Human-robot interaction with field robots using augmented reality and interactive mapping

AuReRo
Human-robot interaction, Field robotics, Augmented reality, SLAM-6D

Field robotics is the use of sturdy robots in unstructured environments. One important example of such a scenario is in Search And Rescue (SAR) operations to seek out victims of catastrophic events in urban environments. While advances in this domain have the potential to save human lives, many challenging problems still hinder the deployment of SAR robots in real situations. This project tackles one such crucial issue: effective real time mapping. To address this problem, we adopt a multidisciplinary approach by drawing on both Robotics and Human Computer Interaction (HCI) techniques and methodologies.

To achieve effective human-robot interaction (HRI), we propose presenting a pair of stereo camera feeds from a robot to an operator through an Augmented Reality (AR) head-mounted display (HMD). This will provide an immersive experience to the controller and has the capacity to display rich contextual information. To further enhance this display, we will superimpose mapping data generated by SLAM-6D (Simultaneous Localization And Mapping) algorithms over the video input using Augmented Reality (AR) techniques. Three modes of display will be available: (1) a top view 2D map, to aid navigation and provide an overview of spaces, (2) a rendered 3D model to allow the operator to explore a virtual model of the environment in detail, and (3) a superimposed rendered 3D model, synchronized with the field of view of the operator to form an augmented camera view. To achieve this latter mode we will track the angular position of the HMD and use it to both control the orientation of the robot’s cameras and the rendering of the AR scene.

We will use real firefighter training camps as an experimental setup, leveraging a prior relationship between IST/ISR and the Lisbon firefighter corporation. The cooperation with firefighter teams will also provide subjects for initial task analyses and later usability evaluations of the system in the field. Concerning the robotic platforms, we will use existing robotic platforms at IST/ISR (e.g., the RAPOSA robot, together with other commercial platforms), upgrading them with the necessary equipment to achieve the project goals: 3D ranging sensors, calibrated stereo camera pairs with a pan&tilt mounting, and increased computing power.

Reference:
FCT – PTDC/EIA-CCO/113257/2009
URL:
http://aurero.isr.ist.utl.pt
ID: 182
From: 2011-04
To: 2014-09
Funding: 68,167.00
Funders: FCT
Partner: Madeira Interactive Technologies Institute (M-ITI) (PT)

Computer and Robot Vision Lab (VisLab)

Computer and Robot Vision Lab (VisLab) Logo

Intelligent Robots and Systems Group (IRSg)

Intelligent Robots and Systems Group (IRSg) Logo