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ABSTRACT

The detection and classification of breast cancer lesions with
computer-aided diagnosis systems has seen a huge boost in
recent years due to deep learning. However, most works
focus on 2D image modalities like mammography and ultra-
sound. Dealing with 3D magnetic resonance imaging (MRI)
data adds news challenges, such as data insufficiency and
lack of local annotations provided by experts. To handle
these issues, this work proposes an new two-stage framework
based on deep multiple instance learning, which requires
only global label (weak supervision) and provides: 1) classi-
fication predictions for the whole volume and for each slice;
and 2) 3D localization of lesions, through the selection of
consecutive slices and patches that most likely contain the
lesion (heatmaps). Results show that the proposed approach
achieves classification performances that are competitive
with the state of the art, and a qualitative assessment of the
heatmaps illustrates the effectiveness of this approach in
finding the malignant lesion in the images.

Index Terms— Breast Cancer,Magnetic Resonance Imag-
ing, Multiple Instance Learning

1. INTRODUCTION

Breast Cancer (BC) is the most prevalent form of cancer in
women and accounts for a significant number of deaths world-
wide 1. Although many countries have been able to reduce
mortality rates through screening programs, radiologists are
currently overwhelmed and their increasing workload is a ma-
jor cause of burnout [1]. This fostered research on computer-
aided detection and diagnosis systems (CADs), and several
systems have already been developed specifically for breast
cancer (BC) [2]. These systems are becoming increasingly
popular as second readers, to help radiologists identify all le-
sions while simultaneously reducing their workload [3].

However, most approaches are designed for mammogra-
phy [4] and ultrasound [5]. By contrast, the body of work ded-

1World Health Organization, “Breast cancer facts,” https://gco.iarc.fr/ to-
day/data/factsheets/cancers/

Fig. 1. Overview of the proposed Deep MIL framework.

icated to the automatic analysis of magnetic resonance imag-
ing (MRI) for BC is considerably smaller [6], despite being
the recommended imaging modality in women with higher
risk of developing breast cancer [7]. Two reasons that could
explain this are: 1) the need for large datasets to properly train
deep learning-based systems for 3D data; and 2) the lack of
large annotated datasets, especially in regards to the location
of lesions that justify the diagnosis, since manually annotat-
ing 3D data is substantially more challenging and demanding.

This work overcomes the above limitations by addressing
the detection and diagnosis of breast cancer in a weakly-
supervised scenario. The proposed system processes the
whole MRI volume using a two-stage deep multiple instance
learning (MIL) framework, depicted in Fig. 1, where the first
stage considers the MRI volume as a collection of 2D images,
and the second stage analyzes each image as a collection of
patches. This framework is capable of identifying the 3D lo-
cation of the lesions, by selecting the most relevant slices in a
volume and then identifying the patches within each slice that
justify the diagnosis. Furthermore, the proposed system does
not process 3D data directly, thus avoiding the computational
and data overhead.

2. BACKGROUND

One of the main challenges to the development of CAD sys-
tems for BC in MRI is the lack of data with annotations about
the location of lesions. Previous works have either relied
on an annotated dataset to train a region of interest detec-
tion module [8], or they require an experienced radiologist
to manually provide potential malignant regions prior to clas-



sification [9, 10, 11]. But relying on this type of annotations
prevents scaling the training process to larger datasets, due to
the tremendous annotation effort they involve.

On the other hand, weakly supervised approaches have
the benefit of simultaneously classifying the entire volume
and identifying relevant regions that justify the decision, us-
ing only global labels which are comparably inexpensive. In
particular, MIL is a weakly supervised learning strategy com-
monly used in binary problems that treats samples as a collec-
tion of instances, called bags, where the only label available
is assigned to the entire bag, not to individuals instances [12].
It assumes that a bag is positive if at least one instance in that
bag is positive, and negative otherwise. Previous works have
used MIL approaches in BC classification problems, namely
in mammography images [13, 14] and in ultrasound [15]. For
instance, W. Zhu et al. [13] used a pooling function that in-
volved ranking instances with the goal of performing end-to-
end lesion classification for the whole mammogram. Since
each image patch is given a malignancy score, they can detect
lesions as a side product of their approach. Conversely, Sarath
et al. [14] proposed a two-stage MIL framework where first
a localization convolutional neural network (CNN) is trained
to extract local candidate patches, and then a MIL strategy
is employed to obtain a global image-level feature represen-
tation that is classified as benign or malignant. Nonetheless,
these approaches rely on a fixed amount of patches (instances)
to classify the image.

This work will aim to counter the above shortcoming by
adaptively determining the number of instances needed to
classify the whole MRI and by performing classification at
two levels: volume-level and slice-level.

3. TWO-STAGE DEEP MIL FRAMEWORK

This work proposes a two-stage deep MIL framework to clas-
sify 3D MRI data. The framework, depicted in Fig. 1, com-
prises: 1) a volume-wise model that analysis the whole MRI
volume and classifies it using only a subset of the slices; and
2) a slice-wise model that processes the slices selected by the
previous model and classifies each of them using patches. The
following sections describe each model in detail.

3.1. Volume-wise MIL Model

The volume-wise model is responsible for classifying the
whole MRI volume (as malignant or not) and selecting the
slices that contributed the most for that decision. To achieve
this, a MIL setting is defined, where the model considers the
MRI volume (bag) as a collection of several slices (instances).

Fig. 2 illustrates a scheme of this model, where the first
step is to extract the most relevant features from each of the
S slices (2D images) in the volume using a CNN. The feature
vector, fs, obtained for the s-th image then passes through
a logistic regression that assigns it a malignancy probability
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Fig. 2. Volume-wise MIL model.

Fig. 3. Gaussian distribution estimate (orange) with and with-
out Mean Shift for a specific set {r1, . . . , rS} (blue).

given by

rs = σ(w⊤fs + b), (1)

where w and b are learnable weights and biases, and σ(·) is
the sigmoid function. Then, an adaptive top-k pooling module
is applied, to select a subset of slices (shown in red in Fig. 2)
that will contribute to the final volume-wise decision.

The adaptive top-k pooling module assumes that only a
subset of consecutive slices may contain a malignant lesion.
To identify this subset of slices, we apply Mean Shift [16]
to find a robust Gaussian distribution fit to the probabilities
{r1, . . . , rS}. Specifically, we iteratively update the mean,
µ, and standard deviation, σ, of the Gaussian distribution ac-
cording to

µt+1 =
S∑

s=1

ωt
s r̃s s , σt+1 =

√√√√ S∑
s=1

ωt
s r̃s (s− µ)2, (2)

where r̃s = rs/
∑S

j=1 rj is the normalized malignancy prob-
ability, and ωt

s is the Mean Shift weight given by

ωt
s =

1

Kσt
exp

(
−1

2

(
s− µt

σt

)2
)
, (3)

where K is a normalization constant that ensures
∑S

s=1 ω
t
s =

1. Assigning these weights to each slice is important to en-
sure that the estimation of the distribution is robust to spu-
rious values, as illustrated in Fig. 3. After T iterations, the
slices within

[
µT − σT , µT + σT

]
are selected and sent to

the slice-wise model, described in the following section. The
final volume-wise classification is obtained as an average of
the malignancy probabilities of the selected slices.
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Fig. 4. Overview of the slice-wise MIL model.

3.2. Slice-wise MIL Model

The slice-wise model aims to classify and detect lesions
within the slices chosen by the volume-wise model. Figure
4 shows an overview of the model. The first step is to divide
an image into patches, which are then processed by a feature
extraction CNN. Similarly to the volume-wise model, the
feature vectors obtained for each patch go through a logis-
tic regression, which converts the vectors into a malignancy
probability, using specific weights, w, and bias, b, in (1).
Finally, the classification of each slice is obtained using max
pooling, following the MIL assumption. This means that if
there is least one malignant patch, then the entire slice is con-
sidered malignant. Additionally, since the patch classification
block is assigning a malignancy probability to each patch, a
heat map can be computed based on those probabilities, as
illustrated in Fig. 4 (right).

4. EXPERIMENTAL SETUP

The proposed framework was evaluated on a private dataset
containing 164 MRI scans and corresponding diagnosis as
malignant or not, provided by a senior radiologist. The MRI
scans correspond to dynamic contrast enhancement data,
which has previously been shown to be useful for BC di-
agnosis [17], since it removes high-intensity signal from
background fat and improves lesion conspicuity [18].

Training and validation were performed using a subset of
134 MRI scans (71 malignant and 63 normal) randomly split
in a 80%-20% ratio. Additionally, the slice-wise model was
trained and evaluated using the prediction given by the slice
classification block from the volume-wise model as GT. This
resulted in 221 positive slices and 232 negative slices selected
by the adaptive top-k pooling approach.

The remaining 30 MRI scans (18 malignant and 12 nor-
mal) were used as the test set to evaluate the performance
of the volume-wise model. From these 30 volumes, the pro-
posed framework selected 166 positive slices and 254 nega-
tive slices for the second stage.

The CNNs used in the proposed framework were Mo-
bileNetV2 [19] in both stages. The networks were trained for
50 epochs with binary cross-entropy, using Adam [20] with a
learning rate of 1e-3. Due to the large size of the MRI data,
the batch size was 4 for the first stage and 8 for the second.

Fig. 5. Accuracy comparison between the proposed adaptive
top-k pooling approach and the standard top-k.
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Fig. 6. Comparison between three pooling-based approaches.

5. RESULTS

5.1. Comparing Pooling Approaches

To validate the advantage of the proposed adaptive top-k
pooling module, we compared it to the standard top-k pool-
ing for different values of k, including k = 1 (max pooling).
The results obtained for the validation set are shown in Fig. 5.
The proposed adaptive top-k pooling achieves one of the best
accuracies, only being outperformed by the top-10 approach.
It is also clear that max pooling has much lower performance,
and larger values of k also lead to a significant decrease in
accuracy. This behavior was expected since, the malignant
lesion only covers a small number of slices in the MRI vol-
ume, which means that additional slices would be misguiding
the final prediction.

Furthermore, it is critical to note that, during training, the
slices selected by the volume-wise model are then sent to the
slice-wise model with the GT label given by the predicted
volume-wise class. As such, sending a fixed number of slices
(such as k = 10) may generate training label noise for the
subsequent model. The proposed adaptive top-k mitigates this
drawback by selecting a specific number of slices per volume.

Additionally, our approach ensures that the selected slices
are contiguous, which is in accordance to the medical knowl-
edge that the lesion is not spread along arbitrary slices in the
MRI volume, but rather in a specific region comprised by con-
secutive slices. This cannot be guaranteed by the standard
top-k, as shown in Fig. 6.



Fig. 7. Examples of images and corresponding heatmaps of
detected lesions, according to the probability of malignancy
of each patch in the image.

5.2. Lesion Localization Through Heatmaps

Lesion localizations were obtained by creating heatmaps
from the malignancy probabilities predicted by the slice-
wise model. Fig. 7 presents four malignant slices with their
respective heat maps. While the heatmaps cannot be quanti-
tatively assessed due to the lack of annotations, the examples
in Fig. 7 clearly show that these heatmaps highlight the re-
gions where the lesions are located. Therefore, even if the
resolution of the heatmaps is not very high, they can pro-
vide radiologists with regions of interest where they should
focus their attention during screening. These results also
validate that a MIL approach is capable of learning which
instances (patches) justify the decision of the model, even
without guidance from GT annotations about the location of
the lesions. Additionally, the proposed adaptive top-k pooling
approach also provides a localization of the lesions along the
third dimension of the MRI data, further helping radiologists
improve their workflow when analyzing this type of data.

5.3. Comparison With State of the Art

The classification results of both models in the test set are
expressed in Table 1. Comparing the results, the performance
of the volume-wise model with proposed adaptive top-k ap-
proach achieved the best results (96.67%), outperforming
both the top-10 approach and the slice-wise predictions. This
further confirms that a pre-defined value for k is not guar-
anteed to lead to the best results across different datasets.
On the other hand, it reinforces that adapting the number of
selected slices to each volume is the most reliable strategy, as
it allows finding an optimal number of consecutive slices for
each case.

The proposed approach was also compared with the other
state-of-the-art approaches. The results, shown in Table 2,

Model Strategy Acc AUC Sen Spe Prec

Volume-wise Adaptive Top-k 96.67% 0.96 0.94 1.00 1.00
Top-10 86.66% 0.91 0.78 1.00 1.00

Slice-wise Using probs. 91.43% 0.98 0.82 0.98 0.96

Table 1. Classification results for the final versions of the
models

Supervision AUC Acc Sen Spe

[21] Strong 0.91 -
[22] Strong - 0.85 0.82 -
[23] Weak 0.86 0.84 0.91 0.69
[24] Weak - 0.98 0.96 0.97

Ours Weak 0.96 0.97 0.94 1.00

Table 2. Comparison with other state-of-the-art approaches
for BC classification in MRI.

demonstrate that the proposed approach achieves competitive
results against the state of the art, including approaches that
relied on GT annotations about the location of the lesions dur-
ing training (strong supervision). Despite these results, it is
important to note these works were trained and tested on dif-
ferent datasets, which prevents better benchmarking.

6. CONCLUSION

This work proposed a framework for the classification of BC
in 3D MRI data. The framework consists of two deep MIL
models trained in a weakly-supervised approach, which over-
comes the need for annotations about the location of the le-
sions. The first model processes the entire MRI volume and
adaptively selects a continuous amount of slices that corre-
spond to the possible presence of the lesion, which it then
uses to make the final prediction. Since some of the MRI
volumes have more than one hundred slices, this accomplish-
ment could be very helpful for radiologists as it excludes ir-
relevant slices within those volumes. The second model per-
forms a slice-wise analysis that classifies and identifies rele-
vant regions in the image where the lesion is present through
heatmaps. Ours results show that the proposed approach out-
performs other state-of-the-art approaches in classification ac-
curacy, while simultaneously allowing the identification of re-
gions within the MRI volume containing the lesion.
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ABSTRACT
Magnetic resonance imaging (MRI) is the recommended
imaging modality in the diagnosis of breast cancer. However,
each MRI scan provides dozens of volumes for the radiol-
ogist to inspect, each providing its own set of information
on the tissues being scanned. This paper proposes a multi-
modal framework that processes all the available MRI data
in order to reach a diagnosis, instead of relying on a single
volume, mimicking the radiologists’ workflow. The frame-
work comprises a 3D convolutional neural network for each
modality, whose predictions are then combined using a late
fusion strategy based on Dempster-Shafer theory. Results
highlight the most relevant modalities required to obtain ac-
curate diagnosis, in agreement with clinical practice. They
also show that combining multiple modalities leads to better
overall results than their individual counterparts, achieving
promising results against state of the art.

Index Terms— Breast Cancer, Magnetic Resonance
Imaging, 3D Convolutional Neural Networks, Late Fusion

1. INTRODUCTION

Magnetic resonance imaging (MRI) is the recommended
imaging modality when screening for breast cancer in women
with higher-than-average risk of developing breast cancer
[1, 2]. This is due to its high sensitivity rate, which allows for
a better detection of lesions and their diagnosis, especially on
patients with high breast density [3, 4].

Radiologists typically analyze multiple MRI volumes, ob-
tained with different acquisition sequences, that highlight spe-
cific features and tissues in the breast. For instance, Dynamic
Contrast Enhanced (DCE), Dynamic Contrast Enhanced Sub-
traction (DCEsub), T1 weighted (T1), T2 weighted (T2), and
T2 fat saturated (T2fatsat) are among the most commonly
used to diagnose breast cancer. But analyzing all this (3D)
information is tremendously demanding and requires an ex-
perienced radiologist or even a second reader’s opinion [5, 6].

Numerous computer-aided diagnosis (CAD) systems have
been developed to assist medical practitioners with image in-
terpretation [7]. These systems can decrease the number
of errors made by radiologists, as shown in recent studies

Fig. 1. Overview of the proposed multimodal fusion.

[8]. However, few works have addressed the classification of
breast cancer in MRI, which requires dealing with 3D data.
Instead, most approaches focus on alternative 2D imaging
modalities, such as mammography [9].

In this work, we propose a CAD system, illustrated in Fig.
1, that analyzes multiple MRI volumes and provides a diag-
nosis by combining all the available 3D information, mim-
icking the radiologists’ workflow. The system relies on an
ensemble of 3D convolutional neural networks (CNNs), and
the final classification is given by a late-fusion strategy based
on Dempster-Shafer’s theory (DST) [10]. We show that this
approach leads to promising results, which are competitive
with other state-of-the-art works that require prior additional
information about the location of lesions. Additionally, our
best performing individual classifiers correspond to the MRI
volumes that radiologists often analyze more thoroughly, thus
suggesting that our framework automatically identifies which
volumes are the most relevant for breast cancer diagnosis.

2. PROPOSED FRAMEWORK

This section provides an overview of the proposal (Sec. 2.1),
describing how the training is performed (Sec. 2.2), followed
by the fusion (Sec. 2.3) as a way to combine the different
sources of information (i.e. different modality MRI volumes).



2.1. Overview

In this work we propose to leverage the 3D nature of MRI,
by using a 3D CNN to extract volumetric features from the
data. In our proposal, the left and right breasts volumes are
obtained with an initial pre-processing that allows to obtain
two volumes from the entire MRI volume. This allows us
to classify each breast individually. Then, a model is trained
specifically for each type of volume on a multi-class classifi-
cation task. A description of the training procedure is given
in Sec. 2.2. Each of these models then assigns a probability
to each class and performs breast cancer diagnosis based on a
single input modality, as shown in Fig. 1 (left).

This single-modal approach offers only a very limited
view of the entire available data. Therefore, the final diag-
nosis for the patient is obtained by combining the individual
results using a late fusion approach, based on the Dempster-
Shafer’s theory of evidence [10]. This second step is shown
in Fig. 1 (right) and discussed in Section 2.3.

2.2. Model Training

Each model is trained to classify volumes obtained with a
specific MRI sequence (e.g., T1, T2, etc). Three classes
are considered: no lesions (normal), benign, and malignant.
Since large datasets with all this information are scarce and
classes are often imbalanced, instead of using the conven-
tional cross entropy loss for the multi-class problem, we
propose to combine it with the sample-weighting approach
LOW [11]. This loss function overcomes the drawbacks of
small and imbalanced datasets, especially when class distri-
bution is long-tailed.

LOW estimates the weight of each training sample in each
step of gradient descent, in order to determine its contribu-
tion in the training process. By doing this, the model focuses
on different samples during training, preventing it from over-
fitting the predominant classes. Specifically, given the pre-
dicted probability of the correct class, ŷj , for each sample
j = 1, . . . ,M in a batch, the final loss function is given by

LLOW = − 1

M

M∑
j=1

wj log ŷj , (1)

where wj is the weight assigned to the j-th sample. These
weights are obtained by maximizing the norm of the gradi-
ent of the cross-entropy (CE) loss, under the constraint that
weights should be close to 1 (standard CE) and that they must
be positive and have an average value of 1. This leads to the
following optimization problem:

argmax
w

w⊤∇− λ ∥w − 1∥2 (2)

subject to w ≥ 0

w⊤1 = M

where

w =

 w1

...
wM

 ∇ =

 ∥∇ℓCE (ŷ1)∥2
...

∥∇ℓCE (ŷM )∥2

 (3)

and λ is hyperparameter (see [11] for more details).

2.3. Model Fusion

For the purpose of combining the information from the differ-
ent models, a late-fusion strategy based on the DST was used.
DST allows the combination of different classification pre-
dictions, while taking into account the uncertainty associated
with each classifier.

To measure the uncertainty, we compute the positive pre-
dictive values (PPV) of each class in a validation set and mul-
tiplying it by the probability for that class. The remainder of
the value is attributed to the unknown decision. Formally, let
the predicted class probabilities given by the i-th classifier be
[pi1, . . . , p

i
C ], where C is the number of classes. Denoting the

PPV of class c and classifier i as U i
c , the predictions with un-

certainty are given by p̃ic = U i
cp

i
c, where 1 −

∑C
c=1 p̃

i
c is the

probability of an unknown decision. Then, DST computes
the final prediction, p̂c, from N classifiers according to the
combination rule

p̂c =
1

1−K

N∏
i=1

p̃ic , (4)

where K is a normalization coefficient that represents the
conflict factor between the different classifiers. For illustra-
tion purposes, in a simple case with N = 2, K would be

K =

C∑
c=1

∑
k ̸=c

p̃1c p̃
2
k (5)

For further details, see [12].

3. EXPERIMENTAL SETUP

In this work, we use a private breast cancer dataset, contain-
ing the MRI scans from patients of Hospital Fernando Fon-
seca, Portugal. The dataset contains the MRI scans of 124 pa-
tients, with an average age of 61.3, in a total of 620 volumes
from 5 different acquisition sequences: DCE2 (second instant
post-contrast), DCE2sub (second instant post-contrast), T1,
T2, and T2 fatsat.

The dataset was preprocessed to remove background re-
gions and to separate each volume in two, one containing the
left breast and the other containing the right breast (248 indi-
vidual breasts). For each case, a senior radiologist provided
the ground truth label for each breast according to the classes:
’No Lesion’, ’Benign Lesion’, and ’Malign Lesion’, with the



class composition of 93, 39, and 116 cases, respectively. The
available data was then divided into train, validation, and test
sets. The train and validation sets were then used to train mul-
tiple classifiers and hyperparameter tuning with 5-fold cross-
validation.

Each model was trained with one of the available MRI
volumes as to obtain the performance of the classifier when
making a diagnosis with a single modality.

Each classifier is based on a 3D CNN that was trained
with the Adam optimizer [13] (β1 = 0.9 and β2 = 0.999) for
100 epochs with a batch size of 30. The initial learning rate
was set to 10−3, with decay to 10−4 after 50% of the epochs,
and to 10−5 for 75% of the epochs.

For the purpose of evaluating the performance of the clas-
sifiers, we use the following statistical metrics: area under the
curve (AUC), balanced accuracy, sensitivity, specificity and
precision.

4. RESULTS

This section shows several experiments validating our pro-
posed approach. Three ablation studies were performed: 1)
to justify our choice of loss function; 2) to compare the pro-
posed 3D CNN against a state-of-art 3D architecture based
on Resnet; and 3) to compare the performance of the pro-
posed DST-based fusion module against the standard fusion
approach. Additionally, we also analyze the performance of
the individual classifiers and different combinations of data
for the fusion approach. Finally, we compare our approach
against other state-of-the-art MRI classification systems.

4.1. Loss Function

We evaluated the impact of the LOW loss in the proposed
framework by comparing the performance of the DCE2sub
classifier using different loss functions: 1) the standard cross
entropy (CE) used in multiclass problems; 2) weighted CE,
where each class weight is inversely proportional to the class
frequency in the dataset (i.e., more prevalent classes have a
lower weight); and 3) LOW, which assigns specific weights
to each sample, as described in Section 2.2.

Fig. 2 shows the performance of the model trained with
each loss function using three different metrics. The results
shows that the standard CE leads to a model with significantly
lower performance compared to both the weighted CE and
LOW. Additionally, training the model with LOW leads to
the best performances across all three metrics. This shows
that LOW is capable of dealing with the class imbalance in
the training set and forces the model to classify all classes
correctly, and not just the predominant classes.

Fig. 2. Performance of the 3D CNN classifier trained with
three different loss functions: CE, weighted CE, and LOW.

Model BalAcc AUC Spe Sen Pre

3D Resnet 34.2
(1.3)

55.3
(2.8)

54.9
(3.2)

47.3
(0.3)

36.2
(13.9)

Ours 49.2
(3.6)

73.2
(3.8)

73.5
(2.3)

58.6
(2.9)

55.7
(5.3)

Table 1. Performance of the proposed 3D CNN architecture
against 3D Resnet using 5-fold cross-validation.

4.2. Model Architecture

To find suitable classifiers, several 3D CNN architectures
were evaluated using 5-fold cross validation on the DCE2sub
data. The main limitation was the amount of volumes in
the training set in relation to the high dimensionality of the
data. Consequently, most larger models suffered from se-
vere overfitting. To illustrate one example, we compare the
average performance across all five folds between the final
3D CNN model and a state-of-the-art 3D Resnet [14]. The
results, shown in Table 1, demonstrate a huge performance
decrease when using 3D Resnet as the architecture for the
classifier. An analysis of the loss and accuracy curves during
training showed that the larger model was underperforming
in the validation sets, indicating that more samples would be
required to achieve generalization.

4.3. Individual Classifier Analysis

Comparing the performance of the individual classifiers, we
see that, from Tab. 2, the best balanced accuracy was obtained
using the DCE2sub volume. These results are consistent with
our initial expectations, since it corresponds to acquisition se-
quence that radiologists most rely on, when searching for ma-
lignant breast cancer lesions in their clinical workflow [15]. It
is also interesting to note that the classifiers trained with the
other volumes achieve very similar and considerably lower
performances, suggesting that they do not provide sufficient
information on their own. However, radiologists analyze sev-
eral volumes to reach their decision. Therefore, combining
their information in a fusion strategy is critical to have a more
reliable diagnosis.



DST with uncertainty Weighted Average

Fig. 3. Comparison between the weighted accuracy for DST with (left) and without (right) uncertainty on DCE2sub.

DCE2 DCE2sub T1 T2 T2fatsat

BalAcc 36 (6) 54 (7) 39 (3) 36 (4) 38 (3)

Table 2. Comparison of the individual classifier perfor-
mances using the balanced accuracy metric.

4.4. Fusion Strategies

Two different approaches were compared for the late-fusion
process: 1) a standard fusion approach that computes a
weighted average of the predicted class probabilities, where
the contribution of each individual classifier is proportional
to its performance in the validation set; and 2) using the
DST, which estimates the uncertainty associated with each
class prediction and for each model, uses this information to
combine the outputs into a final decision.

Additionally, we assessed the impact of each additional
volume type to the final performance by evaluating several
combinations of multimodal data. Specifically, we started
by combining all the available modalities, and gradually re-
moved the worst performing individual classifier (Table 2).

The results are shown in Fig. 3, where the average bal-
anced accuracy using the proposed DST-based approach is
plotted on the left, and the traditional fusion approach on the
right. The plots show that the proposed approach better over-
all performances across all combinations, thus validating that
taking the uncertainty of the models into account leads to bet-
ter results. It is also interesting to note that the combination
that leads to higher balanced accuracy and lower variation is
DCE2sub and T2fatsat, with an accuracy of 58.2(±5)%. This
might suggest that these two volumes contain complementary
information that help identify the necessary features to distin-
guish between benign and malignant lesions, or simply better
identify the presence of more challenging lesions.

4.5. Comparison with State of the Art

Table 3 compares the best results obtained using the proposed
approach with other state-of-the-art works. Due to the lack
of benchmarks with multiple MRI volumes per patient, a rig-
orous comparison with the state of the art is not possible. In

Reference Dataset Size AUC
N B M

Dalmiş et al. [16] - 208 368 85.2%
Zhou et al.[18] - 506 1031 85.9%
Li et al. [17] - 66 77 80.1%

Our work: 3D CNN 85 34 107 77.8%

Table 3. Test set results obtained with the proposed approach
and comparison with the state of the art. N is “No Lesion”, B
is “Benign Lesion” and M is “Malignant Lesion”.

fact, the dataset used in this work is substantially smaller than
the datasets used by other works in the literature. Nonethe-
less, the AUC obtained with our framework achieves promis-
ing results, especially when compared to other works with
similar-sized datasets like [16]. Additionally, our work does
not rely on bounding box annotations, which are often used
by other works to limit the size of the volume that has to be
processed [17]. Finally, most state-of-the-art works only ad-
dress the problem of distinguishing between benign and ma-
lignant lesions. This subproblem is significantly easier since
it does not required dealing with the often challenging task of
discriminating between benign lesions and no lesions at all.

5. CONCLUSION

This work presented a new framework to classify MRI for
breast diagnosis. The framework is base on a combination of
multiple 3D CNN classifiers, each targeting a specific acqui-
sition sequence, which are then combined using a late fusion
approach based on Dempster-Shafer theory. This framework
allows the information from the multiple modalities available
to be jointly used to obtain the final decision. Results showed
that the proposed approach is competitive with other state-
of-the-art works. By combining the diagnosis from different
input volumes, we obtain an increase in the performance of
the final decision, compared to individual predictions. Addi-
tionally, an analysis of the performance of the individual clas-
sifiers highlights a hierarchy of relevant MRI sequences to the
diagnosis, in accordance with the feedback from radiologists.
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