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Synopsis
Physiological signal acquisition during fMRI may be used for multiple purposes, though it usually requires additional setup which may increase

complexity and cause subject discomfort. Since ECG is modulated by respiration, an ECG-derived respiration (EDR) may be obtained without

needing extra equipment for EEG-fMRI studies, which inherently use the ECG. In this work, EDR signals were computed for resting-state and two

respiratory challenges modulating respiration patterns, to validate their use in the MR environment. Their performance for estimating physiological

regressors of BOLD-fMRI signals was similar to the one obtained by using concurrently acquired respiratory signals.

Introduction
Physiological signal acquisition during functional magnetic resonance imaging (fMRI) may serve multiple purposes: physiological noise correction of

non-neuronal blood oxygen level-dependent (BOLD) sources, study of physiological modulations of brain activity or simply monitoring throughout

experiments . However, it usually requires additional setup, such as respiratory belts and photoplethysmography, which may increase preparation

time and subject discomfort . EEG-fMRI studies inherently require the use of the electrocardiogram (ECG) for artifact correction. Since ECG is

modulated by respiration, an ECG-derived respiration (EDR) may also be obtained without needing extra equipment . EDR estimation has been

explored for EEG-fMRI, yet it has not been validated or evaluated in situations in which the subject holds their breath or signi�cantly changes their

breathing rate . Hence, we evaluate the performance of EDR signals for explaining BOLD-fMRI during resting-state and two respiratory challenges

modulating respiration patterns, by comparing them with measured respiratory signals.

Methods
EEG-fMRI data was acquired from female healthy subjects during: 4.82min of resting state (RS) (N = 10), a slow paced breathing (SPB) task with a 2-

min 0.1Hz respiration preceded and followed by 1-min free breathing periods (N = 9) and a breath-hold (BH) task with 4.5min, comprising 4 cycles

of post-exhalation breath-hold followed by free breathing and naturally paced breathing (N=12). Some subjects performed more than one task and

only 3 performed all of them.We used a 3T Siemens Vida system (64-channel RF coil, 2D-EPI, TR/TE=1260/30ms, in-plane GRAPPA-2, SMS-3, 60 slices,

2.2mm iso resolution). Respiratory signal (Resp) was acquired with the integrated BioMatrix Sensors at 400Hz and ECG as part of the MR-compatible

EEG system (Brain Products) at 5000Hz. 

Gradient artifact correction , downsampling (250Hz) and bandpass �ltering (0.05-40Hz) were applied to the ECG. EDRs were extracted with 7

method categories: ECG envelope (ENV), heart-rate variability (HRV), amplitude modulation (AM), QRS-area modulation (QRS-AM), principal

component analysis (PCA), kernel PCA (kPCA), and empirical mode decomposition (EMD) . Several EDRs were obtained for some categories (e.g.

variations relying on di�erent ECG features), resulting in 51 EDRs. Both Resp and ECG were normalized and downsampled to 10Hz, to compute

similarity metrics : correlation (maximum over a lag of +/-5s, optimizing for phase delays, and with no lag, to mimic a real situation with unknown

optimal lags); coherence (magnitude squared coherence averaged over a respiratory frequency band). Using optimal lags, the EDR method yielding

the highest correlation with Resp for each category was selected for all tasks. 

To investigate the contribution of respiratory �uctuations measured by EDR to the BOLD-fMRI data, cardiac and respiratory regressors were

obtained from Resp and EDR (with no lag). The BOLD data was preprocessed (corrected for distortion and motion, and high-pass �ltered) and three

general linear models (GLM) were �tted to the average BOLD signal in gray matter (GM), including 6 realignment parameters and motion outliers

(for SPB, a task block was included too): Cardiac only (RETROICOR cardiac terms; cardiac rate), Physio-rRetr (Cardiac; RETROICOR respiratory terms);

and Physio-RVT (Cardiac; respiratory volume per time, RVT) .The variance explained (VE) was computed from the adjusted R  (R ).

Results
The example (Fig.1) suggests that EDR methods di�er in their ability to accommodate breathing changes, with amplitude di�erences, though their

power spectra overlap the respiratory frequency band. Using optimal lags, all EDRs are signi�cantly correlated with Resp, for RS and BH (but not for

SPB, with a smaller sample size). With no lag, this e�ect disappears and correlation di�ers signi�cantly between EDR methods more often, with PCA

performing consistently better and HRV consistently worse than at least one other method (Fig.2). This may be explained by the large scattering of

optimal time lags, which are also mostly not centered around zero (Fig3). Regarding physiological regression of the BOLD signal, both Physio

models (using Resp and EDRs) are able to �t the data, following it more closely in the case of respiratory tasks (Fig4). The performance of EDRs

when estimating VE di�ers for rRetr and RVT and is dependent on the task (Fig5). Nevertheless, results suggest that HRV is the most consistent

method.

Discussion
Although all EDR methods were similar to the ground-truth, with the optimal lag, EMD showed the highest similarity, in line with previous work .

However, the correlation was a�ected by the fact that the time lag varies a lot between subjects for some methods, representing a limitation when

a ground-truth respiration is not available. Yet, coherence values, una�ected by lags, were considered signi�cantly large. This, and the fact that

frequency features play an important role in estimating the regressors, may explain why HRV, with one of the largest coherence values for all tasks,

appeared to provide the best models. In general, though smaller, the VE obtained from the EDRs was not signi�cantly di�erent from the one

obtained with Resp, indicating the feasibility of using EDRs as a physiological regressor in resting-state EEG-fMRI as well as tasks with substantial

respiratory modulations. In fact, EDR methods performed well in the latter case, possibly representing an alternative when respiration is being

monitored as a key factor and the signal gets lost or highly corrupted.

Conclusions
Overall, EDR methods provided good Resp estimates, even in the presence of respiratory modulations, being useful for monitoring and

computation of physiological regressors.

Acknowledgements

1 1 1 1 1

1

1

2

2

3

4

3

5,6

7,8,9,10 2 2
adj

3



We acknowledge the FCT through grants PTDC/EMD-EMD/29675/2017, LISBOA-01-0145-FEDER-029675, UIDB/50009/2020 and PD/BD/150356/2019.

References

1. Bulte, D., & Wartolowska, K. (2017). Monitoring cardiac and respiratory physiology during

FMRI. NeuroImage, 154, 81–91. https://doi.org/10.1016/j.neuroimage.2016.12.001

2. Varon, C., Morales, J., Lázaro, J., Orini, M., Deviaene, M., Kontaxis, S., Testelmans, D.,

Buyse, B., Borzée, P., Sörnmo, L., Laguna, P., Gil, E., & Bailón, R. (2020). A Comparative Study

of ECG-derived Respiration in Ambulatory Monitoring using the Single-lead ECG. Scienti�c

Reports, 10(1), 5704. https://doi.org/10.1038/s41598-020-62624-5

3. Abreu, R., Nunes, S., Leal, A., & Figueiredo, P. (2017). Physiological noise correction using

ECG-derived respiratory signals for enhanced mapping of spontaneous neuronal activity

with simultaneous EEG-fMRI. NeuroImage, 154, 115–127.

https://doi.org/10.1016/j.neuroimage.2016.08.008

4. Niazy, R. K., Beckmann, C. F., Iannetti, G. D., Brady, J. M., & Smith, S. M. (2005). Removal of

FMRI environment artifacts from EEG data using optimal basis sets. NeuroImage, 28(3), 720–

737. https://doi.org/10.1016/j.neuroimage.2005.06.067

5. Widjaja, D., Varon, C., Dorado, A., Suykens, J. A. K., & Van Hu�el, S. (2012). Application of

Kernel Principal Component Analysis for Single-Lead-ECG-Derived Respiration. IEEE

Transactions on Biomedical Engineering, 59(4), 1169–1176.

https://doi.org/10.1109/TBME.2012.2186448

6. Varon, C., & Van Hu�el, S. (2015). ECG-derived respiration for ambulatory monitoring.

2015 Computing in Cardiology Conference (CinC), 169–172.

https://doi.org/10.1109/CIC.2015.7408613

7. Glover, G. H., Li, T.-Q., & Ress, D. (2000). Image‐based method for retrospective correction

of physiological motion e�ects in fMRI: RETROICOR. 6.

8. Bianciardi, M., Fukunaga, M., van Gelderen, P., Horovitz, S. G., de Zwart, J. A., Shmueli, K.,

& Duyn, J. H. (2009). Sources of functional magnetic resonance imaging signal �uctuations in

the human brain at rest: A 7 T study. Magnetic Resonance Imaging, 27(8), 1019–1029.

https://doi.org/10.1016/j.mri.2009.02.004

9. Birn, R. M., Murphy, K., & Bandettini, P. A. (2008). The e�ect of respiration variations on

independent component analysis results of resting state functional connectivity. Human

Brain Mapping, 29(7), 740–750. https://doi.org/10.1002/hbm.20577

10. Chang, C., Cunningham, J. P., & Glover, G. H. (2009). In�uence of heart rate on the BOLD

signal: The cardiac response function. NeuroImage, 44(3), 857–869.

https://doi.org/10.1016/j.neuroimage.2008.09.029

Figures



Figure 1 - Respiratory signals for the three tasks in an illustrative subject and the corresponding EDRs shifted by the optimal lag, over 30 s, during a

representative part of the task (Top); Power spectra of the respiratory signal and the corresponding EDRs for the whole signal (shaded area

corresponds to the full width at half maximum of the power) (Bottom). The strong respiratory modulations in the SPB and BH tasks can be

appreciated in the substantially di�erent amplitude and spectral pro�les.

Figure 2 - Distributions across subjects of the similarity metrics for each EDR method (x-axis, colours): Correlation (Optimal lag: maximum cross-

correlation over a lag of +/-5s; No lag: cross-correlation without considering the lag, i.e., a lag of 0 s); and Coherence. Stars (*) inside each plot

denote signi�cant di�erences (Kruskal-Wallis test, corrected p-values); * under each plot denote values signi�cantly larger than zero (Wilcoxon

signed-rank test, corrected p-values).

Figure 3 - Distributions across subjects of the time lag with maximum cross-correlation over a range of +/-5s for each EDR method (x-axis, colours),

for each task. The scattering of optimal time lags varies across methods and is larger for respiratory challenges, particularly for SPB.

Figure 4 - GM mean BOLD percent signal change (%) in each task, for an illustrative subject (the same as before): original preprocessed BOLD signal

and respective model �t using only cardiac regressors and adding either RETROICOR respiratory terms or RVT, obtained from Resp and EDRs (using

the method with the largest median of VE for each task, presented in the next �gure).
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Figure 5 - Distributions across subjects of the GM Variance Explained (%VE) by the respiratory terms (VE -VE )  with Physio additionally

including the RETROICOR respiratory terms (Top) or RVT (Bottom) for Resp and each EDR method (x-axis, colours). Stars (*) inside each plot denote

signi�cant di�erences (Kruskal-Wallis test, corrected p-values); * under each plot denote values signi�cantly larger than zero (Wilcoxon signed-rank

test, corrected p-values).
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