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Comparing sliding window correlation and instantaneous phase coherence in fMRI dynamic functional connectivity analysis
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Synopsis
Sliding window Pearson correlation (SW) is the most commonly used approach for estimating dynamic functional connectivity (dFC). However, instantaneous phase coherence (PC) has gained popularity as it yields frame-by-

frame dFC estimates. This work aimed to compare both metrics by analysing the mean lifetime, probability of occurrence and spatial similarity of dFC states with the canonical resting-state networks (RSNs). We found that the

state lifetimes increase in SW compared to PC and with window length, worsening the detection of RSNs for smaller datasets. These �ndings indicate that the temporal blurring induced by SW compromises the ability to detect

faster network dynamics.

Introduction
Dynamic functional connectivity (dFC) analysis of resting-state fMRI (rs-fMRI) data allows studying time-varying patterns of brain connectivity and detecting recurrent dFC states that resemble canonical resting-state networks

(RSNs) . Sliding window Pearson correlation (SW) has been the most commonly used approach for estimating dFC . It provides a straightforward and robust method, but relies on the choice of a window length limiting its

temporal resolution and statistical validity . Instead, instantaneous phase coherence (PC) measures can be computed to obtain frame-by-frame dFC estimates, maximizing temporal resolution and hence potentially allowing

the study of �ner brain network dynamics . These methods have previously been compared in terms of dFC temporal, topological and anatomical perspectives . However, the resulting dFC states were not analysed.

Moreover, PC was measured as the absolute value of the sine of the instantaneous phase di�erence, which has recently been shown to be unable to capture temporal transitions from positive to negative associations . In this

recent work , the cosine of the instantaneous phase di�erence was shown to overcome this issue and outperform other PC methods. Here, we use this de�nition of PC and compare it with SW in terms of the temporal and

spatial properties of dFC states.

Methods
We used two resting-state fMRI datasets: a large dataset from the HCP database (HCP) and a smaller validation dataset from a local study (MIG_N2Treat). The HCP-dataset includes 99 healthy adults (54 females, 20-35 years

old) . rs-fMRI data were acquired on a 3T Siemens system using gradient-echo 2D-EPI (TR/TE=720/33ms, in-plane GRAPPA-2, 2.0mm isotropic resolution, 1250-volumes, 15-minutes, eyes open) . The MIG_N2Treat-dataset

includes 8 female patients with episodic migraine without aura and 6 healthy controls (31.4±8.5 years old). rs-fMRI data were acquired on a 3T Siemens MRI system using gradient-echo 2D-EPI (TR/TE=1260/30ms, in-plane

GRAPPA-2, SMS-3, 60 slices, 2.2mm isotropic resolution, 333-volumes, 7-minutes, eyes open). Both datasets included a minimal preprocessing pipeline comprising distortion and motion correction and registration to MNI. The

MIG_N2Treat-dataset included additional spatial smoothing (3mm FWHM), ICA denoising and nuisance regression (rigid-body motion parameters, motion outliers, and average white matter and cerebrospinal �uid signals). The

pre-processed rs-fMRI data were parcellated using 90 Automated-Anatomical Labelling (AAL) atlas regions  and band-pass �ltered (0.01-0.1Hz) using a second-order Butterworth band-pass �lter. dFC was estimated with: 1) SW

using three window sizes (25TR, 35TR, 45TR) and constant step (1TR), and 2) PC de�ned as the cosine of the instantaneous phase di�erence . Afterwards, the leading eigenvector dynamic analysis (LEiDA) was applied : the

dominant patterns of dFC matrices were captured by the leading eigenvectors at each TR (explaining more than 50% signal variance on average for both SW and PC), and k-means clustering was performed to identify dFC

states for k between 3 and 15 (Fig. 1). For each k and dFC state, we computed: mean lifetime (MLT); probability of occurrence (PO); and spatial similarity with the canonical RSNs (Pearson correlation coe�cients between the

cluster centroid vector and the vectors corresponding to the canonical RSNs in AAL space : visual (VN), somatomotor (SMN), ventral attention (VAN), dorsal attention (DAN), limbic (LN), frontoparietal (FPN) and default mode

(DMN) networks).

Results
Results are presented for k-means clustering with k = 5, since this has been shown as an appropriate clustering solution to represent dFC data in previous studies . Similar results were also found for other values of k. In

terms of their spatial patterns (Fig. 2), dFC states were similar using SW and PC for the HCP-dataset, but di�ered slightly for the MIG_N2Treat-dataset. Besides state 1 (global mode), which corresponds to all brain regions with

BOLD aligned phases, a number of RSNs could be identi�ed in the subsequent states from the brain areas with BOLD phases deviating from the leading eigenvector and forming functional networks. For the HCP-dataset, VN,

VAN, FPN and DMN are recovered by PC and SW, although some deviations occur for the longer window lengths. For the MIG_N2TREAT-dataset, dFC states show notable deviations between PC and SW methods. In terms of

their temporal properties (Fig. 3), dFC states di�ered considerably between PC and SW for both datasets. The MLT of all dFC states increased with SW relative to PC and also with the window length, with a particularly strong

e�ect for the global mode. The PO of the global mode also increased slightly from PC to SW and with window length, and was accompanied by a slight decrease for the other states.

Discussion and Conclusion
We have shown that SW measures of dFC yield dFC states with signi�cantly di�erent temporal properties compared with instantaneous PC. Speci�cally, we found that the state lifetimes increased with window length,

indicating that the temporal blurring induced by SW indeed compromises the ability to detect faster network dynamics. In parallel, the probability of occurrence of the global mode increases with SW and window length, while

that of the other states decreases. The fact that dFC states identi�ed using instantaneous dFC signi�cantly resemble canonical RSNs suggests that the corresponding lifetimes and probabilities should be valid. Overall, our

results are consistent with previous reports which emphasise the relevance of keeping the higher BOLD frequencies to detect the fast evolution of dFC .
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Fig. 1. Pipeline of the analysis. A) The dFC is estimated using PC and SW; B) The leading eigenvectors (V (t)) are extracted from the dFC matrices at each time point; V (t) are C) concatenated over participants and D) organised

into recurrent dFC states using the k-means clustering algorithm. dFC states are represented by their cluster centroid vectors (V ) (i) in AAL cortical space, (ii) by the outer product V V , (iv) as bar plots, and by their (iii) dFC

matrix.

Fig. 2. dFC states obtained with k-means clustering (k=5), using PC and SW, for HCP and MIG_N2Treat datasets ordered by decreasing probability of occurrence, represented by their cluster centroid vectors (V ) in AAL cortical

space. Vc elements are placed in regions coloured according to their sign. Areas with V ≤0.1 are linked with blue edges. Signi�cant correlations with RSNs are marked with rectangles (dashed: p-value<0.05, solid: p-
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value<0.05/k) coloured according to the RSN to which the state correlates.

Fig. 3. Mean lifetime (top) and probability of occurrence (bottom) of dFC states obtained with k-means clustering (k=5), using PC and SW with three di�erent window sizes, for the HCP (left) and MIG_N2Treat (right) datasets.

Proc. Intl. Soc. Mag. Reson. Med. 30 (2022) 0995

https://submissions.mirasmart.com/ISMRM2022/Itinerary/Files/PDFFiles/images/2596_TyYrtRPuH/ISMRM2022-002596_Fig3.png

