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Abstract— The early and asymptomatic stages of Alzheimer’s
Disease (AD), such as mild cognitive impairment (MCI), are
hard to classify, even by experienced physicians. Deep learning
approaches, such as convolutional neural networks (CNNs),
have been shown to help, achieving similar or even better
results. Although these methods have the advantage that
features are automatically extracted from images rather than
handcrafted, they do not allow for incorporating medical
knowledge. In this paper we propose curriculum learning (CL)
strategies for CNNs designed to diagnose healthy subjects,
MCI and AD, as a way to incorporate medical knowledge to
boost the performance of the networks for early AD diagnosis.
CL is a training strategy of the networks that tries to mimic
the way humans, in this case doctors, learn. Several CL
strategies were implemented and compared to commonly used
baseline methods. The results show that they improve the
performance, particularly that of MCI.

Clinical relevance— This work shows that the use of CL
strategies improve the diagnosis of AD, particularly at an early
stage.

I. INTRODUCTION

Alzheimer’s Disease (AD) is a progressive neurodegen-
erative disorder and one of the leading causes of death in
developed countries, since there is not a cure available yet
[1]. In the early and asymptomatic stages of AD, patients
are classified as having mild cognitive impairment (MCI).
The clinical research developed towards finding therapeutics
and a cure for AD highly depends on the ability to diagnose
patients accurately at this early stage of the disease, when it
is still possible to delay the onset of AD. AD diagnosis is
performed by medical doctors, who have access to patient’s
information: medical images, genetic data and cognitive tests,
such as Mini Mental State Examination (MMSE) and Clinica
Dementia Ratio (CDR). However, MCI stages are not easily
identified solely by following these traditional diagnostic
approaches. Consequently, AD research benefits from the use
of deep learning methods to make faster, earlier and more
accurate diagnoses [2], [3]. Currently, Convolutional Neural
Networks (CNNs), which allow features being automatically
extracted rather than handcrafted, have already been success-
ful in AD diagnosis through the classification of medical
images [3]. Nevertheless, these recent approaches still have
some drawbacks, such as not being optimized to incorporate
medical knowledge.
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In this paper, as a way to overcome this bottleneck, we
propose and evaluate novel curriculum learning (CL) strate-
gies, which take medical knowledge into account to more
accurately diagnose early AD. Our CL strategies incorporate
medical knowledge from scores of patients cognitive tests
and regions of interest (ROI) that doctors focus on when
diagnosing AD. This strategies are the first ones to use
patient’s cognitive tests, which are consistently available as
they are performed regularly, to build a learning curriculum.

II. BACKGROUND AND RELATED WORK

CL is a strategy of training machine learning models by
mimicking the way humans learn. In this strategy, a curricu-
lum is designed, which defines the order in which the data are
presented to the model: the model is first trained with easier
data (or tasks) and gradually more complex data (or tasks) are
introduced, instead of being randomly presented [4]. Usually,
the curriculum is predefined (manual strategies). However,
since defining a good curriculum manually is not an easy
task, some strategies rely on learning the curriculum from
the data, simultaneously with network training (automatic
strategies).

CL has recently been shown to improve the performance of
CNNs for several medical image classification tasks [5], [6],
[7]. Most approaches use a manual curriculum. For instance,
Tang et al. [5] built a curriculum by categorizing the severity
of patient injuries according to X-ray reports. By using
it, they improved thoracic disease diagnosis from X-rays
(AUC increased 3.19%). Haarburger et al. [6] used manually
selected lesion-patch images for pre training the model and
then fine tuned it with the whole MRI images, improving
the AUC for breast cancer diagnosis by 27%. Automatic
CL strategies have also been proposed. For example, Maicas
et al. [7] proposed a meta learning approach for breast
screening classification from DCE-MRI, which outperformed
baseline approaches (AUC improved from 86% to 90%).
Despite the recent success of CL strategies for medical image
classification, they have still not been applied to networks for
AD diagnosis.

III. METHODOLOGY

A. Data pre processing

The data used in the implemented strategies were col-
lected from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. FDG-PET images of 406 subjects at base-
line and at 12 and 24 month follow-ups were used, labeled
as Normal Control (NC), MCI or AD. The clinical profile
of the groups studied is presented in Table I. All FDG-PET



TABLE I
DEMOGRAPHIC AND CLINICAL PROFILE OF THE GROUPS STUDIED

(mean± standard deviation).

Group NC MCI AD

Number of subjects 104 207 95
Number of images 365 714 314
Age 76.9± 4.8 76± 7.3 76.5± 7.1
Sex (% M) 63.8 66.2 59.9
MMSE 29.1± 1.1 26.6± 3.2 21.6± 4.4
CDR 0.02± 0.2 0.5± 0.2 0.95± 0.5

scans were normalized, averaged and co-registered by ADNI
researchers, and were also further normalized in the range of
[0,1] and cropped from 60x128x128 to 40x98x98, to remove
most of the non-relevant area surrounding the brain.

B. Data division

To train and test the models a 5-fold cross-validation was
performed. The subjects, and not the images, were separated
into five folds, to guarantee that brain scans from the same
subject were not present in different sets, avoiding data
leakage. Five models were trained and each model used one
of those folds for testing (around 20% of the dataset) and
the remaining four for training (around 80% of the dataset).
For each train, the subjects in the training set were further
divided into subjects for training the model (80% out of
the subjects of the original training test) and subjects for
the validation of the model (20% out of the subjects of the
original training test). In the end, to convert the subjects sets
into image sets, all images from the same subject were added
to the the corresponding set, originating the final training set
(with 64% of the images), the final validation set (with 16%
of the images) and the final test set (with 20% of the images).

C. Curriculum learning strategies

Five different CL strategies were implemented, three of
which were manual and two were automatic.

MMSE strategy: This manual CL strategy consists on feeding
the network with samples ordered by difficulty. Therefore,
the network first trains with easier samples and afterwards
is challenged with more difficult ones. The MMSE score
was used to access sample difficulty. Using MMSE scores
to build a curriculum is convenient, since cognitive tests
are routinely performed in AD diagnosis, and has not been
explored before. A sample was considered an easy if its label
(NC, MCI and AD) and its corresponding MMSE score were
in agreement. For example, according to the MMSE scale,
a score between 24 and 30 is associated to no dementia
(Figure 1), and all images labeled as NC with MMSE score
in that range are considered easy samples. This strategy
corresponds to 3 rounds of training, where at the end of
the first two rounds, the last fully connected layer of the
model (which contains the information about the predicted
label) was replaced for a new randomly initialized layer. As

Fig. 1. Manually defined curriculum based on MMSE. The NC, MCI and
AD samples included in each round of training are represented and their
MMSE scores are presented in the vertical axis..

depicted in Figure 1, in the first round only the easy samples
of AD and NC (according to the MMSE) were included, to
guarantee that the discriminative features of the AD and NC
are well learned, without noisy information. Then, in the
second round, the MCI samples are added to the training
data. In the last round, the AD hard samples are added to
the training data, which now comprises all training samples.

Task strategy: In this manual approach, the samples are fed
into the network ordered by task complexity. It follows the
transfer learning proposal of [8], yet it is adapted to a CL
strategy consisting of two rounds of training: in the first
one the model is trained with only AD and NC samples
(samples from only two classes and easier to distinguish
between them), and in the second round the MCI samples are
added (samples from three classes and harder to distinguish
between them).

ROI focused strategy: This manual strategy focus on pro-
gressively adding to the training set more complex regions
of the images. The model was first trained with the dataset
images multiplied by a ROI mask (1 inside the ROI, 0
outside), then it was retrained (fine-tuned) using the complete
images. The ROIs used were manually delineated by an
experienced physician and correspond to the gyrus, cingulate
and precuneus, which match the most discriminative regions
for AD [9].

Self-paced Learning: Self-paced learning (SPL) is an auto-
matic CL strategy where data are sorted while training, based
on sample training loss [10]. A threshold, λ, is defined and
the samples with loss below (above) λ are considered easy
(hard). During training the threshold is updated, according to
a growing factor (= 1.5), from including only the lower loss
samples, to including all samples in the final epochs. This
strategy does not take prior medical knowledge into account.

Self-paced Curriculum Learning (SPCL): SPCL results from
the merge of manual CL with SPL, taking into account both
prior knowledge and the learning progress of the model dur-
ing training. In this strategy, the predetermined curriculum,
where prior knowledge is encoded, is given as input and
updated at each epoch.



In this paper, a SPCL algorithm was implemented (Algo-
rithm 1), inspired by the implementation in [11], yet adapted
to the current classification problem.

Algorithm 1 Self-paced curriculum learning algorithm
1: training samples = [s1, s2, ..., sN ]
2: γ = [γs1 , γs2 , ..., γssN ] ▷ Predetermined curriculum
3: λ(t) ▷ Growing function
4: for t in [0, E] do:
5: Train the model using training samples
6: losses = [ls1, ls2, ..., lN ] ▷ Normalized loss
7: γ = γ ⊙ losses ▷ Update curriculum
8: threshold = λ(t) ▷ Update threshold
9: updated = [ ]

10: foreach x ∈ [0, ..., N ] do:
11: if γsx <= threshold then:
12: updated = updated+ [sx]
13: end if
14: end for
15: training samples = updated
16: end for

In Algorithm 1, training samples contains the samples
the model should train with, at each epoch, and losses
contains the loss for each sample, normalized to [0,1].
Moreover, γ consists on the curriculum, which is updated
during training through element wise multiplication (⊙) with
the losses vector. N represents the total number of training
samples and E represents the total number of epochs.

The predefined curriculum, γ, and the growing function,
λ(t), given as input, were defined according to:
• γ is an array with values in [0,1], where each instance
γsi, corresponds to the weight of each training sample, si.
The easier samples have lower γsi values, since they are
the ones that should be learnt first in the training process.
Two SPCL strategies were implemented, differing only on
the predetermined curriculum. In SPCL 1, each entry of
the predefined curriculum vector was defined as: γsi =
0.33 if si is an easy AD or NC sample; γsi = 0.66 if si
is a MCI sample or γsi = 0.99 if si is a hard AD sample.
This follows the same curriculum used in the manual CL
strategy described in Figure 1: first training with easy
AD and NC samples, then MCI samples are added and
afterwards hard AD samples are also added. In the other
strategy, SPCL 2, the predetermined curriculum follows
the curriculum of the task strategy and γ is defined as:
γsi = 0.33 if si is an AD or NC sample and γsi = 0.99
if si is a MCI sample.

• The growing function, λ(t), dictates how the threshold
grows. Similarly to [12], λ(t) was defined so training
would start with only 2% of samples at the first itera-
tion, t=0, and then exponentially increase to include all
samples in 3/4 of the maximum epoch, in epoch t=75.

D. Architecture and experimental design

The CL strategies were applied to a 3D-CNN. Its ar-
chitecture consists of three convolutional blocks where the

3D convolutional layers are composed of 8, 16 and 32
filters, respectively, with ReLU activation function. Each
convolutional layer is followed by a 3D max-pooling layer
and a batch normalization layer. The output of the last
convolution block is then flattened and fed into a fully
connected classifier network, with 64 units and a softmax
layer in the end, allowing the classification into 3 classes:
NC, MCI and AD.

The experiments were performed on a single NVIDIA
GeForce GTX 1070 GPU with 8GB of memory, in a machine
with an Intel Core i7-6800HQ @ 3.40GHz CPU. To train and
test the models a 5-fold cross-validation was performed. The
subjects, and not the images, were separated into five folds,
to guarantee that brain scans from the same subject were
not present in different sets. The categorical cross-entropy
was chosen as the loss function and ADAM optimizer was
used with lr = 0.001. The models, except for focal loss and
automatic, were trained with a weighted training strategy,
where the weight of the class was inversely proportional to
the class frequencies in the train set. Also, a batch size of 16
was used, for a total number of 100 epochs, using an early
stop criterion monitoring the validation loss with patience of
50 epochs.

E. RESULTS

The CL strategies were compared to two baseline methods,
simple model and Focal loss.

Simple model: The same architecture trained without CL.

Focal loss: In this method the model was trained like the
simple model, but the loss function used was the balanced
focal loss (FL) [13]. The FL function not only deals with
class imbalance but also estimates sample complexity and
takes it into account during training. It is described by
equation 1:

FL(y, p̂y) = −α(1− p̂y)
δ ∗ log(p̂y) (1)

where y = [0, ...,K − 1] is an integer class label (K
denotes the number of classes), p̂y = [p̂0, ..., p̂K−1] is
a vector representing an estimated probability distribution
over the K classes and α represents the balance factor. FL,
according to δ, smoothly adjusts the rate at which easy
examples (correctly classified) are down weighted. In our
implementation we used α = 0.25 and δ = 2.

The overall results are presented in Table II. They show
that the use of the CL strategies improves the overall
accuracy and F1-score of the classifications, up to 4.5% and
4.3%, respectively. The simple baseline model presents the
poorest performance. The FL model, although it takes the
models feedback into account, it is still worse than all the
CL strategies and does not allow for the incorporation of
medical knowledge. The results per class are summarized
in Figure 2, where we can observe that, even though the
CL strategies decrease the accuracy of the classification of
AD and CN individually, all of them improve the MCI
classification. Although baseline methods are faster than



TABLE II
OVERALL RESULTS OF ACCURACY (ACC), F1-SCORE (F1) AND

TRAINING TIME AS (mean± standard deviation).

Model Acc (%) F1 (%) Time (min)

Baseline
Simple 82.7± 0.8 83.0± 0.8 52

FL 84.0± 0.5 83.7± 0.3 55

Manual CL
MMSE 86.2± 1.2 86.3± 1.3 174

Task 86.6± 0.8 86.6± 0.8 97
ROI 86.7± 1.8 86.8± 1.8 101

Automatic CL
SPL 85.9± 0.9 86± 0.9 43

SPCL 1 87.2 ± 1.3 87.3 ± 1.3 48
SPCL 2 86.4± 1.7 86.5± 1.8 48

Fig. 2. Bar plots representing the accuracy per class (AD, NC and MCI),
for all the implemented models.

manual CL, the automatic CL methods are even faster and
yield better results. SPCL, in comparison with SPL, requires
the extra work of building the curriculum. Nevertheless, it
complements SPL, improving its accuracy by 1.3%, in the
case of SPCL 1, achieving the best overall performance.
Regarding the manual CL methods, the ROI strategy was
the one that yielded better overall results. Still the MMSE
strategy has shown to be the best at classifying MCI, with
an MCI accuracy of 91.7(±5.1)%. The use of CL has
proven to be advantageous in all cases. Additionally, the
incorporation of medical knowledge into the process of
building the curriculum has also proven to be advantageous,
since all strategies that incorporate it yield better results than
SPL, which does not take it into account.

IV. CONCLUSIONS

This paper was, as far as we know, the first work in-
vestigating the use of curriculum learning for early AD
diagnosis from neuroimaging. It is also the first work using
the scores of cognitive tests to build a training curriculum.
Five different CL strategies were implemented, three manual
and two automatic, incorporating different kinds of medical
knowledge into the process of building the curriculum (task
complexity, cognitive test scores, ROI information).

The results obtained show that all the proposed CL
strategies improve both overall and MCI classification (early
AD) performances. Out of the manual strategies, the ROI
focused strategy was the one to yield the best overall results
and MMSE obtained the best MCI accuracy. The automatic

strategies have shown to be the best ones, allowing to obtain
the highest performances in lowest time. In fact, SPCL 1
has obtained the highest overall accuracy and F1-score. The
incorporation of medical information (ROI information and
MMSE scores) into the CL strategies has proven to be
advantageous, improving the overall accuracy, F1-score and
MCI accuracy.

The results obtained in this paper show that CL strategies,
in which the curriculum is built based on medical knowledge,
allow for better early AD diagnosis, which can contribute to
the ongoing search for treatments to prevent or delay the
onset of this devastating disease.
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