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AbstractÐ Generation of promising hand and finger poses
for multi-fingered robotic hands cannot be simplified as the
2-dimensional model for grippers. Current approaches rely
on heuristics that reduce the search space while ignoring a
large number of candidates. We present a generative model
that samples 6DoF poses for several types of precision grasps.
Similarly to previous works, we start with a geometric heuristic
to gather data. However, with a large enough samples we are
able to sample grasp poses that are by a large margin more
successful than using the heuristics. The model consists of 3
cascaded generative models that are based on the conditional
Variational Auto-Encoder framework, and takes as input the
desired grasp type, the object label, and the object’s size. It
generates a grasp posture, meaning the configuration of the
fingers of the robotic hand, and a 6DoF pose. Our cascaded
model samples first the finger joint configuration, followed by
the Cartesian position of the object and finally the rotation of
the object, our sampler divides the 6DoF in simpler problems,
which lead to more successful grasps. In our experiments we
show that our model improves the percentage of successful
grasps sampled compared to the heuristic and compare several
variants of the model to support our design choices, showing
the benefits of the cascaded sampling.

I. INTRODUCTION

Humans are able to grasp and handle objects with high

competence even from a small age. That gives them the

ability to directly manipulate their environment, use tools

and cooperate efficiently [1]. As robots become ubiquitous

in every-day life we will need them to be able to handle

objects the same way that humans do, as most environments

and objects are constructed in a way that facilitates the use

from humans. Humans use different grasp types to grasp

objects depending on the task to be performed, e.g. for

handing over an object or for using it. Precision grasps are

particularly used for handling small objects or performing

precise movements [2], [3]. In precision grasp types the

object is stabilized in the opposition created between the

fingertips of two or more fingers. Inevitably dexterous robots

should be able to perform precision grasps.

Grasping objects with dexterous robotic hands is a long

standing research problem. Finding a finger configuration

and a hand pose to achieve a specific grasp is extremely

difficult, mainly due to the complexity that stems from the

high number of degrees of freedom that anthropomorphic

hands usually have. Ideally a grasp model should consider

grasp types, which usually correspond to the type of task

being executed. But modeling this kind of information in
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Fig. 1. Example grasps for each grasp type used in this work, executed
with the Shadow Robot Hand. From left to right: tripod, palmar pinch,
parallel extension, writing tripod, lateral tripod, and tip pinch.

dexterous hands increases the complexity of the model.

Recent advances on in-hand manipulation [4] have shown

that low-level manipulation actions emerge by applying rein-

forcement learning in simulation. However, fine manipulation

of objects of various shapes is still a very challenging

problem, which is usually addressed by defining precision

grasps.

To this end, we investigate the 1st step of this complex

behaviour: sampling grasp poses for six precision grasp types

using multi-fingered robotic hands. The goal of this work

is to develop a grasp sampler that can generate the finger

configuration and the hand pose for grasping simple shaped

objects with a dexterous robotic hand using the following

six precision grasp types: tripod, palmar pinch, parallel

extension, writing tripod, lateral tripod, and tip pinch (Figure

1). Our model takes as input the grasp type that we want the

robot to use, the 6DoF pose of the object and an estimation

of the size of the object to be grasped and generates a grasp

posture (i.e. the joint angles of the fingers) and a grasp pose

(i.e. a three dimensional position and a rotation) for the hand

base.

We follow a data-driven approach, in which we initially

use a geometric heuristic to collect a large number of

successful grasp examples in a simulated environment. Our

heuristic is based on observations on the way humans tend to

grasp objects using precision grasps, e.g. the location on the

object from which it is grasped. We then use this dataset to

train three conditional generative models: one to sample the

finger configuration, one to sample the hand’s position, and

one to sample the hand’s rotation. Each generative model is

based on the conditional Variational Auto-Encoder (cVAE)

framework. The model takes as input the grasp type that

we want to perform, the object label, and an estimation

of the grasp/object size and it generates a candidate object

pose relative to the hand. Given then the 6DoF pose that

the object is in we can compute a rigid transform for the

hand base such that their relative pose remains fixed. In our

experiments, we show the improvement in the percentage



of successful grasps generated by the model compared to

the grasps computed using the heuristic. We also compare

different variants of the model to show how our design

choices affect the performance in grasp sampling.

In summary our contributions are the following:

• We present a geometric heuristic to generate candidate

grasp poses for six precision grasp types. Our heuristic

is based on observations on the way humans grasp,

such as which fingers joints use for opposition and the

position of the object.

• We develop a grasp pose sampling model, which gen-

erates promising precision grasps for a multi-fingered

robotic hand. The grasp generation process is condi-

tioned on the grasp type, the grasp size, the object label

and the object size.

• We perform several ablation studies to support our

design choices for each model.

II. RELATED WORK

Grasp sampling methods are usually divided in analytic

or geometric methods and data-driven or learning-based ap-

proaches. Analytic methods require a model of the object and

try to find contact points such that some grasp quality metric,

like force closure, is optimized. These methods are based on

accurate contact modeling, hand-crafted costs functions and

time-consuming optimization processes. On the other hand,

data-driven approaches collect datasets of successful grasps

and train machine learning models to either: 1) approximate

some success metric such as the probability of successfully

grasping an object, 2) directly generate a candidate grasp

using some kind of generative model, or 3) learn an end-to-

end solution, like reinforcement learning where the output is

a sequence of actions. For an overview of both analytic and

learning-based approaches we refer the readers to the reviews

[5], [6], [7]. In this work we follow a data-driven approach,

so we focus our review on this category of methods.

In [8] they first generate a set of candidate grasp poses and

then a network estimates the probability that each grasp for

a given grasp type would be successful. Although this model

generates grasp poses for multiple grasp types, the pose

generation method was designed for a gripper and would

be difficult to be adapted for human-like robotic hands. In

[9] they present a network to generate dexterous grasps from

point clouds. The network is trained with ground truth grasps

by minimizing a consistency and a collision loss. After the

network predicts a candidate grasp pose, a refinement process

takes place where an optimization algorithm searches close

to the proposed pose for a better candidate. In [10] they

improved this model by adding a differentiable loss function

that encodes a grasp quality metric and is optimized directly

to find better grasp candidates. Because their model directly

optimizes for each DoF of the hand, the resulting postures do

not encode any grasp type information. In [11] they develop

an architecture that evaluates the grasps proposed by a gener-

ative product of experts (PoE) model presented by [12], [13].

The PoE uses an object model, a contact model and a hand

configuration model, while the evaluative architecture takes

as input the grasp and a depth map of the scene and estimates

the grasp success probability. Finally simulated annealing

is performed to improve the grasp success probability. This

model also does not generate grasps based on specific grasp

types. In [14] they present a probabilistic graphical model to

sample dexterous grasps which explicitly models the grasp

type. They use maximum likelihood estimation to optimize

the model on a set of successful grasps. This work can

generate power and precision grasps but they model only

one finger configuration for each grasp type. In addition they

need a different grasp controller for each grasp type. In our

work we focus only on precision grasp types but we model

six different configurations and we control them using only

one model.

Our work is inspired by the work presented in [15] where

a cVAE is used to sample 6DoF grasp poses for a robotic

gripper. They generated data by using a heuristic to estimate

candidate grasp poses and simulated them in a physics

engine. Using a generative model like the cVAE has the

advantage that you can sample diverse poses that cover many

possible ways that an object can be grasped. This approach

was recently applied to multi-fingered hands in [16], [17],

[18]. In [16], they train a cVAE, with successful grasps

executed in simulation, to generate candidate grasps. The

model was conditioned on the Basis Point Set encoding of a

partial point cloud observation of the object. In addition, they

train a grasp evaluator to predict the probability of success

of each grasp, and use it to filter out low ranking grasps.

In [17], a cVAE model is trained from grasps collected

in simulation. They use point completion to complete the

partial point cloud of an observed object, and then a PointNet

architecture to extract a representation from the complete

point cloud. This representation is used in the cVAE as a

conditional variable. Finally they use a refinement procedure

to optimize the contact points of the hand. In [18], a cVAE

model, that is conditioned on the point cloud of object, is

used to generate contact points on the objects surface. Then

an optimization process computes the optimal finger joint

angles to place the fingers on the generated contact points.

In our work, we propose a factorised model for generating

candidate grasps. We use three cascaded cVAE models:

one for generating the finger configuration, one for the

hand position and one for the hand rotation. Each model

is conditioned on the output of the previous model. This

way we can generate multiple grasp poses for each finger

configuration, in contrast to previous approaches that all

the modalities where generated by one model. In addition,

previous works where conditioning the cVAE models on

some representation of the point cloud observation, we use

the the label of the object and the size information. This way

we can choose the side of the object that we want to grasp

it from. Finally in our work we explicitly model the grasp

type information as a conditional variable to the model. This

way, during inference we can generate grasps of the grasp

type we want to use.



III. BACKGROUND

In this work, we use a conditional Variational Auto-

Encoder to model the grasping distributions. The cVAE

consists of an encoder and a decoder network. The encoder

takes as input a data point x and a corresponding conditional

variable c and produces a latent point z. The decoder

takes as input a latent point z and a conditional variable

c and generate a new data point x. The encoder models

the probability distribution q(z|x, c), while the decoder the

probability distribution p(x|z, c). We train this model by

maximizing the evidence lower bound (ELBO):

Lθ,φ(x) = Eqφ(z|x,c) [log pθ(x|c, z)]−DKL (qφ(z|x, c)∥p(z))

The first term corresponds to the mean squared error

between the reconstruction and the input, while the sec-

ond minimizes the Kullback-Leibler divergence between the

posterior of the model distribution q(z|x, c) and the prior

distribution p(z).

IV. METHODS

The goal of this work is to develop a grasp sampler

for simple shaped objects that can sample multiple grasp

postures (i.e. finger joint angles) and 6DoF grasp poses (i.e.

position and rotation of the hand) using precision grasp types.

To achieve this we train three conditional generative models:

a Posture Sampler, a Position Sampler, and a Rotation

Sampler. The models are trained on a dataset of successfully

executed grasps collected in a simulated environment. In

this section we will first present the procedure that we used

to generate our training data and the assumptions that our

model is based on, and then we will present the details of

the generative models.

Data generation process. Here we present the heuristic

that is used to generate a candidate grasp pose for a given

object and grasp type. The process is divided into three main

parts: first a candidate grasp posture belonging to a specified

grasp type is generated, second a candidate grasp pose is

calculated, and third the grasp is executed and evaluated.

We assume that we already have a small dataset with 500
grasps, labeled with grasp type information for each grasp.

With this dataset we train a initial cVAE model conditioned

on the grasp type of each grasp which we will use to generate

candidate grasps. This model is used only during the data

generation procedure and later will be discarded. We use the

following six precision grasp types, from the grasp taxonomy

proposed in [2]: tripod, palmar pinch, parallel extension,

writing tripod, lateral tripod, and tip pinch. These grasp

types are achieved by stabilizing an object in the opposition

that is defined between at least two joints, called opposition

joints. This opposition is usually defined between joints in

the thumb and the index finger and is called pad opposition

[19]. The axis connecting these joints is called opposition

axis. So for each grasp type a pair of opposition joints is

determined. For the tripod, the writing tripod, the lateral

tripod, and the tip pinch the opposition is created between

the thumb tip and the index tip. For the the palmar pinch

grasp, and the parallel extension the opposition is created

between the thumb tip and the index middle. The first step

then, is to generate a candidate grasp posture for a given

grasp type with the initial cVAE and select the corresponding

opposition joints. The second step is to calculate a candidate

grasp pose. We break down this procedure into two phases:

first we calculate the 3D position of the object and then the

rotation. Instead of generating a candidate grasp pose as the

position and rotation of the hand we assume that the hand is

fixed in the origin of the coordinate axis and we generate a

candidate pose for the object in the hand’s reference frame.

Based on the opposition joints selected for the given grasp

type, we use forward kinematics to calculate the Cartesian

positions of the rigid bodies of the opposition joints, when

the grasp is executed. Then the object’s position is calculated

as the middle point between the two opposition rigid bodies.

Various studies have found that humans grasp objects close to

their center of mass for better stability [20], [21]. Finally, the

rotation of the object is calculated such that one of the three

canonical axis of the object is aligned with the opposition

axis. We can see an example of a candidate grasp generation

in Figure 2.

During the third step the object is placed in the calculated

pose and the grasp is executed. The hand then performs a

shaking movement to eliminate unstable grasp poses and

the gravity is activated in the environment. If the object

is still in the hand 5 seconds after gravity is activated the

grasp is considered successful and the grasp type, the grasp

posture, the grasp size, the object pose, the object type, and

the object size is recorded. The grasp size is calculated as

the distance (in cm) between the thumb tip and the index tip

when executing the grasp without an object. The object size

is calculated as the distance between the thumb tip and the

index tip when executing the grasp with an object present.

With this process we collect a large dataset of dexterous

grasp postures executed on each object and using various

grasp types.

Grasp sampler. Based on this dataset, the second goal of

this work is to develop a generative model for sampling dex-

terous precision grasps given an object’s pose, the object’s

type and the size of the side of the object that we want to

grasp. More specifically we want to learn a sampler for the

distribution of the successful grasps:

P (G | Gt, Gs, Ot, Os)

where G = (Gc, Gpos, Grot) is a successful grasp and

consists of a grasp configuration Gc, representing the finger

joint angles, and the three dimensional position of the hand

Gpos, and the rotation Grot for the hand base. The sampler

is conditioned on the properties of the desired grasp: the type

of the grasp Gt, and the size of the grasp Gs, and on the

properties of the object that we want to grasp: the type of

the object Ot, and the size of the object Os.

Instead of directly modelling the full distribution:

P (G | Gt, Gs, Ot, Os) = P (Gc, Gpos, Grot | Gt, Gs, Ot, Os)



Fig. 2. Example for the process of generating a candidate grasp. a) The initial posture of the hand before grasping. b) A tripod a grasp posture is
sampled from the initial cVAE model. The rigid bodies for the opposition joints can be seen in red. The blue line connecting them is the opposition axis
and the green point is the middle point where the object will be placed. The grasp size recorded is the length of the blue line. c) The object is placed in
the middle point and the blue axis of the object is aligned with the opposition axis. d) The grasp is executed, then the hand performs a shaking movement
and gravity is activated. If the object remains in the hand the grasp is considered successful. The object size recorded is the current distance between the
rigid bodies of the thumb and the index tip.

Fig. 3. Schematic representation of the Grasp Sampling procedure. The model consists of three individual samplers: the Postural Sampler that generates
grasp postures (finger configurations), the Positional Sampler that generates the object’s Cartesian position, and the Rotational Sampler that generates the
object’s rotation.

with one cVAE model as was done in previous works, we

train three individual samplers: the Posture Sampler, the

Position Sampler, and the Rotation Sampler, where each

sampler is using a cVAE architecture. We show in the

experiments that this approach leads to a model with higher

performance. The Posture Sampler models the probability

distribution:

P (Gc | Gt, Gs, Ot)

which is trained on all the successful grasp postures executed

on the objects. It is conditioned on the grasp type label,

the grasp size, and the object type. This model is based

on the model for extracting conditional postural synergies,

presented in [22]. The only difference is that in this work

we also incorporate the grasp type as a conditional variable

in the model. This way we can generate grasps of specific

grasp types. The Position Sampler models the probability

distribution:

P (Gpos | Gc, Gt, Gs, Ot, Os)

and is trained on the 3D Cartesian positions of the objects.

It is conditioned on the grasp posture, the grasp type label,

the grasp size, the object type and the object size. Finally,

the Rotation Sampler models the probability distribution:

P (Grot | Gpos, Gc, Gt, Gs, Ot, Os)

and is trained on the rotations of the objects, which are repre-

sented by quaternions. It is conditioned on the grasp posture,

the grasp type label, the grasp size, the object type, the

object size, and the Cartesian position. The Rotation sampler

generates the mean direction and concentration parameter of

a von Mises-Fisher distribution [23], which is then used to

sample a rotation. We can see a schematic representation

of the entire model in Figure 3. To obtain samples from the

cascaded samplers, we provide the grasp type, the grasp size,

the object type and the object size. Having sampled the 6DoF

pose of the object, with the assumption that the hand is in

the origin of the coordinate axis, we can calculate a pose

of the hand for a given object pose that keeps their relative

pose fixed. So given an object pose, a grasp type and a grasp

size we can sample a hand pose to achieve this grasp.

V. EXPERIMENTAL RESULTS

Set-up. In our experiments we use the IsaacGym simulator

with the PhysX physics engine [24]. IsaacGym is a GPU

accelerated simulator that can run multiple environments in

parallel. We collected 270,000 grasps in total. The process

took 10 hours on a NVIDIA GeForce RTX 3070. To train our

models it takes around 20 minutes and to sample 1000 grasps

0.05 seconds. We used the Shadow Hand that has 24 joints.

For the objects we used three boxes, three cylinders and three

spheres of different sizes, which are depicted in Figure 4.

The initial cVAE model, that generated candidate grasps in

the dataset generation process, was trained on the dataset

from [25], which contains 438 precision grasps with the



Fig. 4. The objects use in our experiments.

Shadow Hand that were collected by a human teleoperating

the robotic hand through a data glove. It is conditioned on

only the grasp type information without any information

about the size of the grasp. For each grasp we record the

grasp posture (i.e. the joint angles) in degrees, the grasp type,

the grasp size (in cm), the object type, the object side size (in

cm), the position and the rotation of the object. The grasp

size for a given grasp posture is defined as the Euclidean

distance between the thumb tip and the index tip when the

grasp is executed without an object in the hand. The object

size is also defined as the Euclidean distance between the

thumb tip and the index tip but when the grasp is executed

with an object in the hand.

Grasp Sampling Procedure. During test-time, to sample

a new grasp we need the following information: 1) the grasp

type that we want to perform which is one-hot encoded into a

six dimensional vector, 2) the object type which is also one-

hot encoded into a nine dimensional vector, 3) the actual size

of the side of the object that we want to grasp it from. We

use the actual size to compute the grasp size and the object

size, as follows:

grasp size = actual object side size − 0.5(cm)

object size = actual object side size + 1.0(cm)

That is because when we record the object size we

calculate the Euclidean distance between the thumb tip and

the index tip which includes the size of the rigid bodies of

the simulated robotic hand. The grasp size is reduced by a

value of 0.5cm, because we do not have any force feedback

and we want the grasp to be firm enough to stably grasp the

object.

Our model then generates: 1) the joint angles of the robotic

hand, which are in degrees, 2) the position of the object with

respect to the base of the hand, which is in centimeters and

normalized to lie inside a unit sphere centered in the origin,

3) the rotation of the object, which is a unit quaternion.

Given then the object’s actual pose in the world frame we

can compute the rigid transform of the hand such that the

hand-object’s relative transform remains fixed.

Evaluation metric. As an evaluation metric we used the

percentage of successful grasps sampled and executed from

each model. As our baseline we use the heuristic introduced

in Section IV that generates object poses based on the

opposition joints of each grasp. We present several variants

of the grasp sampler model and compare them to support our

choices on how we developed our final model. To compute

the success rate for each model, we sample 500 grasps for

each object and for each grasp type, totaling 27,000 grasps.

TABLE I

AVERAGE PERCENTAGE OF SUCCESSFUL GRASPS.

Model Success Rate

Model 1 76.89

Model 2 79.41

Model 3 90.90

Heuristic 58.10

We execute the grasps, shake the hand, activate gravity and

finally compute the percentage of successful grasps. We show

the grasp success rate for all objects.

Quantitative Results. In our first experiment we investi-

gate the advantage of using one model for each of the grasp

posture, the object position and the object rotation, where

each model is a cVAE sampler, compared to using one model

to generate all the modalities as well as using two models:

one for the grasp posture and one for the pose (position and

rotation). All models take as input the grasp type, the grasp

size, the object type, and the object side size. We can see

the results of the average grasp success rate for each model

in Table I.

Model 1 uses one cVAE sampler to represent all modali-

ties, which models the distribution:

P (Gc, Gpos, Grot | Gt, Gs, Ot, Os)

Model 2 uses one cVAE for the grasp posture distribution,

and one for the object pose distribution:

P (Gc | Gt, Gs, Ot, Os)

P (Gpos, Grot | Gc, Gt, Gs, Ot, Os)

Model 3 uses one cVAE for the grasp posture distribution,

one for the object position distribution, and one for the object

rotation distribution:

P (Gc | Gt, Gs, Ot, Os)

P (Gpos | Gc, Gt, Gs, Ot, Os)

P (Grot | Gpos, Gc, Gt, Gs, Ot, Os)

In Table I we also see the success rates for the heuristic

presented in Section IV. The model that uses one cVAE

model for each modality outperforms all the other models.

This suggests that factorising the grasp sampling and mod-

elling each distribution separately describes our data better.

In our second experiment we investigate the utility of using

the von Mises-Fisher distribution in our output layer of the

rotation sampler network compared to having a non-linear

layer and a normalization operation to transform the vector

to a unit vector. The von Mises-Fisher (vMF) distribution

is a distribution that allows to sample points on 4D spheres

that are a natural representation for quaternions. We can see

the results of the average grasp success rate for each model

in Table II. The model which uses the vMF distribution to

sample possible rotations outperforms the one with the neural

network output layer.



Fig. 5. The grasp poses collected during the data generation process for the medium box, for each grasp type. Each 6DoF grasp pose is represented by
its coordinate frame, where each color represents a different axis.

TABLE II

AVERAGE PERCENTAGE OF SUCCESSFUL GRASPS.

Model Success Rate

Model with NN 86.57

Model with vMF 90.90

Finally we investigate the effect of each conditional vari-

able on the performance of the model. To this end, we trained

the model with the three cVAE samplers using different

subsets of the conditional variables for the Position and

Rotation Samplers. The grasp posture sampler was kept the

same in all model variants and it was conditioned on the

grasp type, the grasp size and the object type. Table III

shows the conditional variables used for the Position and

Rotation Sampler for each model variant in the first and

second column respectively and in the third column is the

average grasp success rate for each model.

The model variants 1-4 show the effect of different combi-

nations for the size variables. We notice that the results are

similar for all models indicating that the size information

that we will give to the model, either the grasp size or

the object size, is not a significant factor to the model’s

performance. This makes sense since these two values are

linearly dependent. The model variant 5 shows that if we

completely remove the size information from both models

then the performance decreases as well. The model variant 6

shows that removing the grasp type information does not

affect much the performance of the model. This can be

interpreted by the fact that the grasp position is mostly related

to the finger tips of the hand which is encoded in the grasp

posture variables, while the rotation is related with the size

of the side of the object that we want to grasp. Finally, the

model variant 7 does not encode any information about the

object type, and is the worst performing model in terms

of average successful sampled grasps, and highlights the

importance of that parameter. In addition we can notice, that

all models perform similarly on the sphere objects, where

the rotation of the object does not affect the result since

it is totally symmetric. Nevertheless, the model with the

best performance is model variant 4 which uses the grasp

and object type information, and the size of the object as

conditional variables.

Qualitative Results. In Figure 5, we show the 6DoF grasp

poses collected in the data generation process for the medium

TABLE III

CONDITIONAL VARIABLES USED FOR EACH MODEL VARIANT AND

SUCCESS RATE.

Position Sampler Rotation Sampler Success

Rate

Variant 1 Gc, Gt, Gs, Ot, Os Gpos, Gc, Gt, Gs, Ot, Os 90.90

Variant 2 Gc, Gt, Gs, Ot, Os Gpos, Gc, Gt, Ot, Os 90.57

Variant 3 Gc, Gt, Gs, Ot Gpos, Gc, Gt, Ot, Os 90.36

Variant 4 Gc, Gt, Ot, Os Gpos, Gc, Gt, Ot, Os 91.54

Variant 5 Gc, Gt, Ot Gpos, Gc, Gt, Ot 81.68

Variant 6 Gc, Gs, Ot, Os Gpos, Gc, Gs, Ot, Os 90.78

Variant 7 Gc, Gt, Gs, Os Gpos, Gc, Gt, Gs, Os 71.77

sized box for each grasp type. We see that each grasp type

has a unique distribution of poses associated with it, that

result from the shape of the object and the structure of the

grasp type. In Figure 6, we see grasps sampled from our

model for different objects. Each grasp is using a different

grasp type. Our grasp sampling model could be easily applied

in subsequent grasping tasks such as object pick-up. In that

case additional steps would require to check for collisions

for a sampled grasp pose, and plan the reaching of the

end-effector to the specific pose which can be handled by

trajectory optimization techniques.

Limitations and Future Work. Although our model is

able to successfully generate precision grasps for a dexterous

hand it produces only position commands (joint angles)

without taking into account any force feedback thus is not

able to adapt the grasp posture to uncertainties. Integrating

additional modalities such as tactile feedback could poten-

tially improve the application of our model in real-world

scenarios. Finally, in this work we assume that all grasp

types can be applied on each object. In reality humans use

information related to the task that they want to perform in

order to choose which grasp type they will use.

VI. CONCLUSION.

In summary, we presented a generative model that samples

6DoF grasp poses for six precision grasp types. We factorised

the grasping process into three stages, and we trained a

different model instance for each one. Our final model

consists of three cascaded samplers: one for generating the

finger configuration, one for generating the hand’s position,

and one for generating the hand’s rotation. This way we

are able to generate multiple grasp poses for each finger



Fig. 6. Example grasps sampled from our model. Each row depicts a
different grasp attempt. In the first column the hand is in the pose sampled
by our model and the fingers in the pre-grasp position. In the second column
the grasp is executed. In the third column the object is lifted to verify that
the grasp is stable. The grasp types from the top row to bottom are the
following: tripod grasp, palmar pinch, pinch, lateral tripod.

configuration. We also presented a geometric heuristic for

calculating candidate grasp poses for each precision grasp,

which we used to collect our dataset. Finally we demon-

strated the benefits of the cascaded sampling approach in

our experiments and supported our design choices based on

quantitative results.
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