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Abstract. The human visual system processes images with varied de-
grees of resolution, with the fovea, a small portion of the retina, captur-
ing the highest acuity region, which gradually declines toward the field
of view’s periphery. However, the majority of existing object localization
methods rely on images acquired by image sensors with space-invariant
resolution, ignoring biological attention mechanisms. As a region of in-
terest pooling, this study employs a fixation prediction model that em-
ulates human objective-guided attention of searching for a given class in
an image. The foveated pictures at each fixation point are then classi-
fied to determine whether the target is present or absent in the scene.
Throughout this two-stage pipeline method, we investigate the varying
results obtained by utilizing high-level or panoptic features and provide a
ground-truth label function for fixation sequences that is smoother, con-
sidering in a better way the spatial structure of the problem. Addition-
ally, we present a novel dual task model capable of performing fixation
prediction and detection simultaneously, allowing knowledge transfer be-
tween the two tasks. We conclude that, due to the complementary nature
of both tasks, the training process benefited from the sharing of knowl-
edge, resulting in an improvement in performance when compared to the
previous approach’s baseline scores.
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1 Introduction

A fundamental difference between the human visual system and current ap-
proaches to object search is the acuity of the image being processed [1]. The
human eye captures an image with very high resolution in the fovea, a small re-
gion of the retina, and a decrease in sampling resolution towards the periphery
of the field of view. This biological mechanism is crucial for the real-time image
processing of the rich data that reaches the eyes (0.1-1 Gbits), since visual at-
tention prioritizes interesting and visually distinctive areas of the scene, known
as salient regions, and directs the gaze of the eyes. In contrast, image sensors, by
default, are designed to capture the world with equiresolution in a homogeneous
space invariant lattice [2], and current solutions to vision system performance
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rely on the increase of the number of pixels. This limits real-time applications
due to the processing bottleneck and the excessive amount of energy needed by
state-of-the-art technologies.

The Convolutional Neural Network (CNN) [3, 5], a very sucessful Deep Learn-
ing (DL) technique, is inspired by the human visual processing system. In the
ImageNet Challenge, the winner, Alex Krizhevsky, introduced a CNN [4] that
showed its massive power as a feature learning and classification architecture.
Although AlexNet is very similar to LeNet [5] (published in 1998), the by scal-
ing up of both the data and the computational power brought large performance
improvements. Nevertheless, it remains challenging to replicate and model the
human visual system. Recent advances combine DL with image foveation and
saliency detection models. In [6], a foveated object detector has performance
similar to homogeneous spatial resolution, while reducing computational costs.

In the context of foveated image search, our work aims to utilize goal-guided
scanpath data for object detection in foveated images. Our object search ap-
proach receives as input an image and an object category, then indicates the
presence or absence of instances of that category in the scene while adjusting
the acuity resolution to mimic the human visual system.

Our contributions include: (i) Benchmark of recent approaches based on DL,
which are able to predict fixations, on a recent large-scale dataset; (ii) a ground-
truth label function for fixation sequences that is smoother, considering in a
better way the spatial structure of the problem; (iii) evaluation of two alternative
visual representations (conventional high-level features from VGG and a more
elaborate multi-class presence description); and (iv) the introduction of a novel
dual task approach that simultaneously performs fixation and target detection.

2 Related Work

Human attention is driven by two major factors, bottom-up and top-down fac-
tors [7]. While bottom-up is driven by low-level features in the field of vision,
which means saliency detection is executed during the pre-attentive stage, top-
down factors are influenced by higher level features, such as prior knowledge,
expectations and goals [8]. Depending on the goal/task description, the distri-
bution of the points of fixation on an object varies correspondingly [9].

In Computer Vision, Gaze Prediction models aim to estimate fixation pat-
terns made by people in image viewing. These models can have a spatial repre-
sentation, in fixation density maps, and an added temporal representation when
predicting scanpaths. In this area of study, most work focuses on free-viewing,
which, as mentioned, is led by bottom-up attention.

In [10], CNNs are used for feature extraction and feature maps compilation,
which are then used in a Long Short Term Network (LSTM) responsible for mod-
eling gaze sequences during free-viewing. LSTM [11] was proposed as a solution
to the vanishing gradient problem of RNNs. LSTM networks have a more com-
plex structure that tweak the hidden states with an additive interaction, instead
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of a linear transformation, which allows the gradient to fully backpropagate all
the way to the first iteration.

However, human scanpaths during search tasks vary depending on the target
items they are trying to gain information from, therefore guided search cannot be
predicted based on free-viewing knowledge. Goal-directed attention is addition-
ally relevant due to the human search efficiency in complex scenes that accounts
for scene context and target spatial relations [12].

In [13], a guided search approach inspired in the architecture of [10] shows
promising results. Their approach relies on a Convolutional Long Short Term
Memory (ConvLSTM) architecture, and introduced a foveated context to the
input images on top of an additional input encoding the search task, which
found human fixation sequences to be a good foundation for object localization.
The ConvLSTM had been previously introduced in [14] as a variant of LSTMs
better suited for 3-dimensional inputs, such as images. This adaptation still
contains the same two states: a hidden state, h, and a hidden cell state, c; and
the same four intermediate gates: the input gate i, forget gate f , output gate
o and candidate input c̃; as the LSTM architecture. However, a convolution is
performed during the computation of the gates instead of the previous product
operations, as seen in the following equations:

it = σ(Wi ∗ xt + Ui ∗ ht−1) ft = σ(Wf ∗ xt + Uf ∗ ht−1)

ot = σ(Wo ∗ xt + Uo ∗ ht−1) c̃t = tanh (Wc ∗ xt + Uc ∗ ht−1)

ct = ft ⊙ ct−1 + it ⊙ c̃t ht = ot ⊙ tanh(ct)

where ⊙ denotes an element wise product, ∗ denotes a convolution, and W and
U are the weight matrices of each gate that operate over the hidden states.

The limited amount of available data containing human scanpaths in visual
search was, however, identified as a significant obstacle in [13]. Since then a
new large-scale dataset has been introduced in [15], which has shown promising
results in [16], where an inverse reinforcement learning algorithm was able to
detect target objects by predicting both the action (fixation point selection) and
state representations at each time step, therefore replicating the human attention
transition state during scanpaths. This approach additionally utilized features
extracted from a Panoptic Feature Pyramid Network (Panoptic FPN) model [18],
that performs panoptic segmentation which is the unification of ”the typically
distinct tasks of semantic segmentation (assign a class label to each pixel) and
instance segmentation (detect and segment each object instance)” [17].

3 System Overview

In this section, we present the architecture of the two strategies used in this
study: a two-stage pipeline system consisting of a gaze fixations predictor and
an image classifier, and a dual-task model that conducts scanpath prediction
and target detection simultaneously.
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3.1 Fixation Prediction Module

We consider the same network architecture for the two types of features of the
fixation model: (i) High-level feature maps and (ii) panoptic image features. At
each time-step T = t, the Input Transformation Section aggregates the features
of the foveated pictures at each fixation location from the beginning of the gaze
sequence, T ∈ 0, ..., t, as well as the task encoding of the target object. This
combined input is then sent to the Recurrent Section, which uses ConvLSTM
layers to emulate human-attention through its hidden states. The Recurrent
Section then outputs its final hidden state ht+1 to the model’s Output Section,
which predicts the next scanpath fixation as a discrete location in an image grid
with dimensions H×W . We now present the architecture of each model in detail.

Fixation Prediction from High-Level Features In this model, we utilized
the high-level features retrieved from the ImageNet-trained VGG16 model [19,
20] with dimensions H ×W × Ch, and it is composed of the following sections:

- Input Transformation: To condition the image feature maps on the task,
we perform an element-wise multiplication of these inputs. In addition, depend-
ing on its format, the task encoding may be transmitted through a Fully Con-
nected (FC) Layer with Ch units and a tanh activation, followed by a Dropout
Layer with a rate of rDropout in order to prevent overfitting.

- Recurrent Section: This portion mainly consists of a ConvLSTM layer
with F filters (dimensionality of its output), a kernel size of K x K, a stride of
S, and a left and right padding of P . The ConvLSTM has a tanh activation, and
the recurrent step utilizes a hard sigmoid activation 1. Subsequently, to prevent
overfitting we perform batch normalization, where the features are normalized
with the batch mean and variance. During inference, the features are normalized
with a moving mean and variance.

- Output Section: We perform a flattening operation to each temporal slice
of the input with the help of a Time Distributed wrapper. The flattened array is
then fed to a FC layer and has H ×W units and a softmax activation function.

Fixation Prediction from Panoptic Features To compute these new fea-
tures we resorted to the Panoptic FPN model in [18]. The belief map computes
a combination of high and low resolution belief maps:

B(t) = Mt ⊙H + (1−Mt)⊙ L, (1)

where H and L are the belief maps for the high and low resolution images,
respectively, and Mt is the binary fixation mask at time step t, of size H ×W ,
where every element is set to 0 except the grid cells at an euclidean distance
shorter than r from the current fixation point.

To duplicate the belief maps in [16], the task encoding is a one-hot encoding
with dimensions H ×W × Cl, where each row of the axis Cl corresponds to an

1 a piece-wise linear approximation of the sigmoid function, for faster computation.
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object class and the two-dimensional map H ×W is all set to one for the target
class and zero for the others. This input is subsequently transmitted to the Input
Transformation stage, where it is concatenated with the image feature maps.

The recurrent section of the model is composed of d ConvLSTM layers, each
followed by a Batch Normalization layer. Every ConvLSTM is constructed with
the same hyper-parameters: each one has FLSTM filters with a kernel size of
KLSTM ×KLSTM , a stride of SLSTM , a padding of PLSTM , a tanh activation
function and a hard sigmoid activation during the recurrent step.

Finally, in the output section, we conducted experiments over two different
setups. The first one is composed of a 3d-Convolutional layer with a sigmoid
activation followed by a time distributed flattening operation. The second setup
is comprised of the same 3d-Convolutional layer, but with a ReLu activation,
and a flattening layer followed by a FC layer with softmax activation.

3.2 Target Detection Module

In the last stage of the pipeline, the model evaluates at each time-step, if the
fixation point coincides with the location of the target object. To detect the
target, we rely on VGG16 architecture, and develop 18 binary classifiers, one for
each task. In addition, as a baseline, we utilize a complete VGG16 trained on
the ImageNet dataset to perform classification on our data.

To fine-tune the already pre-trained VGG16 model, we substituted its clas-
sification layers, with three fully connected layers, FCi with i ∈ {1, 2, 3}, each
with Ui units, where FC1 and FC2 were followed by a ReLu activation function
and FC3 was followed by a sigmoid action function. During training, only the
parameters of these last FC layers were updated.

3.3 Dual Task Model

We aim to both predict the fixation point and localize the target object, by
sharing the internal states on two LSTMs branches. We consider three different
architectures: A, B and C. All models receive as input the high-level feature
maps, with dimensions H×W×Ch and a one-hot task encoding array, of size Cl,
which are then aggregated. Similar to Section 3.1, the grouping of both of these
inputs is accomplished by passing the task encoding through a FC layer with Ch
units and tanh activation, and conducting an element-wise multiplication with
the foveated image’s feature maps. After this shared module, the models branch
off to complete each specific task using the following architectures:

- Architecture A (fixation-first) After performing the input transfor-
mation, where we aggregate the feature maps and task encoding, the array xt

is fed to two ConvLSTM layers. Then, following each iteration of the fixation
prediction recurrent module, its internal states hfix

t and cfixt are passed to the
detection branch as the internal states, hdet

t−1 and cdett−1, of the preceding time
step, as illustrated in figure 1a. In the first branch, a temporal flattening oper-
ation is performed to hfix, followed by an output layer consisting of a FC layer
with softmax activation. In the second we classify each temporal slice of hdet by
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employing the same structure of three FC layers FCi ∈ {1, 2, 3}, with Ui units,
respectively, where the first two layers have a ReLu activation while the output
layer has a sigmoid activation.

- Architecture B (detection-first) Similar to the previous architecture,
each task branch employs ConvLSTM layer. The sole difference is that we now
conduct the iterations of the detection module first, and send the internal states
hdet
t and cdett to the fixation prediction module for the preceding time step t− 1.
- Architecture C The fixation prediction is a copy from architecture A.

In difference, the target detection branch no longer has a ConvLSTM layer.
Instead, at each time step t, the combined input xt computed by the shared
module is concatenated with the output of the ConvLSTM layer, hfix

t+1 of the
fixation prediction task, as illustrated in figure 1b. Finally, this concatenation is
followed by the same three FC layers utilized by the previous architectures.
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Fig. 1: Information flow across the fixation prediction and target detection branch in
architectures A, on the left, and C, on the right.

4 Implementation

4.1 Dataset

We use the COCO-Search18 dataset [15]. This dataset consists of 6,202 images
from the Microsoft COCO dataset [22], evenly split between target-present and
target-absent images, of 18 target categories 2, with eye movement recordings
from 10 individuals. As humans were able to fixate the target object within their
first six saccades 99% of the time, fixation sequences with length greater than
that were discarded. Additionally, the sequences were padded with a repeated
value of the last fixation point to achieve a fixed length of 7, including the initial
center fixation. This was done to replicate the procedure of a similar work [21],
where participants were instructed to fixate their gaze on the target object, once
they found them, during search tasks. To train the fixation prediction module
and the dual task model, we used a random dataset split of 70% train, 10%

2 bottle, bowl, car, chair, analogue clock, cup, fork, keyboard, knife, laptop, microwave,
mouse, oven, potted plant, sink, stop sign, toilet and tv.
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validate and 20% test over each class category and all images were resized to
320 x 512 which resulted in feature maps with 10× 16 spacial dimensions.

4.2 Training

During the training phase, all our models were optimized with the Adam algo-
rithm [23] and a learning rate of lr = 0.001, for a maximum of 100 epochs with
an early stopping mechanism activated when the validation loss stops improv-
ing after a duration of 5 epochs. Additionally, every dropout is performed with
rDropout = 0.5 and we use a batch size of 256 in every module apart from the
fixation prediction performed with high-level features.

Fixation Prediction from High-Level Features We estimate the weights
and bias parameters that minimize the loss between the predicted output ŷ and
the ground truth label y, with the cross entropy function computed for every
fixation time step t for every sequence s of each mini-batch:

LCE = −
S∑

s=1

T∑
t=0

H×W∑
i=1

yi ∗ log(ŷi), (2)

where S corresponds to the batch size, T to the sequence length which is set to
6 (in addition to the initial fixation point at t = 0) and H ×W to the output
size which is set to 160. We set with F = 5 filters, a kernel size of K = 4 and
a stride of S = 2, and varied the batch size between 32, 64, 128 and 256. We
conduct an ablation study over these additional hyper-parameters and settings:
(i) Fovea size: We use the same real-time foveation system as in [13], considering
three fovea sizes: 50, 75 and 100 pixels. (ii) Task encoding: We consider two
representations. The first is a one-hot encoding array of size 18. The second is
a normalized heat map of fixations made during the observations of that same
task, compiled exclusively with training data. (iii) Ground truth function: We
consider both a one-hot encoding representation of the ground-truth label and
a two dimensional Gaussian function with the mean set to the cell coordinates
of the actual fixation location and the variance set to 1.

Fixation Prediction from Panoptic Features We want to minimize the
loss function in equation 2. Additionally, the feature maps used have dimension
10 × 16 × 134 in order to replicate the scale of our grid shaped output. The
configuration of the ConvLSTM: FLSTM = 10 filters with square kernels of size
KLSTM = 3, a stride of SLSTM = 1 and a padding of PLSTM = 1 to maintain
the features spatial resolution. In the output section, FConv = 1 for the 3d-
Convolutional layer to have a kernel size of KConv = 2, a stride of SConv = 1
and padding of PConv = 1. The second setup of this section is configured to have
a Fully Connected layer with 160 units.

For this model, we additionally varied the depth of the recurrent section
with d ∈ {1, 3, 5}, and altered the structure of the output section to utilize both



8 B. Paula and P. Moreno

a sigmoid and softmax as the final activation function. Concerning the data
representation, we once again evaluated the impact of having a one-hot or a
Gaussian ground truth encoding, and explored several belief maps settings: we
varied the radius r of the mask, Mt, with values r ∈ {1, 2, 3} (each to emulate
a corresponding fovea size of 50, 75 and 100); and experimented with a cumu-
lative mask configuration, M ′

t , where the binary mask utilized in equation 1,
in addition to the information of the current time step, accumulates the high
acuity knowledge of all previous time steps. All panoptic feature maps were com-
puted with a low resolution map L extracted from a blurred input image with a
Gaussian filter with radius σ = 2.

Target Detection The binary classifiers were implemented with each fully
connected layer having U1 = 512, U2 = 256 and U3 = 1 units, a dropout rate of
rDropout = 0.5, and we varied the fovea size between 50, 75 and 100 pixels. They
were trained with a loss function defined as:

LBCE = − 1

N

N∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi) (3)

Dual Task In this case, the ConvLSTM layers are configured with F = 5 filters
of size K = 4 to execute the convolutional operations with stride S = 2, while
the fully connected layers of the detection branch are configured with U1 = 64,
U2 = 32 and U3 = 1 units. The loss function of the dual task LDual is:

LDual = wfix · Lfix + (1− wfix) · Ldet, (4)

where Lfix and Ldet correspond to the loss of the fixation and detection predic-
tion, respectively. Lfix corresponds to the categorical cross entropy, like in (2),
while Ldet is a weighted binary cross entropy as follows in (5):

w = y · w1 + (1− y) · w0; Ldet = w · [y ∗ log(ŷ) + (1− y) · log(1− ŷ)]. (5)

Since the target is absent in half of the images and appears in a limited
section of the scanpath sequence, (5) includes sample-based weights. Due to the
high imbalance of the detection data we add the weights w1 = 1.6 and w0 = 0.7.
In the case of w1 we compute the multiplicative inverse of the ratio of positive
detections on the total number of detections, and dividing it by 2. In the case
of w0, the inverse ratio of negative detections divided by 2.

To determine the optimal configuration for each model’s architecture, an
ablation study was done over the fovea size (50, 75 and 100 pixels) and the
degree of importance wfix (0.10, 0.25, 0.50, 0.75, 0.90) in Eq. (4).

4.3 Prediction

During the testing phase, the single and dual task models aim to predict a
scanpath sequence of fixed length l = 7, based on the training data, and the
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fixation point at t = 0 as the center cell of the discretized grid. We apply the
beam search algorithm, which selects the bestm fixation points at each time step.
Then, the selected points are appended to the sequences they were generated
from, while saving the target detection prediction in the case of the dual task
model. In the next time step, the model runs for each of these m predicted
sequences, to select the next best m predictions. In our experiments, m = 20.

In regards to the target presence detector, all models were deployed on the
scanpaths produced by the highest performing scanpath predictor. The baseline
classifier was tested similarly to the binary models, but cropping the images
to 224 × 224. Due to the mismtaching classes between the datasets, we adapt
the ImageNet classes to our targets by grouping some sibling sub-classes 3, and
remove the non-exisiting classes in ImageNet. The target is present when the
ground-truth class has the highest classification score and as absent otherwise.

5 Results

5.1 Two Stage-Pipeline

Fixation Prediction The evaluation metrics include: (i) Search Accuracy
which is computed as the ratio of sequences in which a fixation point selects a
grid cell that intersects the target’s bounding box, (ii) Target Fixation Cu-
mulative Probability (TFP), which is plotted in figure 3, and presents the
search accuracy attained by each time step. On the TFP, we compute the TFP
- Area Under Curve (TFP-AUC) and the Probability Mismatch, which
is the sum of absolute differences between the model’s TFP and the human’s
observable data. Finally, (iii) the Scanpath Ratio as the ratio between the
sum of euclidean distances between each fixation point and the distance from
the initial fixation to the center of the target’s bounding box.

Through the ablation study we conducted for the two stage pipeline, we
found that the high-level features scanpath predictor achieves top search accu-
racy scores (0.69) when using a one-hot task encoding and a Gaussian ground-
truth, as seen in figure 2, where the search scores are depicted in box-plots
grouped by each training setting.

Figure 3 shows the TFP curve of several highest model configurations, as
well as human search behavior, and a random scanpath baseline model4. We
noticed: (i) A decrease in performance across time for all models through the
slopes of each function, (ii) all the models but the random one were able to
detect the most of the targets by the second fixation step and (iii) our models
barely detected any new targets on the last four fixation points. The right side
of Figure 3 shows that fixations converge across time steps, but seems to be a
behavior copycat from the training set.

3 e.g. the task bowl corresponds to the joint sub-classes mixing bowl and soup bowl.
4 We select a human sequence randomly from the train split for the same search target
class on the testing set.
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(a) Batch Size (b) Fovea Size

(c) Task Encoding (d) Ground Truth

Fig. 2: Search accuracy box-plots of the single task High-level features’ models,
grouped by training settings, with the mean values (triangles) and outliers (circles).

Regarding the ablation study of fixation prediction with the panoptic features
shown in Figure 4, the highest search accuracy score of 0.686 was attained with
a cumulative mask of radius r = 1. We note that using a sigmoid activation
improves the model’s results because the ground truth is Gaussian. In contrast,
when a final softmax activation is utilized, the model turns the scores of the last
hidden layers into class probabilities. Due to the ground truth encoding, there
is a saturation of the loss when every grid cell is considered, as opposed to only
examining the probability of the true class in a one-hot encoding configuration,
resulting in the model’s poor performance.

By comparing the high-level vs. panoptic features on figure 3, we see that the
models with high-level feature maps fixate targets much sooner. However, the
panoptic features lead to a similar search accuracy. The panoptic-based model
is much less efficient as the scanpaths travel a much greater distance, as seen in
figure 3, leading to a a scanpath ratio score of only 0.463.

Target Detection For the target detection task we used accuracy, precision
and recall as metrics. The fine-tuned classifiers with foveation radius of 50 pixels
had the maximum performance for all measures, with a mean accuracy, precision
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Fig. 3: Left side: Search accuracy per model along scanpaths, with means and standard
errors computed over target classes. The Human TFP refers to the human behavior
observed in the entire COCO-Search18 dataset. The remaining TFP curves were com-
puted for the test data split. Right side: Euclidean distances between fixation points.

Table 1: Performance evaluation of best performing models (rows) based on Fixation
Prediction metrics (columns). The ↑ indicates higher is better, and ↓ lower is better.

Search
TFP-AUC ↑ Probability Scanpath

Accuracy ↑ Mismatch ↓ Ratio ↑
Human 0.990 5.200 - 0.862

High-Level Features - One-hot GT 0.650 3.068 1.727 0.753
High-Level Features - Gaussian GT 0.690 3.413 1.360 0.727
Panoptic Features 0.686 3.259 1.514 0.463
Dual - Architecture A 0.719 3.496 1.263 0.808
Dual - Architecture C 0.701 3.446 1.320 0.791
IRL N/A 4.509 0.987 0.826
BC-LSTM N/A 1.702 3.497 0.406
Random Scanpath 0.235 1.150 3.858 -

and recall of 82.1%, 86.9% and 75.4%, respectively, whereas the configuration
of 75 pixels achieved the lowest accuracy and recall. In turn, the baseline pre-
trained model has a very large variance across metrics for the vast majority of the
classes, as seen in figure 5b. Performance increases slightly with larger foveation
radius, reaching the highest accuracy, precision and recall scores (64.0%, 85.7%
and 34.3%) for the 100 pixels fovea size.

5.2 Dual Task

Figure 6a shows that architecture A outperforms more than half of the models
of architecture C on search accuracy (top value of 73.4% with a fovea size of 100
pixels and wfix = 0.75). Regarding detection performance, the dual task model
with architecture C, a fovea size of 50, and wfix = 0.9 achieved the highest
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(a) Mask Radius. (b) Mask configuration.

(c) Depth of recurrent section. (d) Activation Function.

Fig. 4: Search accuracy box-plots of the single task Panoptic features’ models grouped
by their training settings, with the mean values (trinagles) and outliers (circles).

target presence detection rate of 68.7%. In Figure 6c, considering the quartiles
and upper limit of its performance, the architecture of design C is deemed to
be the most effective. Regarding the weight of the fixation loss, we can also see
that models trained with bigger values obtained a larger interquartile range than
models trained with smaller values.

In addition, note that the best scanpath prediction model achieved a detec-
tion accuracy of 49.7% while the best target presence predictor achieved a search
accuracy of 63.9%. To have a single value for evaluation, we also considered the
average of both metrics. The majority of the time, design A earned a higher
score than design C, while design B ranked the lowest. Regarding the remaining
parameters, we observe that a bigger fovea radius led to higher average scores,
and a higher fixation loss’ weight resulted in a better top score, with the excep-
tion of setting wfix = 0.25. The model configured with architecture C, a fovea
size of 75 pixels, and wfix = 0.9 achieved the top score of 67.7% with search and
detection accuracies of 70.1% and 65.3%, respectively.

Finally, the dual approach led to higher search accuracy, as seen in Table 1,
resulting in a higher TFP-AUC score of 3.496 and 3.446 and a lower probability
mismatch of 1.263 and 1.320 for the overall best models with architectures A
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(a) Fine-Tuned Classifier (b) Baseline Classifier

Fig. 5: Performances of the fine-tuned and baseline target detectors in terms of accu-
racy, precision and recall, for the fovea size setting of 50 pixels on the left side and 100
pixels on the right side.

(a) Architecture. (b) Fixation loss’ weight.

(c) Architecture. (d) Fixation loss’ weight.

Fig. 6: Box-plots of the Search accuracy, on the top, and Detection accuracy, on the
bottom, grouped by configuration, with mean values (triangles) and outliers (circles).

and C, respectively. In addition, the two models exhibit a higher search efficiency
with scanpath ratios of 0.808 and 0.791, respectively.
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6 Conclusions and Future Work

We present two methods for predicting the presence or absence of a target in an
image with foveated context: (i) a two-stage pipeline and (ii) a dual task model.
In the first one, the fixation prediction module produced the best results with
high-level feature maps, both in terms of search accuracy and search efficiency,
when compared to panoptic features. In addition, we found that a Gaussian
ground truth label encoding, enhanced search accuracy. This novel representa-
tion captures the spatial structure of the problem, encouraging both the exact
discretized human fixation positions as well as attempts to cells near these lo-
cations. Two classifiers performed the target presence of the two-stage pipeline
model, where the fine-tuned classifiers for multiple binary tasks performed better
than a pre-trained VGG-16.

The final contribution of this work is a dual-task model that executes both
tasks concurrently while enabling information sharing between them by execut-
ing a common input transformation and establishing linking channels throughout
each task branch. This multi-task approach improved search precision when the
task prediction branch initiated the predictions, i.e. in designs A and C. How-
ever, the former suffered a reduction in detection accuracy, whilst the latter
achieved the maximum score when compared to our baseline method. Finally,
we found that the use of a recurrent layer biases the model towards temporal
patterns of target detection of the dual-task. An alternative solution would be
for the task branch to generate the input image simultaneously, simulating an
encoder-decoder, so as to require the model to maintain its knowledge of high-
level features in its hidden states.

Future research should also investigate a visual transformer-based design, as
it has shown promising results in similar image classification and goal-directed
search tasks.
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