurement is represented,
for instance, Idj denotes the inertial measurement taken by
vehicle j represented in the inertial frame. The left superscript
is omitted if the frame in which the vector is represented
coincides with the body-fixed frame of the vehicle taking the
measurement. Therefore, the four line of sight measurements
are denoted as d1/2, d2/1, d1/3, and d3/1, the measurements
of the inertial references are denoted as d1, d2, and d3,
which, in the inertial frame, are respectively denoted as
Id1, Id2, and Id3 The value of the latter is known a
priori, for example, the inertial directions to a set of stars.
Finally, the angular velocity of each vehicle is respectively
represented as ω1, ω2, and ω3. The reference frame is
indicated analogously to the direction vectors. Moreover,
the angular velocities are assumed continuous, bounded, and
unbiased. The attitude kinematics of the j-th vehicle is given
by

ṘI
j (t) = RI

j (t)S (ωj(t)) . (2)

The observer internal representation of the attitude and
the angular velocity is denoted with an hat. Furthermore, the
observer kinematics is a copy of the true attitude kinematics,
i.e.,

˙̂
RI

j (t) = R̂I
j (t)S (ω̂j(t)) . (3)

The problem addressed in this paper is the design of
attitude estimators for

(
RI

1,R
I
2,R

I
3

)
such that the error con-

verges to zero for almost all initial conditions. The estimates
of the relative attitudes

(
R1

2,R
1
3,R

2
3

)
are derived from the

inertial set, because these are defined by R1
2 = RI

1
TRI

2,
R1

3 = RI
1
TRI

3, and R2
3 = RI

2
TRI

3, respectively.
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C. Attitude measurement

The direction vector measurements and the inertial refer-
ences can be used to reconstruct both relative and inertial
attitudes of the formation, by applying the deterministic
algorithm in [20]. To summarize, such algorithm considers
the axis and angle defined by

x1 :=


d2/1−d1/2

‖d2/1−d1/2‖ , if d2/1 6= d1/2

S(d1)d1/2

‖S(d1)d1/2‖ , if d2/1 = d1/2

,

and

θ2 := atan2 (as12 , ac12)± arccos

(
ap12√

a2s12 + a2c12

)
, (4)

where as12 , ac12 , and ap12
are scalar coefficients which

depend on the measurements. Then, the relative attitude
candidate is given as

(
R1

2

)
X

= R
(
θ2,−d1/2

)
R (π,x1) .

Therefore, the respective inertial candidate
(
RI

1

)
X

results
from the TRIAD algorithm with the measurement pairs(
Id1,d1

)
and

(
Id2,

(
R1

2

)
X
d2

)
. The different candidates

result from the different signs in (4).
The analogous relative candidate

(
R1

3

)
Y

is obtained con-
sidering

(
R1

3

)
Y

= R
(
θ4,−d1/3

)
R (π,x3) with analo-

gous x3 and θ4. The respective inertial candidate
(
RI

1

)
Y

results from the TRIAD algorithm with
(
Id1,d1

)
and(

Id3,
(
R1

3

)
Y
d3

)
.

After comparing the four candidates for RI
1, the algo-

rithm selects the correct attitude candidate by checking the
candidate’s compatibility. Once the solutions for RI

1, R1
2,

and R1
3 are available, the solutions for RI

2 and RI
3 follow

immediately from RI
2 = RI

1R
1
2 and RI

3 = RI
1R

1
3.

In general, there is a unique solution. Nonetheless, in
specific configurations, there may be multiple solutions.
Thus, it is assumed that the configuration is such that the
deterministic algorithm gives a unique solution, see [21] for
the characterization of the conditions of the solution. The
observer design proposed in the sequel uses this attitude
reconstruction.

III. OBSERVER DESIGN

The ensuing attitude observer assumes that the recon-
struction of the inertial attitude of each vehicle from the
measurement set is available, taking advantage of the algo-
rithm described in the previous section. Therefore, a single
vehicle is considered throughout this section, because the
same observer can be employed individually by each vehicle.
The observer is a direct result of the application of the
Lagrange-d’Alembert principle of variational mechanics. The
method relies on a Lagrangian function, which is constructed
to represent an energy-like function of the estimation er-
rors. Then, after computing the first variation of the action
functional and adding a dissipation term, the Lagrange-
d’Alembert principle gives the dynamics of the observer
feedback term. For readability, the time dependence of the
variables is omitted in this section.

A. Lagrangian

The observer internal representation of the angular veloc-
ity, for vehicle j, is given by the difference between the true
angular velocity and a feedback term, φj , as follows

ω̂j = ωj − φj . (5)

Then, consider the kinetic energy-like function

Tj :=
mj

2
(ωj − ω̂j)

T
(ωj − ω̂j) ,

where mj is a positive weight constant. The inertial attitude
error matrix of vehicle j is given by

QI
j = RI

jR̂
I
j
T. (6)

Then, consider the potential energy-like function

Uj := pjtrace
(
I−QI

j

)
,

where pj is a positive weight constant. Finally, the La-
grangian of the formation is given by Lj = Tj − Uj .

B. First variation of the action functional

The action functional is defined as the time integral of the
Lagrangian function. Thus, its first variation is given by

δsj =

∫ tf

t0

δLj dt =

∫ tf

t0

δTj − δUj dt , (7)

where t0 and tf are the initial and final time of estimation,
respectively. The estimated inertial attitude first variation
of the j-th vehicle is given as δR̂I

j = R̂I
jS (ηj), where

ηj is a perturbation function. Moreover, from the attitude
kinematics, the first variation of the observer internal angular
velocity is given by δω̂j = η̇j + S (ω̂j) ηj [12]. Therefore,
the first variation of the kinematic term is expressed as

δTj = −mjφ
T
j (η̇j + S (ω̂j) ηj) . (8)

The first variation of the potential term is given by

δUj = pjtrace
(
R̂I

j
TRI

jS (ηj)
)
,

which, expressing R̂I
j
TRI

j as the sum of a symmetric and
skew symmetric matrix, then recalling that the trace of the
product between a symmetric and skew symmetric matrix is
zero, gives δUj = pjtrace

(
1
2

(
R̂I

j
TRI

j −RI
j
TR̂I

j

)
S (ηj)

)
.

Lastly, from trace (S (a)S (b)) = −2aTb with a,b ∈ R3,
it follows that

δUj = −pjS
−1
(
R̂I

j
TRI

j −RI
j
TR̂I

j

)T
ηj . (9)

C. Observer feedback dynamics

Consider a dissipation term given by
(
Djφj

)T
ηj ,

with Dj positive definite. Then, applying the Lagrange-
d’Alembert principle to the sum of the action functional and
dissipation terms, and recalling (7), (8), and (9), yields∫ tf

t0

−mjφ
T
j η̇j −mjφ

T
j S (ω̂j) ηj

+ pjS
−1

(Mj)
T
ηj +

(
Djφj

)T
ηj dt = 0 ,
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where Mj := R̂I
j
TRI

j − RI
j
TR̂I

j . Since the perturbation
function is zero at t0 and at tf , then integrating the first
term by parts gives∫ tf

t0

[
mjφ̇j +

(
mjS (ω̂j) + Dj

)
φj + pjS

−1

(Mj)
]T
ηjdt=0.

Finally, the fundamental lemma of the calculus of variations
results in an equation that encodes the estimator feedback
term dynamics. Thus, the observer equations are given by

˙̂
RI

j = R̂I
jS (ω̂j)

and

mjφ̇j = −
(
mjS (ω̂j) + Dj

)
φj − pjS

−1

(Mj) .

D. Observer stability

In this section, the error dynamics are studied under
the assumption that the measurements are free of noise.
In such conditions, it is shown that the error converges
asymptotically to zero for almost all initial configurations and
that the origin is locally exponentially stable. The attitude
observer performance in the presence of sensor noise is
assessed later on.

The error system dynamics, considering the j-th vehicle,
are given by

Q̇I
j = S

(
RI

jφj

)
QI

j (10a)

and mjφ̇j =− pjS
−1(

RI
j
T
[
QI

j
T −QI

j

]
RI

j

)
−
[
mjS (ω̂j) + DI

j

]
φj

.

(10b)

1) Equilibrium Points: Understanding the equilibrium
properties of the error system is fundamental to characterize
its stability. To find the equilibrium points of (10), substitute
Q̇I

j = 0 and φ̇j = 0, which implies that φj = 0 and

QI
j = QI

j
T . (11)

Therefore, all symmetric error matrices are equilibrium
points of the error system dynamics, when φj = 0. Next,
express QI

j using the Euler axis/angle parameterization, with
axis and angle respectively given by e ∈ S2 and ε ∈ R, and
rewrite (11) as QI

jQ
I
j = R (2ε, e) = I . From (1) and the

appropriate trigonometric relations, it follows that

sin (ε)
[
sin (ε)

(
eeT − I

)
− cos (ε)S (e)

]
= 0 . (12)

If sin (ε) = 0, then ε = kπ, k ∈ Z. Otherwise, if sin (ε) 6=
0, then sin (ε)

(
eeT − I

)
= cos (ε)S (e), which can only

be satisfied if all elements of e are 1 or −1. Since e is
assumed to have unit length, then such e would violate the
assumptions. Therefore, the solution for (12) is ε = kπ, k ∈
Z.

For a more compact representation of the equilibrium
points, recall that trace

(
QI

j

)
= 1 + 2 cos (ε). Hence, for

ε = 0 + 2kπ, trace
(
QI

j

)
= 3 and for ε = π + 2kπ,

trace
(
QI

j

)
= −1. Then, define

Sj :=
{(
QI

j ,φj

)
|trace

(
QI

j

)
=3, φj =0

}
, (13)

which is the desired equilibrium point (zero estimation error).
Define also the undesired equilibrium set as

Uj :=
{(
QI

j ,φj

)
|trace

(
QI

j

)
=−1, φj =0

}
. (14)

The set of all equilibrium points is the union of both sets,
which is denoted as Ej = Sj ∪ Uj .

2) Observer stability: The stability characteristics of the
observer are detailed in the following theorem.

Theorem 1: Consider the error system (10) and the equi-
librium sets Sj and Uj , defined in (13) and (14), respectively.
Assume that ωj , j = 1, 2, 3 is bounded. Then:

1) the set Uj is forward invariant and unstable relative to
the error dynamics (10);

2) the set Sj is locally exponentially stable; and
3) the error converges to Sj for almost all initial condi-

tions /∈ Uj .
Proof: The first part of the theorem can be shown with

the Lyapunov function given by

V (t) =

3∑
j=1

mj

2
φT

j φj + pjtrace
(
I−QI

j

)
.

Computing V̇ (t) leads to the conclusion that φj is bounded
by the initial conditions. Applying Barbalat’s lemma it fol-
lows that φj (t) converges to zero. Thus, Ej = Sj∪Uj is the
largest forward invariant set. Then, the linearization of the
error system (10) about a general point of Uj , considering
QI

j ≈ S (x) + R (π, e) and φj ≈ y, yields an unstable
system with both positive and negative eigenvalues.

The second part of the lemma is shown through the
linearization about the origin, i.e., Sj , considering QI

j ≈
S (x) + I and φj ≈ y. The result is an exponentially stable
linear system, and thus (10) is locally asymptotically stable
at the origin.

Finally, since the linearization of the unstable set has
both positive and negative eigenvalues, then there will be
trajectories that converge to Uj along the center stable
manifold [22]. From classical center manifold theory, those
trajectories are zero-measure. Since Uj is a zero-measure
subset of SO(3)× R3, the proof is concluded.

IV. DISCRETE-TIME OBSERVER

The implementation of the observer from the previous
section requires its discrete-time version, which is a Lie
group variational integrator (LGVI). The measurements are
assumed to be obtained at an appropriate constant rate in
discrete-time. The stability properties are the same for both
versions of the observer since LGVI maintain the properties
of variational mechanics [12].

The derivation of the discrete-time version relies on the
discretization of the action functional and attitude kinemat-
ics, which combined with the discrete-time formulation of
the Lagrange-d’Alembert principle result in

˙̂
RI

jk+1
= R̂I

jk
exp [∆tS (ω̂jk)] (15a)
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and

mjφ̇jk+1
= exp [−∆tS (ω̂jk)]

[
mjφjk

−∆tDjφjk
−∆tpjS

−1(
Mjk+1

)]
, (15b)

with j = 1, 2, 3, Mjk+1
= R̂I T

jk+1
RI

jk+1
−RI T

jk+1
R̂I

jk+1
, and

ω̂jk = ωjk −φjk
. For further details about the derivation of

these equations, see [12].

V. SIMULATION

To assess the performance of the proposed solution in
the presence of sensor noise, numerical simulations are
presented in this section. The simulations consider a three
vehicle formation configuration, as described in the problem
statement section.

A. Measurement Model

Line of sight and inertial reference measurements follow
the model of the large field of view position sensing diode
[17]. In this model, the sensor gives two coordinates, m =
[χ, ψ], whose measurement is expressed as

mm = m + n ,

i.e. the sum of the true value with a zero mean random
Gaussian noise, n ∼ N

(
0,PF

)
. The covariance in the focal

plane is given by

PF =
σ2
d

1 + (χ2 + ψ2)

[ (
1 + χ2

)2
(χψ)

2

(χψ)
2 (

1 + ψ2
)2
]
,

where σd is the standard deviation of the focal coordinates.
The transformation from the focal coordinates into the unit
vector is given by

sd =
1√

1 + χ2 + ψ2
[χ, ψ, 1]

T
,

where the focal length is assumed to be equal to one.
The angular velocity measurement follows the discrete-time
unbiased rate gyro model given by [18]

ωjm = ωj +

(
σ2
ωj

∆t

) 1
2

Nj ,

where ωjm is the angular velocity measurement, σωj
is the

standard deviation of the noise, and Nj ∼ N (0, I).

B. Motion Model

The true values of the attitude follow the kinematics (2).
Moreover, the model of the dynamics for a rigid body, which
can represent spacecraft in flight, determines the ground truth
of the angular velocity for each vehicle. Considering vehicle
j, such model is given by

ω̇j = J−1j

(
τFj
− S (ωj)Jjωj

)
, (16)

where τFj
represents an external moment applied to each

vehicle given in N m−1, and Jj denotes the moment of
inertia given in kg m2.

C. Initial conditions

In this simulation, the initial attitudes are given by

RI
1 =

 0 1 0
-1 0 0
0 0 1

 ,RI
2 =

1 0 0
0 0 1
0 -1 0

 ,RI
3 =

1 0 0
0 1 0
0 0 1

 ,

the inertial references are given by Id1 = [1 0 0]
T
, Id2 =[

0 1√
2

1√
2

]T
, Id3 =

[
1√
3

1√
3

1√
3

]T
, and the initial line of

sight relative directions are given by Id1/2 = RI
1d1/2 =[

2√
5

1√
5

0
]T

and Id1/3 = RI
1d1/3 =

[
1√
5

0 2√
5

]T
. Finally, the

initial angular velocities are given by ω1 = ω2 = ω3 =
[0.1 0.2 0.3]

T, in radians per second.

D. Setup

The configuration choice ensures that the vision-based
measurements are far from ambiguous cases [20], [21].
Furthermore, the external torque applied to each vehicle is
a sinusoidal signal given as τFj

= 0.1 sin (f∆t+ 0.1j),
with j = 1,2,3, and f=1 rad s−1. Thus, all assumptions are
satisfied.

The vehicles are assumed identical and cylindrical, with
mass, height, and radius given, respectively, by m = 120
kg, r = 1m, and h = 2m. Therefore, the moments of inertia
are given by a diagonal matrix with the entries respectively
given by m

12

(
3r2 + h2

)
, m

12

(
3r2 + h2

)
, and m

2 r
2.

For simplicity, the vision-based sensors are assumed to
have a sensor plane facing each of the body-fixed frame axes.
Then, the measurement is taken in the plane orthogonal to
the highest component of the vector. This strategy ensures
that the measurement set is always complete. Moreover, the
vision-based true values are constant in the inertial frame,
in order to easily avoid the ambiguous configurations. The
standard deviation of the measurements in the focal frame
is σd =17×10−6 rad, whereas the standard deviation of the
rate gyros is σωj

=4×10−5.
The observer initial estimates are assumed to be at the ori-

gin,
(
R̂I

j (t0) , ω̂j(t0)
)

= (I,0), for all vehicles. Moreover,
the weight constants are set to 1 and the dissipation matrices
are set to the identity, i.e mj = pj = 1 and Dj = I.

The simulation interval is 50 seconds with a time step of
0.01 seconds. In each iteration, the true values are updated
according to (2) and (16). Then, the vision sensor and rate
gyro measurements are generated following the noise models
described before. Next, from the vision-based measurements,
the deterministic algorithm gives a measurement for each
attitude. Finally, the attitude estimates are computed with
(15), first the new attitude estimate and then the new feed-
back term, by solving the respective equation numerically.
The errors result from the comparison between the estimated
attitude and the true values.

E. Results

The errors are given by the norm of the 3-2-1 sequence of
Euler angles [18], which are computed from the error matrix
(6). Therefore, Figs.2, 3, and 4 show the error magnitude for
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the inertial attitudes of the formation, which converge to an
error close to the noise standard deviation magnitude of the
sensors.
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Fig. 2. Results for QI
1
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Fig. 3. Results for QI
2
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Fig. 4. Results for QI
3

VI. CONCLUSIONS

An attitude observer was designed based on the Lagrange-
d’Alembert principle of variational mechanics, with appli-
cation to the three-vehicle heterogeneous formations. The
observer error is locally exponentially stable and converges
to the origin for almost all initial conditions. The remaining
equilibrium points are unstable and a zero measure subset
of the domain. Numerical simulations were implemented to
assess performance of the solution with sensor noise.
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